第一篇:第五课时 直线与平面平行的判定 平面与平面平行的判定 - 学生版
直线与平面平行的判定平面与平面平行的判定
一、直线与平面平行的判定
判定定理:__________________________________
判定直线与平面平行的条件有三个分别是
(1)___________________________
(2)___________________________
(3)___________________________
符号语言:________________
思想:
(一).课前预习
1、直线与平面有哪几种位置关系?
2、判断两条直线平行有几种方法?
3.门扇的两边是平行的,当门扇绕着一边转动时,另一边与门框所在平面具有什么样的位置关系?课本的对边是平行的,将课本的一边紧贴桌面,沿着这条边转动课本,课本的上边缘与桌面所在平面具有什么样的位置关系?
(二)新课探究a 例1.1:如图.直线a与直线b共面吗?
2.直线a与平面 相交吗?
练习1:判断对错
(1).如果一条直线不在平面内,那么这条直线就与这个平面平行;
(2).过直线外一点有无数个平面与这条直线平行;
(3).过平面外一点有无数个直线与这条平面平行。
(4)直线a与平面α不平行,即a与平面α相交.
(5)直线a∥b,直线b平面α,则直线a∥平面α.
(6)直线a∥平面α,直线b平面α,则直线a∥b.
2.已知直线a,b和平面α,下列命题正确的是()
A.若a//α,bÌα则a//bB.若a//α,b//α则a//b
C.若a//b,bÌα则a//αD.若a//b,bÌα则a//α或bÌα
3.在长方体ABCD-A1B1C1D1的面中:
(1)与直线AB平行的平面是:(2)与直线A A1平行的平面是:
(3)与直线AD平行的平面是:__________
A
1例2如图, 已知E、F分别是三棱锥A-BCD的侧棱AB、AD中点, 求证: EF//平面BCD.D
A
练习1.如图,三棱柱ABC-A1B1C1中,M、N分别是BC和A1B1的中点,求证:MN∥平面
AAC11CN B
1C1
2.已知正方形ABCD所在的平面和正方形ABEF所在的平面相交与AB,M、N分别
是AC、BF上的点且AM=FN 求证:MN//平面BCE
F
C D
E
B
3..一个长方体木块如图所示, 要经过平面A1C1内一点P和棱BC将木块锯开, 应怎样画线 ?
1A
二、平面与平面平行的判定
平面与平面平行的判定定理:_________________________________________ 利用判定定理证明两个平面平行,必须具备两个条件:(1)______________________,(2)______________________。符号表示:________________________________ 思想:_________________________________
(一)课前预习
(1)平面β内有一条直线与平面α平行,α、β平行吗?(2)平面β内有两条直线与平面α平行,α、β平行吗?
(二)新课探究
例1(1)、如果一个平面内有两条直线分别平行于另一个平面,那么这两个平面平行.()
(2)、如果一个平面内有无数条直线分别平行于另一个平面,那么这两个平面平行.()(3)、如果一个平面内任意一条直线平行于另一个平面,那么这两个平面平行.()
练习1.(1).若平面α内的两条直线分别与平面β平行,则α与β平行;(2)若平面α内的有无数条直线与平面β平行,则α与β平行;(3)平行于同一条直线的两个平面平行;(4)过已知平面外一点,有且仅有一个平面与已知平面平行;(5)过已知平面外一条直线,必能作出与已知平面平行的平面。
其中正确的有_______________
2.直线a∥平面α,平面α内有无数条直线交于一点,那么这无数条直线中与直线 a平行的()
(A)至少有一条(B)至多有一条(C)有且只有一条(D)不可能有
3.已知三条互相平行的直线a,b,c中,a,b,c,则两个平面,的位置关系是.4.如果两个平面分别平行于第三个平面,那么这两个平面的位置关系是
例
2、已知正方体ABCD-A1B1C1D1,求证:平面AB1D1//平面C1BD。
练习1:如图,设E,F,E1,F1分别是长方体ABCD-A1B1C1D1的棱AB,CD,A1B1,C1D
1的中点,求证:平面ED1//平面BF1
2.如图为ACD所在平面外一点,M、N、G分别为ABC、ABD、BCD的重心,(1)求证:平面MNG//平面ACD;(2)求SMNG:SADC
D H C
A
A
3.正方体ABCDA1B1C1D1中,E为DD1的中点,判断BD1与平面AEC的位置关系,并给出证明。
A
第二篇:直线与平面平行判定定理说课稿
直线与平面平行说课稿
一、教材分析
本节课是在人教版数学必修二第二章第二节直线与平面平行的判定。主要学习直线和平面平行的判定定理,以及初步应用。它与前面所学习的平面几何中两条直线的位置关系以及立体几何中直线与平面的位置关系等知识都有密切的关系,而其本身就是判断直线与平面平行的的一个重要的方法;同时又是后面将要学习的平面与平面位置关系的基础,又是连接线线平行和面面平行的纽带!
