第一篇:《直线与平面平行的判定》的教学反思
《直线与平面平行的判定》的教学反思
本人于2008学年第一学期第十一周周五下午代表市89中高一数学备课组在113中学上了一节区内研讨课,课后老师们进行了评议。本人非常感谢各位老师对本节课提出的宝贵的建议和意见,其实,老师们认真听我这位新老师上课,课后积极评课,对于我这位刚走上讲台不久的新老师来说是一种莫大的鼓励。现本人就课堂教学实录以及课后评议的情况结合教学设计反思如下:
一、复习引入部分
在复习回顾过程中,我首先提出了两个问题:即让学生回顾直线与平面平行的定义,说出直线与平面的三种位置关系。我认为数学学习实际上也是数学语言的学习,所以在这里,我引导学生一方面回顾了前面的知识,一方面又引导他们用文字表达、符号语言和图形语言对这三种情况进行了表达。通过课后反思,我觉得还有一些地方需要改进。如果在一开始提出问题时,就利用多媒体投影出三个生活当中的实际例子(比如说旗杆与地面、跑道上的白线与地面和日光灯与天花板等),这样学生应该会马上回忆起直线与平面的三种位置关系,这样给出了直观的有实际模型,学生也就更容易理解这三种关系的图形语言。
新课标提倡数学教学应当注意创设生活情境,使数学学习更贴近学生,在数学课堂学习中,精心创设问题情景,诱发学生思维的积极性,用卓有成效的启发引导,促使学生的思维活动持续发展。学生对学习有无兴趣和求知欲,是能否积极思维的重要的动机因素。要引起学生对数学学习的兴趣和求知欲望,行之有效的方法是创设合适的问题情景,引起学生对数学知识本身的兴趣。在数学问题情景中,新的需要和学生原有的数学水平之间产生了认知冲突,这种认知冲突能诱发学生数学思维的积极性。因此,合适的问题情景,成为诱发和促进学生思维发展的动力因素。在本节课的设计中,我引入了生活中的场景,如教室的门、课本、日光灯与天花板的位置关系等来说明直线和平面平行,激发学生学习数学的兴趣。但在引入课题的时候,我引导学生类比前面求异面直线所成角的方法,来提醒学生将空间问题转化为平面问题来解决。课后老师们提醒我:在新课标人教版的新教材中,异面直线所成角的问题没有讲的如此详细,有的可能没有提将空间问题到平面问题的转化。这样学生一时无法接收转化的数学思想,也就造成了在课堂提问中学生回答不出来“怎么转化”的问题。在以后的教学中,我就要注意教材各部分内容的衔接,不仅要分析教材,更要分析学生的实际情况。
二、判定定理讲解过程
在直线与平面平行的性质定理讲解设计中,我让学生先观察实例,再从实际情境中抽象
1出数学模型,最后通过增加条件,学生自主探究得出判定定理。在这里,我仍然要求学生会用三种语言来表达这个判定定理,并和学生一起去分析定理中的三个条件。讲解后,我设计了三道判断题,主要目的是希望学生自己去发现判定定理中的三个条件都是不能少的,缺少一个结论均不成立。这个设计得到了老师们的肯定,课后也给我提出了更好的处理意见。比如说,可以充分利用多媒体技术,不妨直接将三个条件投影出来,然后依次擦去一个或者两个条件,让学生自己去证明结论是否仍然成立。我觉得在以后的教学中,我可以尝试采用这样的处理方式,在此过程中,让学生通过实践体验知识形成的过程,自主完成知识的建构,让学生体会知识获得的喜悦,自己做出来的才是印象最深刻的。
三、反思例题讲解与随堂练习部分
在例题讲解中,我选取的是教材中的例1和练习1,先给学生分析了题意,再板书了证明过程。但是,在分析过程中,虽然分析了需要做出辅助线BD,在板书中却没有体现。这是一个不足,虽然有紧张的原因,但是作为一名老师,应该给学生做好榜样,起到示范的作用。最后,由于时间不够,例2没有讲解,练习2本来是想让学生上黑板板书解题过程,因为时间的关系,没有完成,这是一个不足。
