直线和平面平行与平面与平面平行证明题专题训练

时间:2019-05-12 17:21:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《直线和平面平行与平面与平面平行证明题专题训练》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《直线和平面平行与平面与平面平行证明题专题训练》。

第一篇:直线和平面平行与平面与平面平行证明题专题训练

直线和平面平行与平面与平面平行证明题

专题训练

E是AA1的中点,求证:AC1、、如图,在正方体ABCDA1BC11D1中,1//

平面BDE。

A

1D1

B1

E

A

B2、如图:平行四边形 ABCD 和平行四边形 CDEF有一条公共边

CD ,M为FC的中点 , 证明: AF //平面MBD.C

M

D

A

B

F

PCA、C分别是PBC、3、如图6-9,A、B、面ABCPAB的重心.求证:

∥面ABC.4、在长方体ABCD—A1B1C1D1中.(1)作出过直线AC且与直线BD1平行的截面,并说明理由.(2)设E,F分别是A1B和B1C的中点,求证直线EF//平面ABCD.D1 C

1A1B1

C

A5、、已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥FG.

求证:EH∥BD.(12分)

6、P是平行四边形ABCD所在平面外一点,PC//平面BDQ.(自己作图)

Q是PA的中点,求证:AEHBDFC7、如图,a//,A是的另一侧的点,B,C,Da,线段AB,AC,AD交于E,F,G,若BD4,CF4,AF5,则EG=___________.

8、求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.

第二篇:直线与平面平行的教案

5.1平行关系的判定

---直线与平面平行的判定

高一朱丽珍

【教学目标】

1.理解并掌握直线与平面平行的判定定理

2.把线面平行关系(空间问题)转化为线线平行关系(平面问题)

3.了解空间与平面互相转换的思想,激发学生的学习兴趣

【教学重点】

直线与平面平行的判定定理;线面平行关系与线线平行关系的转换

【教学难点】

线面平行关系与线线平行关系的转换

【教学方法】

启发诱导与自主探究

【教学过程】

(一)复习引入

一条直线与一个平面有哪些位置关系?

①直线a在平面内②直线a与平面相交③直线a与平面平行 提问:如何判定一条直线与一个平面平行?

(二)新课讲解

实例探究:①门扇绕着门框转动观察另一边与门框所在平面位置关系②转书过程观察书沿与桌面的位置关系

归纳出线面平行的判定定理:若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行

符号表示:若a,b,a∥b,则a∥

简述为:线线平行线面平行

(三)例题选讲

1、空间四边形ABCD中,E,F分别为AB,AD的中点,证明:直线EF与平面BCD平行

2、在长方体ABCD-A1B1C1D1各面中,(1)与直线AB平行的平面有:

(2)与直线AA1平行的平面有:

(四)反馈训练

正方体ABCD-A1B1C1D1中,E为DD1的中点,证明BD1∥平面AEC

(五)归纳总结

1、直线与平面平行的判定定理:线线平行线面平行

2、应用判定定理时,应当注意三个不可或缺的条件

(六)布置作业:课本P 31 练习第3题

第三篇:直线与平面平行说课

《直线和平面平行》说课稿

一。教材分析

本节课主要学习直线和平面平行的定义,判定定理以及初步应用。其中,线面平行的定义是线面平行最基本的判定方法和性质,它是探究线面平行判定定理的基础,线面平行的判定充分体现了线线平行和线面平行之间的转化,它既是后面学习面面平行的基础,又是连接线线平行和面面平行的纽带!(可用箭头学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的非常重要的.二。教法学法

通过对大量实例、图片的观察感知,概括线面平行的定义对实例,模型的分析猜想,实验发现线面平行的判定定理。

学生在问题的带动下,进行主动的思维活动,经历从现实生活中抽象出几何图形和几何问题的过程,体会转化、归纳、类比、猜想等数学思想方法在解决问题中的作用,发展学生的合情推理能力和空间想象力,培养学生的质疑、思辨、创新的精神。

课前安排学生在生活中寻找线面平行的实例,上网查阅有关线面平行的图片、资料,然后网上师生交流,从中体现出学生活跃的思维,浓厚的兴趣,强烈的参与意识和自主探究能力,在初中学生已经掌握了平面内证明线线平行的方法,前一节又刚刚学过在空间中直线与直线的位置关系,对空间概念的建立有一定基础,因而可以采用类比的方法学习本课。但是学生的抽象概括能力,空间想象力还有待提高,线面平行的定义比较抽象,要让学生体会“与平面无公共点”有一定困难,线面平行的判定的发现有一定隐蔽性,所以我确定本节的重点是:通过直观感知和操作确认概括出线面平行的定义及判定定理

