用向量方法证明空间中的平行与垂直

时间:2019-05-12 17:22:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《用向量方法证明空间中的平行与垂直》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《用向量方法证明空间中的平行与垂直》。

第一篇:用向量方法证明空间中的平行与垂直

用向量方法证明空间中的平行与垂直

1.已知直线a的方向向量为a,平面α的法向量为n,下列结论成立的是(C)

A.若a∥n,则a∥αB.若a·n=0,则a⊥α

C.若a∥n,则a⊥αD.若a·n=0,则a∥α

解析:由方向向量和平面法向量的定义可知应选C.对于选项D,直线a⊂平面α也满足a·n=0.2.已知α,β是两个不重合的平面,其法向量分别为n1,n2,给出下列结论:

①若n1∥n2,则α∥β;②若n1∥n2,则α⊥β;

③若n1·n2=0,则α⊥β;④若n1·n2=0,则α∥β.其中正确的是(A)

A.①③B.①④

C.②③D.②④

→平行的一个向量的坐 3.(原创)已知A(3,-2,1),B(4,-5,3),则与向量AB

标是(C)

1A.(3,1,1)B.(-1,-3,2)

13C.(-2,2,-1)D.(2,-3,- 2)

→=(1,-3,2)=-2(-131),解析:AB22

13→所以与向量AB平行的一个向量的坐标是(-2,2,-1),故选C.4.设l1的方向向量为a=(1,2,-2),l2的方向向量为b=(-2,3,m),若l1⊥l2,则m等于 2.5.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k= 4.解析:因为α∥β,所以(-2,-4,k)=λ(1,2,- 2),所以-2=λ,k=-2λ,所以k=4.→=(1,5,-2),BC→=(3,1,z).若AB→⊥BC→,BP→=(x-1,y,-3),6.已知AB

4015且BP⊥平面ABC,则实数x= 7,y= -7,z= 4.→·→=x-1+5y+6=0解析:由已知BPAB

→·→=3x-1+y-3z=0BPBC

4015解得x=7,y=-7z=4.→·→=3+5-2z=0ABBC,7.(原创)若a=(2,1,-3),b=(-1,5,3),则以a,b为邻边的平行四边形的面积为 58.解析:因为a·b=(2,1,-3)·(-1,5,3)=0,所以a⊥b,又|a|=22,|b|29,所以以a,b为邻边的平行四边形的面积为

|a|·|b|=22×29=258.8.如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC=16,PA=PC=10.设G是OC的中点,证明:FG∥平面BOE

.证明:如图,连接OP,因为PA=PC,AB=BC,所以PO⊥AC,BO⊥AC,又平面PAC⊥平面ABC,所以可以以点O为坐标原点,分别以OB,OC,OP所在直线为x轴,y轴,z轴建立空间直角坐标系O-xyz

.则O(0,0,0),A(0,-8,0),B(8,0,0),C(0,8,0),P(0,0,6),E(0,-4,3),F(4, 0,3).由题意,得G(0,4,0).

→=(8,0,0),OE→=(0,-4,3),因为OB

设平面BOE的一个法向量为n=(x,y,z),→n·OB=0x=0则,即,→=0-4y+3z=0OEn·

取y=3,则z=4,所以n=(0,3,4).

→=(-4,4,-3),得n·→=0.由FGFG

又直线FG不在平面BOE内,所以FG∥平面BOE

.9.如图,四棱锥P-ABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA

=AD=2,E,F,H分别是线段PA,PD,AB的中点.

(1)求证:PB∥平面EFH;

(2)求证:PD⊥平面AHF

.证明:建立如图所示的空间直角坐标系A-xyz,所以A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),H(1,0,0).

→=(2,0,-2),EH→=(1,0,-1),(1)因为PB

→=2EH→,所以PB

因为PB⊄平面EFH,且EH⊂平面EFH,所以PB∥平面EFH.→=(0,2,-2),AH→=(1,0,0),AF→=(0,1,1),(2)因为PD

→·→=0×0+2×1+(-2)×1=0,所以PDAF

→·→=0×1+2×0+(-2)×0=0,PDAH

所以PD⊥AF,PD⊥AH,又因为AF∩AH=A,所以PD⊥平面AHF.