二、教学目标
考虑到学生的接受能力和课容量以及《课程标准》的要求,本节课只要求学生在线面平行定义的基础上探究线面平行的判定定理并进行定理的初步运用。故而本节课教学目标为:
知识方面:通过对图片,实例的观察以及实践操作,初步感知直线与平面平行的判定定理。
能力方面:通过直观感知操作确认归纳线面平行的判定定理,并将归纳用客观论证说明,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念 情感方面:让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣
三、教学难点与重点
由于学生的抽象概括能力,空间想象力还有待提高,线面平行的定义比较抽象,要让学生体会“直线与平面无公共点”有一定困难,线面平行的判定的发现有一定隐蔽性,所以我确定本节的重点是:通过观察和操作确认直观感知概括出线面平行的判定定理
难点是:应用反证法客观证明直观感知及确认定理。
四、教学过程
(一)、复习空间直线的位置关系及空间直线与平面的位置关系,为课程的进展做好必备知识的准备
(二).定理的探求
本环节是教学的第一个重点,分四步
a创设情境,感知概念
用多媒体展示日常生活中的常见线面平行的实例提出思考问题:如何判定一条直线与一个平面平行?
b观察归纳,猜想定理
将事例转化为具体的直线与平面,通过提问逐渐引导学生思考平外一条直线与平面内的一条直线平行是否可以得到直线与平面平行。教师用准备好的直角梯形演示平面外一条直线与平面内的一条直线平行时,该直线与平面给人平行的印象,引导学生有直观感受猜想出当直线与平面内一条直线平行时,该直线与平面平行。
c客观证明,确认定理
教师带领学生将猜想出的结果用反证法进行客观的论证说明,确认猜想正确并给出定理的文字描述,及符号描述。这一环节深化猜想,是其具有较强的确定性,使学生经历从实际背景中抽象出几何概念的全过程,从而形成完整和正确的概念,最后通过客观证明,加紧学生对定理形成,这种立足于感性认识的归纳过程,即由特殊到一般,由具体到抽象,既有利于学生对定理本质的理解,又使学生的抽象思维得到发展,培养学生几何直观能力。d质疑反思,深化定理
强调定理中的条件以及应注意的问题。
判断正误:如果a,b是两条直线,并且a平行于b,那么a平行于经过b的任何平面
(突出一条线在面内,一条线在面外)
强调深化平面与直线平行的必须条件a在平面内,b在平面外,a平行于b
(三)定理初步应用
课本例一
空间四边形相邻两边中点的连线,平行于经过另外两边的平面
考虑到学生处于初学阶段,此题可以帮助学生由线面的感性认识上升的理性认识。练习,第一题,找出长方体ABCD-A’B’C’D’与AB平行的面及与AA’平行的面,与AD平行的面。让学生对定理的条件进一步理解加深巩固。
(四)反思提高,小结课程
教师给出问题:
1.通过这节课的学习,你学会了哪些线面平行的方法?
2.证明线面平行时,注意哪些问题?
