第一篇:直线与平面平行说课
《直线和平面平行》说课稿
一。教材分析
本节课主要学习直线和平面平行的定义,判定定理以及初步应用。其中,线面平行的定义是线面平行最基本的判定方法和性质,它是探究线面平行判定定理的基础,线面平行的判定充分体现了线线平行和线面平行之间的转化,它既是后面学习面面平行的基础,又是连接线线平行和面面平行的纽带!(可用箭头学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的非常重要的.二。教法学法
通过对大量实例、图片的观察感知,概括线面平行的定义对实例,模型的分析猜想,实验发现线面平行的判定定理。
学生在问题的带动下,进行主动的思维活动,经历从现实生活中抽象出几何图形和几何问题的过程,体会转化、归纳、类比、猜想等数学思想方法在解决问题中的作用,发展学生的合情推理能力和空间想象力,培养学生的质疑、思辨、创新的精神。
课前安排学生在生活中寻找线面平行的实例,上网查阅有关线面平行的图片、资料,然后网上师生交流,从中体现出学生活跃的思维,浓厚的兴趣,强烈的参与意识和自主探究能力,在初中学生已经掌握了平面内证明线线平行的方法,前一节又刚刚学过在空间中直线与直线的位置关系,对空间概念的建立有一定基础,因而可以采用类比的方法学习本课。但是学生的抽象概括能力,空间想象力还有待提高,线面平行的定义比较抽象,要让学生体会“与平面无公共点”有一定困难,线面平行的判定的发现有一定隐蔽性,所以我确定本节的重点是:通过直观感知和操作确认概括出线面平行的定义及判定定理
第二篇:直线平面平行的判断及其性质的说课材料
一。教材分析
本节课主要学习直线和平面平行的定义,判定定理以及初步应用。其中,线面平行的定义是线面平行最基本的判定方法和性质,它是探究线面平行判定定理的基础,线面平行的判定充分体现了线线平行和线面平行之间的转化,它既是后面学习面面平行的基础,又是连接线线平行和面面平行的纽带!(可用箭头学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的非常重要的.二。教法学法
通过对大量实例、图片的观察感知,概括线面平行的定义对实例,模型的分析猜想,实验发现线面平行的判定定理。
学生在问题的带动下,进行主动的思维活动,经历从现实生活中抽象出几何图形和几何问题的过程,体会转化、归纳、类比、猜想等数学思想方法在解决问题中的作用,发展学生的合情推理能力和空间想象力,培养学生的质疑、思辨、创新的精神。
课前安排学生在生活中寻找线面平行的实例,上网查阅有关线面平行的图片、资料,然后网上师生交流,从中体现出学生活跃的思维,浓厚的兴趣,强烈的参与意识和自主探究能力,在初中学生已经掌握了平面内证明线线平行的方法,前一节又刚刚学过在空间中直线与直线的位置关系,对空间概念的建立有一定基础,因而可以采用类比的方法学习本课。
但是学生的抽象概括能力,空间想象力还有待提高,线面平行的定义比较抽象,要让学生体会“与平面无公共点”有一定困难,线面平行的判定的发现有一定隐蔽性,所以我确定本节的重点是:通过直观感知和操作确认概括出线面平行的定义及判定定理
难点是:
1、操作确认并概括出线面平行的判定定理
2、反证法的证明方法
三。教学目标
考虑到学生的接受能力和课容量以及《课程标准》的要求,本节课只要求学生在构建线面平行定义的基础上探究线面平行的判定定理并进行定理的初步运用,灵活运用定理解决相关问题将安排在下一节课。故而本节课教学目标为:
知识方面:通过对图片,实例的观察,抽象概括出线面平行的定义,正确理解线面平行的定义;
能力方面:通过直观感知操作确认归纳线面平行的判定定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念;
情感方面:让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
第三篇:直线和平面平行与平面与平面平行证明题专题训练
直线和平面平行与平面与平面平行证明题
专题训练
E是AA1的中点,求证:AC1、、如图,在正方体ABCDA1BC11D1中,1//
平面BDE。
A
1D1
B1
E
A
B2、如图:平行四边形 ABCD 和平行四边形 CDEF有一条公共边
CD ,M为FC的中点 , 证明: AF //平面MBD.C
M
D
A
B
F
PCA、C分别是PBC、3、如图6-9,A、B、面ABCPAB的重心.求证:
∥面ABC.4、在长方体ABCD—A1B1C1D1中.(1)作出过直线AC且与直线BD1平行的截面,并说明理由.(2)设E,F分别是A1B和B1C的中点,求证直线EF//平面ABCD.D1 C
1A1B1
C
A5、、已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥FG.
求证:EH∥BD.(12分)
6、P是平行四边形ABCD所在平面外一点,PC//平面BDQ.(自己作图)
Q是PA的中点,求证:AEHBDFC7、如图,a//,A是的另一侧的点,B,C,Da,线段AB,AC,AD交于E,F,G,若BD4,CF4,AF5,则EG=___________.
8、求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.
第四篇:直线与平面平行的教案
5.1平行关系的判定
---直线与平面平行的判定
高一朱丽珍
【教学目标】
1.理解并掌握直线与平面平行的判定定理
2.把线面平行关系(空间问题)转化为线线平行关系(平面问题)
3.了解空间与平面互相转换的思想,激发学生的学习兴趣
【教学重点】
直线与平面平行的判定定理;线面平行关系与线线平行关系的转换
【教学难点】
线面平行关系与线线平行关系的转换
【教学方法】
启发诱导与自主探究
【教学过程】
(一)复习引入
一条直线与一个平面有哪些位置关系?
①直线a在平面内②直线a与平面相交③直线a与平面平行 提问:如何判定一条直线与一个平面平行?
(二)新课讲解
实例探究:①门扇绕着门框转动观察另一边与门框所在平面位置关系②转书过程观察书沿与桌面的位置关系
归纳出线面平行的判定定理:若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行
符号表示:若a,b,a∥b,则a∥
简述为:线线平行线面平行
(三)例题选讲
例
1、空间四边形ABCD中,E,F分别为AB,AD的中点,证明:直线EF与平面BCD平行
例
2、在长方体ABCD-A1B1C1D1各面中,(1)与直线AB平行的平面有:
(2)与直线AA1平行的平面有:
(四)反馈训练
正方体ABCD-A1B1C1D1中,E为DD1的中点,证明BD1∥平面AEC
(五)归纳总结
1、直线与平面平行的判定定理:线线平行线面平行
2、应用判定定理时,应当注意三个不可或缺的条件
(六)布置作业:课本P 31 练习第3题
第五篇:直线与平面平行的性质导学
§2.2.3直线与平面平行的性质
班级:姓名:
【学习目标】
1.理解直线与平面平行的性质定理的含义.2.会用图形、文字、符号语言准确地描述直线与平面平行的性质定理,并知道其
地位和作用,证明一些空间线面平行关系的简单问题.【重点、难点】
直线与平面平行的性质定理的应用.【课前自主学案】
一、(看书本P58—P59)
探究(1)如果一条直线与一个平面平行,那
么这条直线与这个平面内的直线有哪些位置
关系?
(2)如果一条直线与一个平面平行,那么这
条直线与这个平面内的所有直线平行吗?把“所有”改成“无数”呢?
(3)教室内日光灯管所在的直线与地面平行,如何在地面上作一条直线与灯管所
在的直线平行?
二、直线与平面平行的性质定理:。
符号表示为:
图形表示:
三、例题自学P59例3例4
【知能优化训练】
如图,空间四边形ABCD被一平面所截,截面EFGH是平行四边形,求证:
(1)EF//平面BCD; A(2)DC//平面EFGH.F BD
G