用向量法证明直线与直线平行

时间:2019-05-12 17:22:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《用向量法证明直线与直线平行》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《用向量法证明直线与直线平行》。

第一篇:用向量法证明直线与直线平行

用向量法证明直线与直线平行、直线与平面平行、平面与平面平行导学案

一、知识梳理



1、设直线l1和l2的方向向量分别是为v1和v2,由向量共线条件得l1∥l2或l1与l2重合v1∥v2。

2、直线与平面平行的条件 已知两个不共线向量v1、v2与平面a共面(图(2)),一条直线l的一个方向向量为v1,则由共面向量定理,可得l∥a或l在平面a内存在两个实数x、y,使

v1=xv1+yv2。

3、平面与平面平行的条件 已知两个不共线的向量v1、v2与平面a共面,则由两个平面平行的判定定理与性质得 a∥或a与重合v1∥且v2∥

4、点M在平面ABC内的充要条件

由共面向量定理,我们还可得到:如果A、B、C三点不共线,则点M在平面ABC内的充分

必要条件是,存在一对实数x、y,使向量表达式AMxAByAC成立。

对于空间任意一点O,由上式可得OM(1xy)OAxOByOC,这也是点M位于平

面ABC面内的充要条件。

知识点睛用向量法证明直线与直线平行、直线与平面平行、平面与平面平行时要注意:

(1)若l1、l2的方向向量平行,则包括l1与l2平行和l1与l2重合两种情况。

(2)证明直线与平面平行、平面与平面平行时要说明它们没有公共点。

例1:如图3-28,已知正方体ABCD-A′B′C′D′,点M,N

分别是面对角线A′B与面对角线A′C′的中点。

求证:MN∥侧面AD′;MN∥AD′,并且MN=12AD′。

已知正方体ABCD-A′B′C′D′中,点M,N分别是棱BB′与对角线CA′的中点。求证:MN∥BD,MN=

[例2] 在长方体OAEB-O1A1E1B1中,|OA|=3,|OB|=4,|OO1|=2,点P在棱AA1上,且|AP|=2|PA1|,点S在棱BB1上,且|SB1|=2|BS|,点Q、R分别是O1B1、AE的中点,求证:PQ∥RS 12BD。

在正方体AC1中,O,M分别为BD1,D1C1的中点.证明:OM∥BC1.例3] 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.变式应用

3如图所示,已知正方形ABCD和正方形ABEF相交于AB,点M,N分别在AE,BD上,且AM=DN.求证:MN∥平面BCE.堂巩固训练

→=AB→,则点B应为1.设M(5,-1,2),A(4,2,-1),若OM

()

A.(-1,3,-3)B.(9,1,1)C.(1,-3,3)D.(-9,-1,-1)

→2→,则C的坐标是2.已知A(3,-2,4),B(0,5,-1),若OC3

1410A.(2,-,331410B.(-2,-)33

14101410C.(2,-,-)D.(-2,-)3333

3.已知A、B、C三点的坐标分别为A(4,1,3)B(2,-5,1),C(3,7,λ),→⊥AC→,则λ等于()若AB

A.λ=28B.λ=-28

C.λ=14D.λ=-14

4.已知a=(2,-2,3),b=(4,2,x),且a⊥b,则x=____.

第二篇:证明直线平行

证明直线平行

证明:如果a‖b,a‖c,那么b‖c证明:假使b、c不平行则b、c交于一点O又因为a‖b,a‖c所以过O有b、c两条直线平行于a这就与平行公理矛盾所以假使不成立所以b‖c由同位角相等,两直线平行,可推出:内错角相等,两直线平行。同旁内角互补,两直线平行。因为a‖b,a‖c,所以b‖c(平行公理的推论)

2“两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。

一、怎样证明两直线平行证明两直线平行的常用定理(性质)有:1.两直线平行的判定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行.2、三角形或梯形的中位线定理.3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.4、平行四边形的性质定理.5、若一直线上有两点在另一直线的同旁).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用平行线判定定理可判断答案选C认六一值!小人﹃夕叱的一试勺洲洲川JLZE一B/(一、图月一飞/匕一|求且它们到该直线的距离相等,则两直线平行.例1(2003年南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(B).例2(2003年泉州市)如图2,△注Bc中,匕BAC的平分线AD交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF.(l)求证:EF//Bc

(1)根据定义。证明两个平面没有公共点。

由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。

(2)根据判定定理。证明一个平面内有两条相交直线都与另一个平面平行。

(3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。

2.两个平行平面的判定定理与性质定理不仅都与直线和平面的平行有逻辑关系,而且也和直线与直线的平行有密切联系。就是说,一方面,平面与平面的平行要用线面、线线的平行来判定;另一方面,平面