第二篇:9-5用向量方法证明平行与垂直

2012-2013学第一学期数学理科一轮复习导学案编号:9-5班级:姓名:学习小组:组内评价:教师评价:

例2.(线线垂直)

如图所示,已知直三棱柱ABC—A1B1C1中,∠ACB=90°,∠BAC=30°.BC=1,AA1=,M是例5.(面面平行)

如图所示:正方体AC1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点.求证:平CC1的中点.求证:AB1⊥A1M.例3.(线面平行)

在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.例4.(线面垂直)

在棱长为1的正方体ABCD-A1B1C1D1中,E、F分别为棱AB和BC的中点,试在棱B1B上找一点M,使得D1M⊥平面EFB1.第三页

面AMN∥平面EFDB.例6。(面面垂直)

如图,底面ABCD是正方形,SA底面ABCD,且SAAB平面ABCD.第四页E是SC中点.求证:

平面BDEy,2012-2013学第一学期数学理科一轮复习导学案编号:9-5班级:姓名:学习小组:组内评价:教师评价:

8.平面α的一个法向量为v1=(1,2,1),平面β的一个法向量v2=-(2,4,2),则平面α与平面β()A.平行

B.垂直C.相交

D.不能确定

9.在正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点,则()A.面AED∥面A1FD1B.面AED⊥面A1FD1 C.面AED与面A1FD相交但不垂直D.以上都不对

10.已知l∥α,且l的方向向量为(2,m,1),平面α的法向量为

11,2,2,则m=________.11.如右上图所示,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于________.

9.如下图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点. 证明:(1)AE⊥CD;(2)PD⊥平面ABE.第三页

10.已知正方体ABCD-A1B1C1D1的棱长为2,E、F、G分别是BB1、DD1、DC的中点,求证:(1)平面ADE∥平面B1C1F;(2)平面ADE⊥平面A1D1G;

(3)在AE上求一点M,使得A1M⊥平面DAE.11.如图所示,PD⊥平面ABCD,且四边形ABCD为正方形,AB=2,E是PB的中点,cos〈DP,AE〉=33

.(1)建立适当的空间坐标系,写出点E的坐标;(2)在平面PAD内求一点F,使EF

⊥平面

PCB

.第四页

第三篇:立体几何中的向量方法----证明平行与垂直练习题

§8.7 立体几何中的向量方法(Ⅰ)----证明平行与垂直

一、选择题

1.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则().

A.l1∥l2B.l1⊥l

2C.l1与l2相交但不垂直D.以上均不正确

2.直线l1,l2相互垂直,则下列向量可能是这两条直线的方向向量的是()

A.s1=(1,1,2),s2=(2,-1,0)

B.s1=(0,1,-1),s2=(2,0,0)

C.s1=(1,1,1),s2=(2,2,-2)

D.s1=(1,-1,1),s2=(-2,2,-2)

35153.已知a=1,-,b=-3,λ,-满足a∥b,则λ等于(). 222

2992A.B.C.-D.- 322

34.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是().

A.a=(1,0,0),n=(-2,0,0)

B.a=(1,3,5),n=(1,0,1)

C.a=(0,2,1),n=(-1,0,-1)

D.a=(1,-1,3),n=(0,3,1)

5.若平面α,β平行,则下面可以是这两个平面的法向量的是()

A.n1=(1,2,3),n2=(-3,2,1)

B.n1=(1,2,2),n2=(-2,2,1)

C.n1=(1,1,1),n2=(-2,2,1)

D.n1=(1,1,1),n2=(-2,-2,-2)

6.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共面,则实数λ等于().

62636065A.B.C.D.7777

7.已知平面α内有一个点A(2,-1,2),α的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是()

A.(1,-1,1)3B.1,3,2



C.1,-3,2

二、填空题



D.-1,3,-

2

8.两不重合直线l1和l2的方向向量分别为v1=(1,0,-1),v2=(-2,0,2),则

l1与l2的位置关系是_______.

9.平面α的一个法向量n=(0,1,-1),如果直线l⊥平面α,则直线l的单位方向向量是s=________.→

=0的_______.