侧重三点:
(1)归纳线面平行的判断方法
一、定义
二、判定定理
(2)说明本课蕴含转化、类比、归纳、猜想等数学思想方法,强调“平面化”是解决立体几何问题的一般思路
(五)布置作业
在学习定理之后,让学生自己应用定理自主做题,通过运用更深刻的掌握定理,加深巩固。
五、板书设计(略)
六、教学媒体使用
在教学过程中,用多媒体展示复习的知识,以及教学过程中的图片,使学生在较短的时间内回顾所学知识,并直观感受生活中直线与平面平行的例子,将抽象的想象用多媒体展示图片具体化,并提高课堂时间的利用率。
七、教法学法
教法:通过对大量实例、图片的观察感知,模型的分析猜想,实验直观感知发现线面平行的判定定理。学生在问题的带动下,进行主动的思维活动,经历从现实生活中抽象出几何图形和几何问题的过程,体会转化、归纳、猜想等数学思想方法在解决问题中的作用,发展学生的合情推理能力和空间想象力,培养学生的质疑、思辨、创新的精神。并在课程结束时,对整堂课的内容进行归纳总结,使学生能够系统的掌握所学知识。
学法:课前安排学生列举生活中线面平行的实例,从中体现出学生活跃的思维,浓厚的兴趣,强烈的参与意识和自主探究能力,在初中学生已经掌握了平面内证明线线平行的方法,前面又刚刚学过在空间中直线的位置关系,以及直线与平面的位置关系,对空间概念的建立有一定基础,因而以采用观察归纳猜想论证的方法学习本课。
八、教学反思
教学中时刻注意素质教育的要求,紧紧围绕《课程标准》中的要求,真正让学生动手操作,动脑思考,体验数学学习和研究的过程和方法,使学生投入其中,乐此不疲,主动探究,防止教师为赶进度,赶时间用自己的思路代替学生思路,强加到学生身上,弱化学生本身强烈的求知欲。
第三篇:平面与平面平行的判定教案
平面与平面平行的判定 教案
文昌中学数学组曾叶
教学目标
1.使学生理解和掌握两个平面平行的判定定理及应用; 2.加深学生对转化的思想方法的理解及应用.教学重点和难点
重点:两个平面平行的判定定理; 难点:两个平面平行的判定定理的证明.教学设计过程
一、复习提问
师:上节课我们研究了两个平面的位置关系,请同学们回忆一下,两个平面平行的意义是什么?
生:两个平面没有公共点.师:对,如果两个平面平行,那么在其中一个平面内的直线与另一个平面具有怎样的位置关 系呢? 生:平行.师:为什么? 生:用反证法,假设不平行,则这些线中至少有一条和另一个平面有公共点或在另一个面内,而此两种情况都说明这两个平面有公共点,与两个面平行矛盾.师:证得很好.反过来,如果一个平面内的所有直线都和另一个平面平行,那么这两个平面平行.由以上结论,就可以把两个平面平行的问题转化为一个平面内的直线和另一个平面平行的问题.但要注意:两个平面平行,虽然一个平面内的所有直线都平行于另一个平面,但
这两个平面内的所有直线并不一定互相平行,它们可能是平行直线也可能是异面直线,但不 可能是相交直线.〔对旧知识复习,又有深入,同时又点出了“转化”的思想方法,为引入新课作铺垫〕
二、新课
师:接下来,我们共同对两个平面平行作定性研究,先来研究两个平面平行的判定——具有 什么条件的两个平面是平行的呢? 生:根据两个平面平行的定义,只要能证明一个平面内的任意一条直线与另一个平面平行,就可得出两个平面平行.师:很好,实质就是由线面平行来得到面面平行.而实际上,判定两个平面平行,并不需要 一个平面内的所有直线都平行于另一个平面.下面我们共同研究判定两个平面平行的其它方法,请大家思考以下几个命题.(1)平面α内有一条直线与平面β平行,则α∥β,对吗?(2)平面α内有两条直线与平面β平行,则α∥β,对吗? 〔学生讨论回答,并举出反例,得(1),(2)不对,教师接着问〕(3)平面α内有无数条直线与平面β平行,则α∥β,对吗? 〔教师对学生的回答,作出适当评述〕
师:以上三个命题均为假命题,那么,怎样修改一下命题的条件,就可得出正确结论? 〔学生讨论后,教师请一名同学回答〕