与平面平行的性质定理又可看作平行线的判定定理。这样,在一定条件下,线线平行、线面平行、面面平行就可以互相转化。

3.两个平行平面有无数条公垂线,它们都是互相平行的直线。夹在两个平行平面之间的公垂线段相等。

因此公垂线段的长度是唯一的,把这公垂线段的长度叫作两个平行平面间的距离。显然这个距离也等于其中一个平面上任意一点到另一个平面的垂线段的长度。

两条异面直线的距离、平行于平面的直线和平面的距离、两个平行平面间的距离,都归结为两点之间的距离。

1.两个平面的位置关系,同平面内两条直线的位置关系相类似,可以从有无公共点来区分。因此,空间不重合的两个平面的位置关系有:

(1)平行—没有公共点;

(2)相交—有无数个公共点,且这些公共点的集合是一条直线。

注意:在作图中,要表示两个平面平行时,应把表示这两个平面的平行四边形画成对应边平行。

2.两个平面平行的判定定理表述为:

4.两个平面平行具有如下性质:

(1)两个平行平面中,一个平面内的直线必平行于另一个平面。

简述为:“若面面平行,则线面平行”。

(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

简述为:“若面面平行,则线线平行”。

(3)如果两个平行平面中一个垂直于一条直线,那么另一个也与这条直线垂直。

(4)夹在两个平行平面间的平行线段相等

用反证法

A平面垂直与一条直线,设平面和直线的交点为p

B平面垂直与一条直线,设平面和直线的交点为Q

假设A和B不平行,那么一定有交点。

设有交点R,那么

做三角形pQR

pR垂直pQQR垂直pQ

没有这样的三角形。因为三角形的内角和为180

所以A一定平行于B

第三篇:3、2、1用向量法证明直线与直线平行、直线与平面平行、平面与平面平行(共)

高二数学B3、2、1用向量法证明直线与直线平行、直线与平面平行、平面与平面平行

编号:9编制:戴金娜审核:刘红英时间:2012-2-1

5一、学习重点:掌握用向量的方法证明直线与直线平行、直线与平面平行点在平面内。学习难点:灵活用向量方法证明空间中平行关系

二、知识梳理 

1、设直线l1和l2的方向向量分别是为v1和v2,由向量共线条件得l1∥l2或l1与l2重合v1∥v2。

2、直线与平面平行的条件 已知两个不共线向量v1、v2与平面a共面(图(2)),一条直线l的一个方向向量为v1,则由共面向量定理,可得l∥a或l在平面a内存在两个实数x、y,使 v1=xv1+yv2。

3、平面与平面平行的条件 已知两个不共线的向量v1、v2与平面a共面,则由两个平面平行的判定定理与性质得 a∥或a与重合v1∥且v2∥

4、点M在平面ABC内的充要条件

由共面向量定理,我们还可得到:如果A、B、C三点不共线,则点M在平面ABC内的充分必要条件是,存在一对实数x、y,使向量表达式AMxAByAC成立。对于空间任意一点O,由上式可得OM(1xy)OAxOByOC,这也是点M位于平面ABC面内的充要条件。

知识点睛用向量法证明直线与直线平行、直线与平面平行、平面与平面平行时要注意:

(1)若l1、l2的方向向量平行,则包括l1与l2平行和l1与l2重合两种情况。

(2)证明直线与平面平行、平面与平面平行时要说明它们没有公共点。

例1:如图3-28,已知正方体ABCD-A′B′C′D′,点M,N

分别是面对角线A′B与面对角线A′C′的中点。

求证:MN∥侧面AD′;MN∥AD′,并且MN=1AD′。

2高二数学B

变式训练

已知正方体ABCD-A′B′C′D′中,点M,N分别是棱BB′与对角线CA′的中点。求证:MN∥BD,MN=1BD。2

例2:求证四点A(5、2、7)B(4、5、2)C(2、7、2)D、(3、4、7)共面

三、课堂检测

1、已知正三棱柱ABC-A1B1C1,D是AC的中点,求证:AB1∥平面DBC1.2、已知矩形ABCD和矩形ADEF,AD为公共边,但它们不在同一平面上,点M,N分别在对角线BD,AE上,且BM=11BD,AN=AE。证明。直线MN∥平面CDE。333、求证:四点A(3、0、5),B(2、3、0),C(0、5、0),D(1、2、5)共面。

4、已知A、B、C三点不共线,对平面ABC外任一点O,满足下面条件的点M是否一定在平面ABC内?

111(1)OMOAOBOC;(2)OM2OAOBOC.333

第四篇:两直线平行证明

两直线平行相关证明题目

1、如图,已知∠ABC=30,∠ADC=60,DE为ADC的平分线,请你判断哪两条直线平行,并说明理由。

2、如图,在△ABC中,∠B=90,D在AC边上,DF⊥BC于点F,DE⊥AB于点E,那么AB与DF平行吗?CB与DE平行吗?为什么?