12.已知→AB=(1,5,-2),→BC=(3,1,z),若→AB⊥→BC,→BP=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为________.

三、解答题

13.已知:a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,求:

11.已知AB=(2,2,1),AC=(4,5,3),则平面ABC的单位法向量是________.

10.已知点A,B,C∈平面α,点P∉α,则AP·AB=0,且AP·AC=0是AP·BC

a,b,c.14.如图所示,在正方体ABCD­A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:

MN∥平面A1BD.证明 法一 如图所示,以D为原点,DA、DC、DD1所在直

线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,1

则M0,1,N,1,1,D(0,0,0),A1(1,0,1),B(1,1,0),22→

1

1于是MN=,0,2

2设平面A1BD的法向量是n=(x,y,z). x+z=0,则n·DA1=0,且n·DB=0,得

x+y=0.→

取x=1,得y=-1,z=-1.∴n=(1,-1,-1). →

11

又MN·n=,0,·(1,-1,-1)=0,22→

∴MN⊥n,又MN⊄平面A1BD,∴MN∥平面A1BD.15.如图,已知ABCDA1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=

1.(1)求证:E,B,F,D1四点共面;

(2)若点G在BC上,BG=M在BB1上,GM⊥BF,垂足为H,求证:EM⊥面

BCC1B1.→→

证明(1)建立如图所示的坐标系,则BE=(3,0,1),BF=(0,3,2),BD1=(3,3,3).

→→

→→→→

所以BD1=BE+BF,故BD1、BE、BF共面. 又它们有公共点B,所以E、B、F、D1四点共面.(2)如图,设M(0,0,z),→

→→

2

则GM=0,-,z,而BF=(0,3,2),3

→→

由题设得GM·BF=-×3+z·2=0,得z=1.→

因为M(0,0,1),E(3,0,1),所以ME=(3,0,0). →

又BB1=(0,0,3),BC=(0,3,0),→→→→

所以ME·BB1=0,ME·BC=0,从而ME⊥BB1,ME⊥BC.又BB1∩BC=B,故ME⊥平面BCC1B1.16.如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.证明(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连接NE.则点N、E的坐标分别为 22

,0、(0,0,1).

22→22∴NE=-,-1.22

2

2又点A、M的坐标分别是2,2,0)、,1

22

22∴AM=-,-1.22

→→

∴NE=AM且NE与AM不共线.∴NE∥AM.又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE.22

(2)由(1)知AM=-,-1,22

∵D2,0,0),F(2,2,1),∴DF=(0,2,1)→→

∴AM·DF=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.→

第四篇:8.7 立体几何中的向量方法Ⅰ——证明平行与垂直

§8.7 立体几何中的向量方法Ⅰ——证明

平行与垂直

(时间:45分钟 满分:100分)

一、选择题(每小题7分,共35分)

1.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若a

a分别与AB,AC垂

直,则向量a为

A.1,1,1

B.-1,-1,-1

C.1,1,1或-1,-1,-1

D.1,-1,1或-1,1,-1,2.已知a=1,1,1,b=0,2,-1,c=ma+nb+4,-4,1.若c与a及b都垂直,则m,n的值分别为,A.-1,2B.1,-2C.1,2D.-1,-

23.已知a=1,,,b=3,,

A352215满足a∥b,则λ等于 22992.B.C.-D.- 32234.已知AB=1,5,-2,BC=3,1,z,若AB⊥BC,BP=x-1,y,-3,且BP⊥平面ABC,则实数x,y,z分别为A.33154015,-,4B.,-,4 77774040,-2,4D.4,-15 77C.5.若直线l的方向向量为a,平面α的法向量为n,能使l∥α的是,A.a=1,0,0,n=-2,0,0

B.a=1,3,5,n=1,0,1

C.a=0,2,1,n=-1,0,-1

D.a=1,-1,3,n=0,3,1

二、填空题每小题7分,共21分

6.设a=1,2,0,b=1,0,1,则“c=(,,的条件.7.若|a|,b=1,2,-2,c=2,3,6,且a⊥b,a⊥c,则a=.,8.如图,正方体ABCD—A1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为