第四篇:直线与平面平行的性质导学

§2.2.3直线与平面平行的性质

班级:姓名:

【学习目标】

1.理解直线与平面平行的性质定理的含义.2.会用图形、文字、符号语言准确地描述直线与平面平行的性质定理,并知道其

地位和作用,证明一些空间线面平行关系的简单问题.【重点、难点】

直线与平面平行的性质定理的应用.【课前自主学案】

一、(看书本P58—P59)

探究(1)如果一条直线与一个平面平行,那

么这条直线与这个平面内的直线有哪些位置

关系?

(2)如果一条直线与一个平面平行,那么这

条直线与这个平面内的所有直线平行吗?把“所有”改成“无数”呢?

(3)教室内日光灯管所在的直线与地面平行,如何在地面上作一条直线与灯管所

在的直线平行?

二、直线与平面平行的性质定理:。

符号表示为:

图形表示:

三、例题自学P59例3例4

【知能优化训练】

如图,空间四边形ABCD被一平面所截,截面EFGH是平行四边形,求证:

(1)EF//平面BCD; A(2)DC//平面EFGH.F BD

G

第五篇:直线与平面平行预习案

安丘市第一中学高一数学预习案编制人:辛虹

数学必修21.2.2直线与平面平行(预习案)

【学习目标】:1.通过预习,初步掌握空间直线与平面的位置关系,直线与

平面平行的判定定理。

2.记录自己在预习过程中遇到的疑难问题和困惑的知识点,学习正课时有的放矢。

【课前预习】

一、知识链接,温故知新:

1,在空间中,两条直线的位置关系有哪几种?

2,我们学习过的证明两直线平行的依据有哪些?

二、自主学习

1、在空间中,直线与平面的位置关系有哪几种?如何分类?

2、数学来源于生活,你能举出哪些在日常生活中给我们直线与平面平行

形象的例子?

【我的收获】:

【我的疑惑】:

下载直线和平面平行与平面与平面平行证明题专题训练word格式文档
下载直线和平面平行与平面与平面平行证明题专题训练.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    直线与平面平行判定定理说课稿

    直线与平面平行说课稿一、教材分析本节课是在人教版数学必修二第二章第二节直线与平面平行的判定。主要学习直线和平面平行的判定定理,以及初步应用。它与前面所学习的平面几......

    高二数学教案:9.3直线和平面平行与平面和平面平行

    【课题】直线和平面平行与平面和平面平行 【教学目标】 进一步理解、掌握直线和平面平行的判定与性质;以及它们的应用。 【教学重点】两个平面平行的性质. 【教学难点】性......

    平面与平面平行的性质

    平面与平面平行的性质¤知识要点:1. 面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行. 用符号语言表示为://,a,ba//b.2. 其它性质:①//,ll//; ②//,ll;③......

    平面与平面平行教案2

    新课程有效课堂教学设计简案 主题:§1.2.2空间中的平行关系——平面与平面平行____课时 课型:发现生成课和问题解决课 主备人: 一、教学目标 知识与技能: (1)理解并掌握平面与平面......

    《直线与平面平行的判定》教学设计

    直线与平面平行的判定(谢永福)一、教学目标 1.会找出平行的直线和平面 2.会应用判定定理证明线面平行 3.逐步学会逆向思维 4.归纳证明线线平行的方法:中位线,相似,平行四边形 二......

    《直线与平面平行的判定》的教学反思

    《直线与平面平行的判定》的教学反思本人于2008学年第一学期第十一周周五下午代表市89中高一数学备课组在113中学上了一节区内研讨课,课后老师们进行了评议。本人非常感谢各......

    《2.2.3直线与平面平行的性质》教案

    《2.2.3直线与平面平行的性质》教案 一、教学内容: 新人教版高一数学 必修2 第二章 第二节 第3课 二、教材分析: 直线与平面问题是高考考查的重点之一,求解的关键是根据线与面......

    证明两个平面平行

    证明两个平面平行证明两个平面平行的方法有:根据定义。证明两个平面没有公共点。由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明......