当然,本节课的教学还是达到了预期目标。学生基本上能知道直线与平面平行的判定定理的内容,会注意到定理中的三个条件一个都不能少。通过例题的讲解,学生知道了证明直线与平面平行的方法,一种是利用定义,一种是运用判定定理,而利用判定定理关键是要去平面内去找一条直线与已知直线平行。对于这条直线怎么找,除了课上提到的三角形中位线的性质,我最后还提出了问题,让学生课下思考平面几何中还有哪些证明线线平行的方法。在我的教学设计中以及课堂教学中还是存在着这样或那样的不足,有待以后的教学中改进。比如要先熟悉学生搞好课堂氛围,让课堂活跃起来;在教学过程中,引入新课部分稍显拖拉,有点不太紧凑,导致最后时间不够,没有讲完例2和练习2,所以备课时要特别注意教材处理的准确性和恰当性。以上是我对这一节课的反思,作为老师,我有必要在一些细节上更加完善地做好本职工作,比如最基本的知识点的教授工作,打下扎实的数学基本功,不打好基础,能力从何谈起?同时还必须注意对学生综合能力的培养,包括独立发现问题--解决问题--回过头来再寻求更好解决途径的过程。尽管我现在是一名新老师,但是只有尽快提高自己的业务水平才能在教师岗位上做得更好更长久。
第二篇:直线与平面平行判定定理说课稿
直线与平面平行说课稿
一、教材分析
本节课是在人教版数学必修二第二章第二节直线与平面平行的判定。主要学习直线和平面平行的判定定理,以及初步应用。它与前面所学习的平面几何中两条直线的位置关系以及立体几何中直线与平面的位置关系等知识都有密切的关系,而其本身就是判断直线与平面平行的的一个重要的方法;同时又是后面将要学习的平面与平面位置关系的基础,又是连接线线平行和面面平行的纽带!
二、教学目标
考虑到学生的接受能力和课容量以及《课程标准》的要求,本节课只要求学生在线面平行定义的基础上探究线面平行的判定定理并进行定理的初步运用。故而本节课教学目标为:
知识方面:通过对图片,实例的观察以及实践操作,初步感知直线与平面平行的判定定理。
能力方面:通过直观感知操作确认归纳线面平行的判定定理,并将归纳用客观论证说明,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念 情感方面:让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣
三、教学难点与重点
由于学生的抽象概括能力,空间想象力还有待提高,线面平行的定义比较抽象,要让学生体会“直线与平面无公共点”有一定困难,线面平行的判定的发现有一定隐蔽性,所以我确定本节的重点是:通过观察和操作确认直观感知概括出线面平行的判定定理
难点是:应用反证法客观证明直观感知及确认定理。
四、教学过程
(一)、复习空间直线的位置关系及空间直线与平面的位置关系,为课程的进展做好必备知识的准备
(二).定理的探求
本环节是教学的第一个重点,分四步
a创设情境,感知概念
用多媒体展示日常生活中的常见线面平行的实例提出思考问题:如何判定一条直线与一个平面平行?
b观察归纳,猜想定理
将事例转化为具体的直线与平面,通过提问逐渐引导学生思考平外一条直线与平面内的一条直线平行是否可以得到直线与平面平行。教师用准备好的直角梯形演示平面外一条直线与平面内的一条直线平行时,该直线与平面给人平行的印象,引导学生有直观感受猜想出当直线与平面内一条直线平行时,该直线与平面平行。
c客观证明,确认定理
教师带领学生将猜想出的结果用反证法进行客观的论证说明,确认猜想正确并给出定理的文字描述,及符号描述。这一环节深化猜想,是其具有较强的确定性,使学生经历从实际背景中抽象出几何概念的全过程,从而形成完整和正确的概念,最后通过客观证明,加紧学生对定理形成,这种立足于感性认识的归纳过程,即由特殊到一般,由具体到抽象,既有利于学生对定理本质的理解,又使学生的抽象思维得到发展,培养学生几何直观能力。d质疑反思,深化定理
强调定理中的条件以及应注意的问题。
判断正误:如果a,b是两条直线,并且a平行于b,那么a平行于经过b的任何平面
(突出一条线在面内,一条线在面外)
强调深化平面与直线平行的必须条件a在平面内,b在平面外,a平行于b
(三)定理初步应用
课本例一
空间四边形相邻两边中点的连线,平行于经过另外两边的平面
考虑到学生处于初学阶段,此题可以帮助学生由线面的感性认识上升的理性认识。练习,第一题,找出长方体ABCD-A’B’C’D’与AB平行的面及与AA’平行的面,与AD平行的面。让学生对定理的条件进一步理解加深巩固。
(四)反思提高,小结课程
教师给出问题:
1.通过这节课的学习,你学会了哪些线面平行的方法?