生:把条件改为:一个平面内有两条相交直线都平行于另一个平面.师:说说你的想法.生:我想,两条相交直线确定一个平面,若它们分别与另一个平面平行,则所确定的平面也 一定与这个平面平行.[此是学生的猜想,教师给予肯定,并引导学生进行严格论证] 师:下面我们来证明.先把命题完整的表述出来.生:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.[教师板书,画图,并请一位学生写出已知,求证] 已知:在平面β内,有两条相交直线a,b和平面α平行.求证:α∥β.师:欲证α∥β,而我们只知两个平面平行的定义,显然,若直接用定义证明,不很方便,大家看怎么办? 生:用反证法.〔学生并未证明,只提出方法.教师先复习反证法的步骤:(1)否定结论,(2)推出矛盾,(3)得出结论.然后提出问题,让学生讨论,以引导学生用反证法得出结论〕 师:问,(1)如果平面α与平面β不平行,那么它们的位置关系怎样.(2)如果平面α与平面β相交,那么交线与平行于平面α的直线a和b有什么关系?(3)相交直线a和b都与交线平行合理吗?错误结论是如何产生的? [教师根据学生回答,依次提出问题,同时板书该命题的证明过程] 证明:假设α∩β=c.因为a∥α,aβ,所以a∥c,同理b∥c,所以a∥b.这与题设a与b是相交直线矛盾.故α∥β.师:以上我们用反证法证明了命题的正确性.我们就把这一命题作为两个平面平行的判定定 理之一.该定理是用来判定两个平面平行的,应用时关键是在一个平面内寻找两条相交直线,并证明与另外一个平面平行.也就是说:欲证面面平行,要先转化为线面平行.而转化的 思想方法是数学思维的重要方法之一,也是立体几何中,解决问题常用的方法.[教师在该命题前写上:两个平面平行的判定定理,以强调本节课的重点]
师:在现实生活中,该定理应用比较广泛,比如:木工师傅为了检查一个平面是否水平时,往往用水准器在这个平面上交叉放两次,水准器的气泡如果两次都是居中的,就可以判定这 个平面是水平的,否则就不是水平的.其理论根据就是这一判定定理.[通过实例,证明定理在现实生活中的具体应用,贴近学生生活,更激发了学生探求知识的积极性,活跃思]
师:大家还能发现哪些判定两个平面平行的定理呢?(教师巡视,找一名学生回答)生:我想,如果两个平面都垂直同一条直线,那么这两个平面一定是平行的.师:想法很好,能否谈一谈如何得出的? 生:在学习习近平面几何时,曾有一个定理:垂直于同一条直线的两条直线平行.我就想,若把 其中的两条直线改为两个平面,那么这两个平面会不会是平行的.师:这位同学用到了一个重要的研究数学问题的方法——类比.就是从已经学过的定理出发,对其中的某些条件作修改,得出一个新的命题.当然,这只是一种猜想,正确与否,还要大家
进一步证明.这位同学的猜想简单的说就是:垂直于同一条直线的两个平面平行.下面我们就来证明这一 命题.已知:AA′⊥平面α于A,AA′⊥平面β于A′.求α∥β.师:本题要证的是两个平面平行,有哪些工具呢? 生:两个面平行的判定定理.师:应用该定理的条件是什么?
生:是其中一面中心须有两条相交直线与另一面平行.师:显然,题目中并不具备这一条件,我们是否改用其它方法?
[学生激烈讨论]
生甲:直接在平面β内作直线a∩b=O,如图2(教师画图,使O与A′不重合,突出矛盾)生乙:这样做不好,没有充分利用题目的已知条件,不妨直接在平面α内作直线a∩b=A.而 直线a与AA′确定一平面γ,设γ∩β=a′.能证:a′∥a,则a∥β,得出线面平行.同理
也可证b∥β.所以α∥β.师:不错.能够充分的利用题目中的条件,为解决问题带来大的方便.下面我们把作辅助线 的方法,稍作改进,写出证明.证明:设经过直线AA′的两个平面γ,δ分别与平面α,β交于直线a,a′和b,b′.因为 AA′⊥α,AA′⊥β,所以 AA′⊥a,AA′⊥a′, 故 a∥a′.则a′∥α.5
同理 b′∥α,又因为a′∩b′=A,所以α∥β.师:通过类比的方法,证明得到了两平面平行的又一个判定定理,它是在上一个判定定理的 基础上得到的.要注意的是,为了得到两条相交直线,并未直接在一个面内作,而是过AA′作两
个相交平面δ,γ,它们分别与α,β相交,得到相交直线.由线线平行,得线面平行,最 后证明面面平行.这一证明方法是转化的思想方法的又一体现.生:在上题的证明过程中,我发现:“如果一个平面内两条相交直线分别平行于另一个平面 内的两条相交直线,那么这两个平面平行.”这样就可直接由线线平行证面面平行,不知对 不对? 师与生:对.[在授课过程中,学生往往能根据所研究问题,思考得到自己的想法,这是学生深入课堂,积极思维的一种体现,也是课堂上的一种反馈,教师应抓住机会,热情鼓励,同时给出肯定 或否定的答复]
