第一篇:平面与平面平行教案2
新课程有效课堂教学设计简案
主题:§1.2.2空间中的平行关系——平面与平面平行
____课时 课型:发现生成课和问题解决课 主备人:
一、教学目标 知识与技能:
(1)理解并掌握平面与平面平行的判定和性质定理。(2)能把平面与平面平行的关系转化为线面或线线平行关系进行问题解决,进一步体会数学化归的思想方法。
过程与方法:
培养学生观察、发现的能力和空间想象能力。
情感、态度与价值观:
(1)让学生在发现中学习,增强学习的积极性;
(2)了解空间与平面互相转化的数学思想,培养学生主动探究知识、合作交流的意识;(3)在体验数学美的过程中激发学生的学习兴趣,使学生的学习不断由感性认识上升到理性认识;
(4)体会获得知识的愉悦,提高了学习数学的信心。
教学重点:平面与平面平行的判定定理和性质定理。
教学难点:平面与平面平行的判定定理和性质定理的应用。
二、教学过程
第二课时
1创设情境,回顾知识:
回顾上节内容,导入下一环节。2自主学习,解决问题: 教师:⑴发放《问题生成单》。⑵关注学生情况。⑶指导解决问题。学生:⑴浏览《问题生成单》。⑵走进文本读、划、写、记、练、思。⑶组织语言,准备交流。3合作交流,解决问题:
教师:⑴走进小组倾听交流。⑵有效指导,解决问题。⑶组织全班交流。⑷科学引导,使问题条理化。
4展示疑难,合作交流:
教师:指导学生分组交流并加以总结提炼,并提出新问题加以解决。学生:⑴展示问题。⑵讲解交流问题。5问题训练,提升能力: 教师:⑴发《问题训练单》。⑵巡视,批阅,搜集做题信息。⑷纠正共性问题。学生:⑴自主完成《问题训练单》。⑵全班展示交流。⑶针对问题反思。6全面总结,反思提高。
教师:⑴引导学生从知识、方法、情感等方面总结、反思。⑵总结规律提炼数学思想。⑶巡视、获取信息。
学生;⑴结合自身体会反思。⑵展示反思,全班交流。
拓展设计
教学反思
本节课的成功之处:
本节课最遗憾的地方:
本节课存在的问题:
我对本节课持有的看法:
第二篇:2.2平面与平面平行的性质 教案2
《2.2.4平面与平面平行的性质》教学设计
一、教学内容:
人教版新教材 高二数学 第二册 第二章 第二节 第4课
二、教材分析:
直线与平面问题是高考考查的重点之一,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象能力和逻辑推理能力。
三、教学目标:
1、知识与技能
(1)掌握两个平面平行的性质定理及其应用。
(2)提高分析解决问题的能力,进一步渗透等价转化的思想。
2、情感态度与价值观
(1)进一步提高学生空间想象能力、思维能力;(2)进一步体会类比的作用;(3)通过证明问题,树立创新意识。
四、教学重、难点:
1.重点:两个平面平行的性质定理的探索过程及应用。2.难点:两个平面平行的性质定理的探究发现及其应用。
五、教学理念:
学生是学习和发展的主体,教师是教学活动的组织者和引导者。学生通过观察与类比,借助实物模型理解性质及应用。
六、设计思路:
由直线与直线的平行的定义得到的两个平面平行性质定理是证明直线与直线平行的重要方法。在两个平面平行的性质定理的研究中,重在引导学生如何将两个平面平行的问题转化为直线与直线平行、直线与平面平行的问题。
七、教学过程:
(一)温故知新
1.两个平面的位置关系? 2.面面平行的判定方法:
(1)定义法:若两平面无公共点,则两平面平行.(2)判定定理:
如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行.(二)创设情景
师:两个平面平行,那么其中一个平面内的直线与另一平面有什么样的关系? 生:通过分析可以发现,若平面和平面平行,则两面无公共点,那么就意味着平面内任一直线a和平面也无公共点,即直线a和平面平行。
师:正确,用语言表述就是:如果两个平面平行,那么其中一个平面内的直线平行与另一个平面。用式子可表示为://,aa//。
师:两个平面平行,那么其中一个平面内的直线与另一平面内的直线有何关系? 生:要么异面,要么平行,因为它们无公共点。师:很好,以上两个结论都可以直接应用。
(三)探求新知
师:如图,设//,a,b,我们研究两条交线的位置关系。
生:因为//,所以a,b内有公共点。而a,b又同在平面内,于是有a//b.师:我们把这个结论称为连个平面平行的性质定理。
//两个平面平行的性质定理:如果两个平行平面同时和第三aa//b个平面相交,那么它们的交线平行。用符号表示为: b2
(四)自主学习练习:
1、课本P67练习
2、课本P67习题2.2:A组1、2; 学生独立完成,教师进行纠正。
(四)归纳整理
(五)布置作业
课本第69页习题2.2 B组第2、3题。
第三篇:直线与平面平行的教案
5.1平行关系的判定
---直线与平面平行的判定
高一朱丽珍
【教学目标】
1.理解并掌握直线与平面平行的判定定理
2.把线面平行关系(空间问题)转化为线线平行关系(平面问题)
3.了解空间与平面互相转换的思想,激发学生的学习兴趣
【教学重点】
直线与平面平行的判定定理;线面平行关系与线线平行关系的转换
【教学难点】
线面平行关系与线线平行关系的转换
【教学方法】
启发诱导与自主探究
【教学过程】
(一)复习引入
一条直线与一个平面有哪些位置关系?
①直线a在平面内②直线a与平面相交③直线a与平面平行 提问:如何判定一条直线与一个平面平行?
(二)新课讲解
实例探究:①门扇绕着门框转动观察另一边与门框所在平面位置关系②转书过程观察书沿与桌面的位置关系
归纳出线面平行的判定定理:若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行
符号表示:若a,b,a∥b,则a∥
简述为:线线平行线面平行
(三)例题选讲
例
1、空间四边形ABCD中,E,F分别为AB,AD的中点,证明:直线EF与平面BCD平行
例
2、在长方体ABCD-A1B1C1D1各面中,(1)与直线AB平行的平面有:
(2)与直线AA1平行的平面有:
(四)反馈训练
正方体ABCD-A1B1C1D1中,E为DD1的中点,证明BD1∥平面AEC
(五)归纳总结
1、直线与平面平行的判定定理:线线平行线面平行
2、应用判定定理时,应当注意三个不可或缺的条件
(六)布置作业:课本P 31 练习第3题
第四篇:平面与平面平行的判定教案
平面与平面平行的判定 教案
文昌中学数学组曾叶
教学目标
1.使学生理解和掌握两个平面平行的判定定理及应用; 2.加深学生对转化的思想方法的理解及应用.教学重点和难点
重点:两个平面平行的判定定理; 难点:两个平面平行的判定定理的证明.教学设计过程
一、复习提问
师:上节课我们研究了两个平面的位置关系,请同学们回忆一下,两个平面平行的意义是什么?