2.证明线面平行时,注意哪些问题?
侧重三点:
(1)归纳线面平行的判断方法
一、定义
二、判定定理
(2)说明本课蕴含转化、类比、归纳、猜想等数学思想方法,强调“平面化”是解决立体几何问题的一般思路
(五)布置作业
在学习定理之后,让学生自己应用定理自主做题,通过运用更深刻的掌握定理,加深巩固。
五、板书设计(略)
六、教学媒体使用
在教学过程中,用多媒体展示复习的知识,以及教学过程中的图片,使学生在较短的时间内回顾所学知识,并直观感受生活中直线与平面平行的例子,将抽象的想象用多媒体展示图片具体化,并提高课堂时间的利用率。
七、教法学法
教法:通过对大量实例、图片的观察感知,模型的分析猜想,实验直观感知发现线面平行的判定定理。学生在问题的带动下,进行主动的思维活动,经历从现实生活中抽象出几何图形和几何问题的过程,体会转化、归纳、猜想等数学思想方法在解决问题中的作用,发展学生的合情推理能力和空间想象力,培养学生的质疑、思辨、创新的精神。并在课程结束时,对整堂课的内容进行归纳总结,使学生能够系统的掌握所学知识。
学法:课前安排学生列举生活中线面平行的实例,从中体现出学生活跃的思维,浓厚的兴趣,强烈的参与意识和自主探究能力,在初中学生已经掌握了平面内证明线线平行的方法,前面又刚刚学过在空间中直线的位置关系,以及直线与平面的位置关系,对空间概念的建立有一定基础,因而以采用观察归纳猜想论证的方法学习本课。
八、教学反思
教学中时刻注意素质教育的要求,紧紧围绕《课程标准》中的要求,真正让学生动手操作,动脑思考,体验数学学习和研究的过程和方法,使学生投入其中,乐此不疲,主动探究,防止教师为赶进度,赶时间用自己的思路代替学生思路,强加到学生身上,弱化学生本身强烈的求知欲。
第三篇:平面与平面平行的判定的教学反思
《平面与平面平行的判定》教学反思
本周教育局领导来我校听“生本大课堂”教学模式的课,我成为被听课的老师之一,能够得到局领导和校领导的评课、指点,我感到非常荣幸。对我自身的发展来说,也是一个千载难逢的好机会。
今天,我带领我的学生共同学习了“面面平行的判定”,为了保证高质量完成这次教学工作,我做了大量的前期准备工作。
首先,认真钻研教材,确定了本节课的的主要教学内容:平面与平面的判定。其次,反复阅读新课程标准,理解新课程的基本概念。新课程倡导主动探索、动手实践、合作交流等学习数学的方法,要求教师在教学的过程中关心学生的主动参与,师生互动。为此我制定了教学目标:
1、通过直观感知,对三角板和四边形操作确认,归纳出两个平面平行的判定,并能熟练的应用判定定理证明两个平面平行。
2、培养和发展学生的观察能力,归纳推理论证能力,及文字语言、符号语言、图形语言之间的转换能力。进一步渗透空间问题转换为平面问题的解题思想。
3、通过对实际问题的探索探究,激发学生学习的积极性。
新课程要求教师在教学中引导学生从直观感知中抽象出数学中的感念,我在本节课利用三角板和课本的放置位置引导学生归纳平面与平面平行的判定,极大地激发了学生学习本堂课的热情。在直观操作和感受上,学生很快明白了平面和平面判定的作用、内涵和外延。证明两个平面平行,实质上就是证明两条直线平行的过程。证明两条直线平行就转化到了我们平面几何中证明面面平行的知识。在此,同学们踊跃发言证明线线平行的办法:平行四边形、三角形的中位线、平行线的传递性…….接下来是对例2的讲解,对这个题证明过程步骤的强调。进入学生展示环节,两个练习题学生用不同的方法进行了展示,课堂气氛非常活跃,学生的学习积极性空前高涨,大家都在热烈的交流自己的做题思路。