三、解答题共44分

9.14分已知正方体ABCD-A1B1C1D1中,M、N分别为BB1、C1D1的中点,建立适当的坐标系,求平面AMN的一个法向量

10.(15分)如图,已知ABCD—A1B1C1D1是棱长为3的正方体,点E在AA

1上,点F在CC1上,且AE=FC1=1.(1)求证:E,B,F,D1四点共面;

2(2)若点G在BC上,BG=,点M在BB1上,GM⊥BF,垂足为H,求证:

3EM⊥面BCC1B1.11.(15分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB2,AF

=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;

(2)AM⊥平面BDF.答案

1.C2.A3.B4.B5.D

6.充分不必要7.23132)”是“c⊥a,c⊥b且c为单位向量”3118118,2,或,2,8.1 555

5.9.解 以D为原点,DA、DC、DD1所在直线为坐标轴建立空间直角坐标系如图所示.,设

正方体ABCD—A1B1C1D1的棱长为1,则A1,0,0,M(1,1,11),N(0,1)).∴2

211AM1,0,,AN0,1设平面AMN的一个法向量为22

n=x,y,z,1nAMyz02 nANx1yz02

令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).

∴(-3,2,-4)为平面AMN的一个法向量.

10.证明 建立如图所示的坐标系,则BE=(3,0,1),→BF=(0,3,2),BD1=(3,3,3).

→→所以BD1=BE+BF,故BD1,BE,BF共面.

又它们有公共点B,所以E、B、F、D1四点共面.

(2)如图,设M(0,0,z),2→0,-z,而BF=(0,3,2),GM=3

得z=1.→2由题设得GMBF=3z20,3因为M(0,0,1),E(3,0,1),所以ME=(3,0,0).

→→又BB1=(0,0,3),BC=(0,3,0),→→→→所以ME·BB1=0,ME·BC=0,从而ME⊥BB1,ME⊥BC.又BB1∩BC=B,故ME⊥平面BCC1B1.11.证明(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连接NE.则点N、E的坐标分别为 22,0、(0,0,1). 22

22∴NE=-1.22

又点A、M的坐标分别是,0)、2222→,AM=-,1.,1,2222→∴NE=AM且NE与AM不共线.∴NE∥AM.又∵NE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE.22→(2)由(1)知AM=1,∵D(2,0,0),F22,1),DF=(0,2,22

1).

→→→→AM·DF=0.∴AM⊥DF.→→同理AM⊥BF,又DF∩BF

F,∴AM⊥平面BDF.

第五篇:3.2.1用向量方法证明平行与垂直关系

§3.2.1用向量方法证明平行与垂直

1、直线的方向向量

直线的方向向量是指和这条直线或的向量,一条直线的方向向量有个。2.平面的法向量

直线l,取直线l的a,则向量a叫做平面的。

3、空间中平行关系的向量表示(1)线线平行与垂直

设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),且a2,b2,c2≠0,则

l//mlm(2)设直线设直线l的方向向量为的法向量。

题型二 利用向量方法证平行关系

【例2】在正方体ABCD-A1B1C1D1中,O是B1D1的中点,求证:B1C//平面ODC

1【练习2】如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,∠BCF=∠CEF=90º, AD=3,EF=2,求证:AE//平面DCF.D

A a=(a1,b1,c1),平面若的法向量为u=(a2,b2,c2),则l//。l(3)面面平行

设平面, 的法向量分别为u=(a1,b1,c1),F

题型三 用向量方法证垂直关系

【例3】在正方体ABCD-A1B1C1D1中,E,F分

别是棱AB,BC的中点,试在棱BB1上找一点M,v=(a2,b2,c2),则//

使得D1M⊥平面EFB1.;

题型一 求平面的法向量 【例

经过三点A(1,2,3),B(2,0,-1),C(3,-2,0),试求平面的一个法向量。

【练习1】在正方体ABCD-A1B1C1D1中,E,F分别为BB1,CD的中点,求证:AE是平面A1D1F

【练习3】在正三棱柱ABC-A1B1C1中,B1C⊥A1B,求证:AC1 ⊥A1B.1】已知平面

课时作业

一、选择题

1、已知A(3,5,2),B(-1,2,1),把AB按向量a=(2,1,1)平移后所得的向量是 A.(-4,-3,0)B.(-4,-3,-1)C.(-2,-1,0)D.(-2,-2,0)2.平面的一个法向量为(1,2,0),平面的一个法向量为(2,-1,0),则平面与的位置关系是