3、如图,根据下列条件:∠A=∠AOD,∠ACB=∠F,∠BED+∠B=180,分别可以判定哪两条直线平行?并说明判定的依据。

4、如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,那么直线AB与CD的位置关系如何?

5、如图,EF平分∠BEG,GF平分∠DGE,若∠1+∠2=90,猜测AB、CD的位置关系,并说明理由。

6、如图,AE∥BC,∠

B=

∠C,试说明∠

1=∠2。

7、如图,AD∥BC,∠A = ∠C,试说明AB∥CD8、如图,AB∥CD,∠B=∠D,试说明BF∥DE.9、如图,AB∥CD,∠1=∠2,∠3=∠4,求∠EMF的度数10、1.已知∠BED=∠B+∠D,试判断AB与CD的位置关系。

2.如图,AB∥CD,猜想∠E与∠B、∠D之间有何关系,试说明你的结论。

11、如图,AB∥CD, ∠1: ∠2:

∠,求证:

BA平分

EBF

第五篇:直线平行证明分析

关于平行线证明

(1)条件中出现平行,则有三种写法

1.Z形:a//b,12(内错角形式)2.F形:c//d,35(同位角形式)

3.U形:c//d,24180(同旁内角形式)(2)条件中出现角平分线,有两种形式

AE平分DAC,则

c

db

4a

DA

DAC 2

2.DAC2122

1.12

E

BC

(3)注意隐含条件:1.对顶角:12(如此题中,∠A=∠1,∠D=∠2,则AB//CD此题中,加上隐含条件有三个等式,因此一般会有等量变换。

2.互补:此图中,隐含条件FAC180,即FABBAC180(∠BAF=46°∠ACE=136°CE⊥CD证:CD∥AB)

(4)如上图,出现CECD, 则有DCE90(5)条件中出现1和2互余,3和4互补,则1290,34180

(6)当图中出现三角形时,注意隐含条件245180

B



A 5

条件中出现两角相等,要注意分析:这两个角是什么关系?是内错角还是同位角,若都不是,必为等量代换的一个式子。此时要分析这两个角在图中各自的内错角或同位角,便于下一步等量代换使用。

同样,条件中出现两角互补,要注意分析:这两个角是什么关系?是不是同旁内角,若不是,必为等量代换的一个式子。此时要分析这两个角在图中各自的同旁内角,便于下一步等量代换使用。

下载用向量法证明直线与直线平行word格式文档
下载用向量法证明直线与直线平行.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    用向量法证明平行关系

    2010 山东省昌乐二中 高二数学选修2-1导学案时间:2010-12-21班级:姓名:小组:教师评价:课题: 3.2.1用向量法证明平行关系编制人:刘本松、张文武、王伟洁审核人:领导签字: 【使用说明......

    直线平行问题

    直线平行问题求解思路一、从角考虑 通过证明被第三条直线截得的同位角相等、内错角相等、同旁的内角互补确定两直线平行 二、从线考虑 证明两直线同垂直(或者同平行)另一条直......

    两直线平行相关证明题目(5篇)

    两直线平行的证明方法1.垂直于同一直线的各直线平行。2.同位角相等,内错角相等或同旁内角互补的两直线平行。3.平行四边形的对边平行。4.三角形的中位线平行于第三边。5.梯形......

    用向量法证明

    用向量法证明步骤1记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c∴a+b+c=0则i(a+b+c)=i·a+i·b+i·c=a·cos(180-(C-90))+b·0+c·cos(90-A)=-asinC+csinA=0接着得到......

    向量与点到直线的距离公式的证明

    向量与点到直线的距离公式的证明安金龙(苏州工业园区第二高级中学,江苏 苏州 215006)摘要:关键词:点到直线距离公式是解析几何中的一个很重要的的公式,应用它可使很多求解面积......

    如果两条直线平行教案设计

    6.4 如果两条直线平行 ●教学目标 (一)教学知识点 1.平行线的性质定理的证明. 2.证明的一般步骤. (二)能力训练要求 1.经历探索平行线的性质定理的证明.培养学生的观察、分析和......

    两条直线平行反思

    两条直线平行反思 新的数学课程标准指出:数学教学要以学生发展为本,让学生生动活泼、积极主动地参与数学学习活动,使学生在获得所必须的基本数学知识和基本技能的同时,在情感、......

    直线和平面平行与平面与平面平行证明题专题训练

    直线和平面平行与平面与平面平行证明题专题训练E是AA1的中点,求证:AC1、、如图,在正方体ABCDA1BC11D1中,1//平面BDE。A1D1B1EAB2、如图:平行四边形 ABCD 和平行四边形 CDEF有一......