回顾整个课堂教学过程,我能准确把握教学重点、难点和教学节奏,各环节时间安排基本合理,对学生的错误能及时地给予纠正,对学生的点评规范化,学生活动积极,圆满完成了本堂课的教学任务。
课后交流时,我们的领导给予了这样的评价:
1、教学理念新,符合新课程教学理念的要求。
2、能很大的提高学生的学习热情,让更多的学生参与到本堂课的教学当中来。
3、例题选用恰当,有层次感。
4、学生对课堂反馈的情况比较好。
当然,对本堂课我也有感到遗憾的地方,比如课堂最后的小结,由于时间关系,归纳的有一些仓促。还有就是当一个女孩子在黑板上讲错题的时候没能及时的给予鼓励,可能会挫伤学生的自信心。而对一些讲解很不错的学生没有给予肯定,可能会影响学生学习的积极性。在今后的教学工作中,我将努力改进自己的不足之处。
通过这次公开课活动,我学到了很多宝贵的经验:一堂好课的标准:要有自己的特色,有新的观点、有高潮;课堂小结不仅仅是归纳,而是要将归纳上升到一定高度,要挖掘教材内涵等等。
今后,我将再接再厉,严格要求自己,刻苦钻研,努力将自己的业务水平上升到一个新的台阶。积极落实我校“生本大课堂”的教学理念,为学校的发展贡献自己的一份力量。
岳婷婷
第四篇:直线与平面垂直的判定教学反思
《直线与平面垂直的判定》的教学反思
焉耆一中数学组李新华
本节是高一《必修2》第二章第三节第一课时的内容。本节课所要达到的知识目标是:(1)掌握线面垂直的定义;(2)掌握线面垂直的判定定理,并能利用判定定理证明一些简单的线面垂直问题。所要达到的知识目标很明确,但学生的实际情况是空间想象能力较弱。所以本节课我先是以生活实例让学生比较直观的认识线面垂直,同时让学生自己动手比划找出线面垂直的条件,鼓励学生自己给出线面垂直的定义。然后,引导学生探索发现线面垂直的判定定理。最后,利用判定定理证明一些简单线面垂直问题。
本节课我最满意的地方是线面垂直定义、定理的引入。最大亮点是我依次给出了三个设问,大胆鼓励让学生自己动手比划,再结合生活实例,得出结论。设问:(1)如果一条直线和平面内的一条直线垂直,那么这条直线一定能和这个平面垂直吗?(2)如果一条直线和平面内的无数条直线都垂直,那这条直线一定与这个平面垂直吗?(3)如果一条直线和平面内的任意一条直线都垂直,那这条直线一定和这个平面垂直吗?完全放开让学生自己动手比划,让学生在动手的过程中发现问题,最后由他们自己总结出定义。这个过程使学生很有成就感,而且极大的调动了学生学习兴趣和积极性。好些学生说:“立体几何太有兴趣了,根本没有想象的难嘛!”之后,我又给出设问:如果一条直线和平面内的两条直线垂直,那这条直线一定与这个平面垂直吗?然后还是由学生动手比划得出结论。为了使他们的结论更具有说服力,我又举了生活中的实例,比如教室的墙拐角所体现的线面垂直等。最后得出本节课的重点知识线面垂直的判定定理。这部分之所以感到满意,是因为所有的内容基本都是让学生亲自动手比划得出的,这使他们对定义的理解更到位,更深刻。以至于在后面的实践证明中原本很愁人的地方反而比较顺手,学生也一直比较兴奋,课堂气氛很活跃。之后的作业反馈,大部分学生都能证明出一些简单的线面垂直问题,这也说明我的这堂课的确是比较成功的一堂课。
通过这堂课,让我对立体几何这部分的教学有了全新的看法:一定要以最大的可能让学生自己动手,自己比划,发现问题,试着自己总结规律,得出结论。要努力把他们的态度从“要我学”变为“我要学”升华为“我爱学”。