师:想法很好,大家能证明吗?(学生议论)对,用第一个判定定理很快就能证明.但此命题 不易作为判定定理直接应用.不过这一命题为我们今后判定两个平面平行提供了一条思路.三、例题分析
[通过例题分析,复习巩固本节课的主要内容]
师:前面我们得到了两个平面平行的判定定理,为方便,把前者叫判定定理,后者叫判定定 理二.下面通过例题来分析如何使用判定定理.例 已知正方体ABCD-A1B1C1D1.求证:平面AB1D1∥平面C1BD.师:欲证面面平行,由两个判定定理,必须有线面平行或是线面垂直.而题目所给的是正方 体及体内的截面,隐含较多的线面平行的位置关系.我们先来考虑应用判定定理一.6
生:因为ABCD-A1B1C1D1为正方体,所以 D1C1∥=A1B1,AB∥=A1B1,所以 D1C1∥=AB,所以 D1C1BA为平行四边形,所以 D1A∥C1B,因为 C1B平面C1BD,故 D1A∥平面C1BD.同理 D1B1∥平面C1BD.又 D1A∩D1B1=D1, 所以平面AB1D1∥平面C1BD.师:大家再思考,能否用判定定理二来证明呢? [学生有的思考,有的议论]
师:若要用判定定理二,遇到的问题是什么? 生:条件中没有直接与面AB1D1和面BC1D垂直的直线.师:能解决吗? 生:作辅助线.连结A1C,证明它与两个面都平行.师:要证线面垂直,要先转化为线线垂直.证明线线垂直的一个重要方法是什么? 生:三垂线定理及其逆定理.连结AC.可证A1C⊥BD.7
[至此,在教师的启发引导下,已基本解决问题,把证明过程规范化]
证明:连结A1C,AC,因为 ABCD-A1B1C1D1为正方体,所以 A1A⊥平面ABCD.所以 AC为A1C在面ABCD上的射影.又因为 BD⊥AC,且BD面ABCD,所以 A1C⊥BD.同理: A1C⊥BC1.又因为 BD∩BC1=B,所以 A1C⊥面C1BD.同理:A1C⊥平面AB1D1,所以平面AB1D1∥平面C1BD.[通过一题多解,训练学生思维的灵活性] 小结
1.由学生用文字语言和符号语言两种形式表述面面平行的两个判定定理.教师指出,两个判 定定理是判定面面平行的两个基本的理论工具.2.空间两条直线平行,直线与平面平行,以及两个平面平行,三类平行关系的联系十分密切,它们相互依赖,相互转化.在实际运用中,我们可以通过线线平行,或线面平行来推论平面与平面平行.3.转化的思想方法,是数学思维的重要方法.解决数学问题的过程实质就是一个转化的过程,同学们要认真掌握.布置作业
课本p.38习题五1,3.课堂教学设计说明 1.指导思想
这节课本着“教师为主导,学生为主体,课本为主线”的原则进行设计.教师的主导作用,在于激发学生的求知欲,通过教师在课堂上的精心设计,以启发式教学为主,引导学生步入 问题情境,同时发挥学生的主观能动性,师生共同推进课堂教学活动,使学生有一个积极的 态度接受新知识.学生是课堂教学的主体.教师就是要引导学生讨论、学生发言,使得学生参加到数学教学活 动中,使得学生兴趣盎然,思维活跃,这样有利于培养学生独立思考问题的习惯,发展学生 的创造性思维能力,教师要注重学生的活动,同时给于肯定及鼓励.2.教学实施
(1)复习提问,不仅是旧知识的复习,而是有所深入、提高,同时在思维方法明确转化的思 想方法.(2)在讲解两个平面平行的判定定理一时,教师不要急于得出结论,而是设计三个问题,逐 步深入,引导学生自己发现结论,提高了学生解决问题的兴趣.又考虑到:反证法是高一立 体几何中的一个重要而又难掌握的方法,虽然前几节课有所接触,然而对于同学而言仍属难 点,为了分解难点,在学生提出用反证法之后,仍根据反证法的步骤,依次提出三个问题,引导学生证明,使证明方法容易接受.对于定理二,突出类比方法在解决问题中的应用及证明过程中的转化思想.(3)在选择例题时,讲求不要多,而要精,精心选择例题,使它确实能够起到复习、巩固本 节课所学知识的作用.本节课所选的例题,比较简单.特别是两种证明方法中,第一种容易
想到.但在引导学生得出第一种证明方法后,不能满足,而应启发学生,运用其它知识想更 多的方法进行证明.当然,第二种方法比较难,特别是辅助线不易想到,教师在讲解时要慢 慢启发.一题多解,是训练学生思维的一个较好的方式.