A.平行 B.相交但不垂直C.垂直 D.不能确定 3.从点A(2,-1,7)沿向量a=(8,9,-12)的方向取线段长AB=34,则B点坐标为

A.(-9,-7,7)B.(18,17,-17)C.(9,7,-7)D.(-14,-19,31)

4、已知a=(2,4,5)b=(3,x,y)分别是直线l1,l2的方向向量,若l1//l2,则 A.x=6,y=15B.x=3,y=C.x=3,y=15D.x=6,y=

1521

52B

C9、△ABC是一个正三角形,EC⊥平面ABC,BD//CE,且CE=CA=2BD,M是EA的中点,求证:平面DEA⊥平面ECA.10、在四棱锥P-ABCD中,底面ABCD为正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F(1)证明:PA//平面EDB;(2)证明:PB⊥平面EFD.5、若直线l的方向向量为a=(1,0,2,),平面的法向量为u=(-2,0,-4),则

A.l//B.l ⊥C.lD.l与斜交

二、填空题

6、已知A(0,2,3),B(-2,1,6),C(1,-1,5),若|a|=3,且a ⊥AB, a ⊥AC,则向量a的坐标为

7、已知平面经过点O(0,0,0),且e=(1,1,1)是的法向量,M(x,y,z)是平面内任意一点,则x,y,z满足的关系式是。

三、解答题

8、如图,已知P是正方形ABCD平面外一点,M,N分别是PA,BD上的点,且PM:MA=BN:ND=5:8,求证:直线MN//平面PBC

0-

E

A

B

下载用向量方法证明空间中的平行与垂直word格式文档
下载用向量方法证明空间中的平行与垂直.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《用向量讨论垂直与平行》说课稿[大全]

    作为一名默默奉献的教育工作者,可能需要进行说课稿编写工作,编写说课稿助于积累教学经验,不断提高教学质量。那么优秀的说课稿是什么样的呢?下面是小编为大家收集的《用向量讨论......

    §2.4用向量讨论垂直与平行

    一、学习目标1、理解用向量方法解决立体几何问题的思想;2、掌握用向量方法解决立体几何中的垂直与平行问题二、学习重、难点1、重点: 用向量方法解决立体几何中的垂直与平行......

    空间几何——平行与垂直证明

    三、“平行关系”常见证明方法(一)直线与直线平行的证明1) 利用某些平面图形的特性:如平行四边形的对边互相平行2) 利用三角形中位线性质3) 利用空间平行线的传递性(即公理4):平行......

    45立体几何中的向量方法(Ⅰ)——证明平行与垂直(5篇模版)

    第45课时立体几何中的向量方法(Ⅰ)——证明平行与垂直编者:刘智娟审核:陈彩余 班级_________学号_________姓名_________第一部分 预习案 一、学习目标1. 理解直线的方向向量......

    传统方法证明平行与垂直

    立体几何——证明平行与垂直证明平行Ⅰ、线面平行:证明线面平行就证明线平行于面内线。(数学语言)性质:直线a与平面α平行,过直线a的某一平面,若与平面α相交,则直线a就平行于这条......

    证明空间线面平行与垂直(5篇范文)

    证明空间平行与垂直 知识梳理一、直线与平面平行1.判定方法(1)定义法:直线与平面无公共点。(2)判定定理: aba//ba////(3)其他方法:a//aa//2.性质定理:a a//bb二、平面与平面平行1.判......

    证明平行与垂直

    §9.8 立体几何中的向量方法Ⅰ——证明平行与垂直(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1. 已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若aa分别与AB,AC垂直,则向量a为A.1......

    用向量法证明直线与直线平行

    用向量法证明直线与直线平行、直线与平面平行、平面与平面平行导学案一、知识梳理1、设直线l1和l2的方向向量分别是为v1和v2,由向量共线条件得l1∥l2或l1与l2重合v1∥v2。2、......