第五篇:直线与平面垂直的判定的教学反思
2013年5月13日《直线与平面垂直的判定》的教学反思
一、复习引入部分
在复习回顾过程中,我首先提出了一个问题:问直线和平面有几种位置关系。我们研究了直线和平面平行,直线在平面内是平面几何的内容,今天我们来研究直线和平面相交的一种特殊情况,同学们都一起回答是:垂直。这样激发了学习的兴趣。
新课标提倡数学教学应当注意创设生活情境,使数学学习更贴近学生,在数学课堂学习中,精心创设问题情景,诱发学生思维的积极性,用卓有成效的启发引导,促使学生的思维活动持续发展。学生对学习有无兴趣和求知欲,是能否积极思维的重要的动机因素。要引起学生对数学学习的兴趣和求知欲望,行之有效的方法是创设合适的问题情景,引起学生对数学知识本身的兴趣。在数学问题情景中,新的需要和学生原有的数学水平之间产生了认知冲突,这种认知冲突能诱发学生数学思维的积极性。因此,合适的问题情景,成为诱发和促进学生思维发展的动力因素。在本节课的设计中,我引入了生活中的场景,如教室的门与地面、立在桌上的课本和桌面的关系、旗杆和地面等等,来激发学生学习数学的兴趣。
二、判定定理讲解过程
在直线与平面垂直的性质定理讲解设计中,我让学生先观察实例,再从实际情境中抽象出数学模型,通过两个数学小实验,让学生动一动手,学生自主探究得出判定定理。在这里,我仍然要求学生会用三种语言来表达这个判定定理,并和学生一起去分析定理中的三个条件。讲解后,我设计了几道判断题,主要目的是希望学生自己去发现判定定理中的三个条件都是不能少的,缺少一个结论均不成立。这个设计得到了老师们的肯定,课后也给我提出了更好的处理意见。比如说,可以充分利用多媒体技术,不妨直接将三个条件投影出来,然后依次擦去一个或者两个条件,让学生自己去证明结论是否仍然成立。我觉得在以后的教学中,我可以尝试采用这样的处理方式,在此过程中,让学生通过实践体验知识形成的过程,自主完成知识的建构,让学生体会知识获得的喜悦,自己做出来的才是印象最深刻的。
三、反思例题讲解与随堂练习部分
在例题讲解中,我选取的是教材中的例1,先给学生分析了题意,再板书了证明过程。但是,在分析过程中,但板书不够详细。这是一个不足,虽然有紧张的原因,但是作为一名老师,应该给学生做好榜样,起到示范的作用。最后,由于时间不够,例2讲解非常详细,如果平面中没有现成的直线,那么需要我们自己去做两条辅助线。例3不仅充分应用判定定理去证明线面垂直,而且还应用例2的结果,过度自然。
当然,本节课的教学还是达到了预期目标。学生基本上能知道直线与平面垂直的判定定理的内容,会注意到定理中的三个条件一个都不能少。通过例题的讲解,学生知道了证明直线与平面垂直的方法,一种是利用定义,一种是运用判定定理,而利用判定定理关键是要去平面内去找两条条直线与已知直线垂直线。对于这条直线怎么找,除了课上提到正方体的性质,我最后还提出了问题,让学生课下思考平面几何中还有哪些证明线线垂直的方法。在我的教学设计中以及课堂教学中还是存在着这样或那样的不足,有待以后的教学中改进。比如要先熟悉学生搞好课堂氛围,让课堂活跃起来;在教学过程中,引入新课部分稍显拖拉,有点不太紧凑,导致最后时间不够。以上是我对这一节课的反思,作为老师,我有必要在一些细节上更加完善地做好本职工作,比如最基本的知识点的教授工作,扎实的数学基本功等。同时还必须注意对学生综合能力的培养,包括独立发现问题--解决问题--回过头来再寻求更好解决途径的过程。