第四篇:《直线与平面平行的判定》教学设计
直线与平面平行的判定(谢永福)
一、教学目标
1.会找出平行的直线和平面
2.会应用判定定理证明线面平行
3.逐步学会逆向思维
4.归纳证明线线平行的方法:中位线,相似,平行四边形
二、教学重点:应用判定定理证明线面平行(给学生足够时间练习板书)
教学难点:利用中位线作辅助线(详细分析板书)
三、教学方法:讨论式,讲练结合
四、教学过程
(一)引入:课前提醒大家不要翻书。老师拿一本书一支笔(笔稍微斜一点点)问:笔所在直线与书本所在平面什么关系? 老师:有人说平行,有人说相交。其实都有道理,因为平行向下偏一点点肉眼分辨不出来的,那么怎么判断线面平行更可靠呢?这就是这节课咱们要探寻的奥秘。
(二)新课:
1.实例感受:请大家观察门框的一边和门板什么关系?书本封面边缘和书本面什么关系?长方体下底边与上底面什么关系?这三个实例有个共同点,有同学发现了吗?
(10秒后提示:门框对边平行)
所以,可以怎么判断线面平行呢?同桌之间互相讨论一下。
2.定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
(给大家1分钟时间,尝试用符号表示此定理)
画图表示
请大家齐声朗读定理3遍,尝试背诵
练习1:判断正误:
(1)若直线a与平面α内无数条直线平行,则a∥α
(2)若平面外的直线a与平面α内无数条直线平行,则a∥α
练习2:如图,长方体中
(1)与AB平行的平面是?
(2)与平面ABCD平行的直线是?
通过这个练习咱们应该初步感受逆向思维。
练习3:在长方体中,,可得哪条直线平行哪个平面?(同样体现了逆向思维)
3.用定理证明线面平行
例:如图,空间四边形ABCD中,E,F分别是AB,AD的中点。求证:EF∥平面BCD
思考:为什么想到连接BD?
答:因为E是AB中点,故A,B是三角形的顶点;F是AD中点,故A,D是三角形的顶点,所以EF是△ABD的中位线。故连接BD
练习:如图所示,在正方体中,S,E,G分别是,BC,SC的中点,求证:
思考:书本56页练习2如何做辅助线?
备用练习1:大本61页基础小测(只说思路,不用写过程)
备用练习2:如图,长方体中,已知E,F分别为AB,CD的中点,求证(只说思路,不用写过程)
思考:由以上练习总结,证明线线平行的方法有哪些:中位线,平行线分线段成比例,平行四边形
小结:本节课学习了线面平行的判定。还学习了逆向思维,是做立体几何综合问题的利剑。最后学习了证明线面平行,注意板书,做辅助线。如果满分为5颗星,你给自己打几颗星呢?
作业布置:书本56页练习2
五、板书设计:
三个实例 学生板书 | 标题 1.定理: 2.逆向思维 | 3.证明线面平行 例题: | 学生板书 |
六、教学反思:
第五篇:《直线与平面平行的判定》的教学反思
《直线与平面平行的判定》的教学反思
本人于2008学年第一学期第十一周周五下午代表市89中高一数学备课组在113中学上了一节区内研讨课,课后老师们进行了评议。本人非常感谢各位老师对本节课提出的宝贵的建议和意见,其实,老师们认真听我这位新老师上课,课后积极评课,对于我这位刚走上讲台不久的新老师来说是一种莫大的鼓励。现本人就课堂教学实录以及课后评议的情况结合教学设计反思如下:
一、复习引入部分
在复习回顾过程中,我首先提出了两个问题:即让学生回顾直线与平面平行的定义,说出直线与平面的三种位置关系。我认为数学学习实际上也是数学语言的学习,所以在这里,我引导学生一方面回顾了前面的知识,一方面又引导他们用文字表达、符号语言和图形语言对这三种情况进行了表达。通过课后反思,我觉得还有一些地方需要改进。如果在一开始提出问题时,就利用多媒体投影出三个生活当中的实际例子(比如说旗杆与地面、跑道上的白线与地面和日光灯与天花板等),这样学生应该会马上回忆起直线与平面的三种位置关系,这样给出了直观的有实际模型,学生也就更容易理解这三种关系的图形语言。
新课标提倡数学教学应当注意创设生活情境,使数学学习更贴近学生,在数学课堂学习中,精心创设问题情景,诱发学生思维的积极性,用卓有成效的启发引导,促使学生的思维活动持续发展。学生对学习有无兴趣和求知欲,是能否积极思维的重要的动机因素。要引起学生对数学学习的兴趣和求知欲望,行之有效的方法是创设合适的问题情景,引起学生对数学知识本身的兴趣。在数学问题情景中,新的需要和学生原有的数学水平之间产生了认知冲突,这种认知冲突能诱发学生数学思维的积极性。因此,合适的问题情景,成为诱发和促进学生思维发展的动力因素。在本节课的设计中,我引入了生活中的场景,如教室的门、课本、日光灯与天花板的位置关系等来说明直线和平面平行,激发学生学习数学的兴趣。但在引入课题的时候,我引导学生类比前面求异面直线所成角的方法,来提醒学生将空间问题转化为平面问题来解决。课后老师们提醒我:在新课标人教版的新教材中,异面直线所成角的问题没有讲的如此详细,有的可能没有提将空间问题到平面问题的转化。这样学生一时无法接收转化的数学思想,也就造成了在课堂提问中学生回答不出来“怎么转化”的问题。在以后的教学中,我就要注意教材各部分内容的衔接,不仅要分析教材,更要分析学生的实际情况。
二、判定定理讲解过程
在直线与平面平行的性质定理讲解设计中,我让学生先观察实例,再从实际情境中抽象
1出数学模型,最后通过增加条件,学生自主探究得出判定定理。在这里,我仍然要求学生会用三种语言来表达这个判定定理,并和学生一起去分析定理中的三个条件。讲解后,我设计了三道判断题,主要目的是希望学生自己去发现判定定理中的三个条件都是不能少的,缺少一个结论均不成立。这个设计得到了老师们的肯定,课后也给我提出了更好的处理意见。比如说,可以充分利用多媒体技术,不妨直接将三个条件投影出来,然后依次擦去一个或者两个条件,让学生自己去证明结论是否仍然成立。我觉得在以后的教学中,我可以尝试采用这样的处理方式,在此过程中,让学生通过实践体验知识形成的过程,自主完成知识的建构,让学生体会知识获得的喜悦,自己做出来的才是印象最深刻的。
三、反思例题讲解与随堂练习部分
在例题讲解中,我选取的是教材中的例1和练习1,先给学生分析了题意,再板书了证明过程。但是,在分析过程中,虽然分析了需要做出辅助线BD,在板书中却没有体现。这是一个不足,虽然有紧张的原因,但是作为一名老师,应该给学生做好榜样,起到示范的作用。最后,由于时间不够,例2没有讲解,练习2本来是想让学生上黑板板书解题过程,因为时间的关系,没有完成,这是一个不足。
当然,本节课的教学还是达到了预期目标。学生基本上能知道直线与平面平行的判定定理的内容,会注意到定理中的三个条件一个都不能少。通过例题的讲解,学生知道了证明直线与平面平行的方法,一种是利用定义,一种是运用判定定理,而利用判定定理关键是要去平面内去找一条直线与已知直线平行。对于这条直线怎么找,除了课上提到的三角形中位线的性质,我最后还提出了问题,让学生课下思考平面几何中还有哪些证明线线平行的方法。在我的教学设计中以及课堂教学中还是存在着这样或那样的不足,有待以后的教学中改进。比如要先熟悉学生搞好课堂氛围,让课堂活跃起来;在教学过程中,引入新课部分稍显拖拉,有点不太紧凑,导致最后时间不够,没有讲完例2和练习2,所以备课时要特别注意教材处理的准确性和恰当性。以上是我对这一节课的反思,作为老师,我有必要在一些细节上更加完善地做好本职工作,比如最基本的知识点的教授工作,打下扎实的数学基本功,不打好基础,能力从何谈起?同时还必须注意对学生综合能力的培养,包括独立发现问题--解决问题--回过头来再寻求更好解决途径的过程。尽管我现在是一名新老师,但是只有尽快提高自己的业务水平才能在教师岗位上做得更好更长久。