生:两个平面没有公共点.师:对,如果两个平面平行,那么在其中一个平面内的直线与另一个平面具有怎样的位置关 系呢? 生:平行.师:为什么? 生:用反证法,假设不平行,则这些线中至少有一条和另一个平面有公共点或在另一个面内,而此两种情况都说明这两个平面有公共点,与两个面平行矛盾.师:证得很好.反过来,如果一个平面内的所有直线都和另一个平面平行,那么这两个平面平行.由以上结论,就可以把两个平面平行的问题转化为一个平面内的直线和另一个平面平行的问题.但要注意:两个平面平行,虽然一个平面内的所有直线都平行于另一个平面,但
这两个平面内的所有直线并不一定互相平行,它们可能是平行直线也可能是异面直线,但不 可能是相交直线.〔对旧知识复习,又有深入,同时又点出了“转化”的思想方法,为引入新课作铺垫〕
二、新课
师:接下来,我们共同对两个平面平行作定性研究,先来研究两个平面平行的判定——具有 什么条件的两个平面是平行的呢? 生:根据两个平面平行的定义,只要能证明一个平面内的任意一条直线与另一个平面平行,就可得出两个平面平行.师:很好,实质就是由线面平行来得到面面平行.而实际上,判定两个平面平行,并不需要 一个平面内的所有直线都平行于另一个平面.下面我们共同研究判定两个平面平行的其它方法,请大家思考以下几个命题.(1)平面α内有一条直线与平面β平行,则α∥β,对吗?(2)平面α内有两条直线与平面β平行,则α∥β,对吗? 〔学生讨论回答,并举出反例,得(1),(2)不对,教师接着问〕(3)平面α内有无数条直线与平面β平行,则α∥β,对吗? 〔教师对学生的回答,作出适当评述〕
师:以上三个命题均为假命题,那么,怎样修改一下命题的条件,就可得出正确结论? 〔学生讨论后,教师请一名同学回答〕
生:把条件改为:一个平面内有两条相交直线都平行于另一个平面.师:说说你的想法.生:我想,两条相交直线确定一个平面,若它们分别与另一个平面平行,则所确定的平面也 一定与这个平面平行.[此是学生的猜想,教师给予肯定,并引导学生进行严格论证] 师:下面我们来证明.先把命题完整的表述出来.生:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.[教师板书,画图,并请一位学生写出已知,求证] 已知:在平面β内,有两条相交直线a,b和平面α平行.求证:α∥β.师:欲证α∥β,而我们只知两个平面平行的定义,显然,若直接用定义证明,不很方便,大家看怎么办? 生:用反证法.〔学生并未证明,只提出方法.教师先复习反证法的步骤:(1)否定结论,(2)推出矛盾,(3)得出结论.然后提出问题,让学生讨论,以引导学生用反证法得出结论〕 师:问,(1)如果平面α与平面β不平行,那么它们的位置关系怎样.(2)如果平面α与平面β相交,那么交线与平行于平面α的直线a和b有什么关系?(3)相交直线a和b都与交线平行合理吗?错误结论是如何产生的? [教师根据学生回答,依次提出问题,同时板书该命题的证明过程] 证明:假设α∩β=c.因为a∥α,aβ,所以a∥c,同理b∥c,所以a∥b.这与题设a与b是相交直线矛盾.故α∥β.师:以上我们用反证法证明了命题的正确性.我们就把这一命题作为两个平面平行的判定定 理之一.该定理是用来判定两个平面平行的,应用时关键是在一个平面内寻找两条相交直线,并证明与另外一个平面平行.也就是说:欲证面面平行,要先转化为线面平行.而转化的 思想方法是数学思维的重要方法之一,也是立体几何中,解决问题常用的方法.[教师在该命题前写上:两个平面平行的判定定理,以强调本节课的重点]
师:在现实生活中,该定理应用比较广泛,比如:木工师傅为了检查一个平面是否水平时,往往用水准器在这个平面上交叉放两次,水准器的气泡如果两次都是居中的,就可以判定这 个平面是水平的,否则就不是水平的.其理论根据就是这一判定定理.[通过实例,证明定理在现实生活中的具体应用,贴近学生生活,更激发了学生探求知识的积极性,活跃思]
师:大家还能发现哪些判定两个平面平行的定理呢?(教师巡视,找一名学生回答)生:我想,如果两个平面都垂直同一条直线,那么这两个平面一定是平行的.师:想法很好,能否谈一谈如何得出的? 生:在学习习近平面几何时,曾有一个定理:垂直于同一条直线的两条直线平行.我就想,若把 其中的两条直线改为两个平面,那么这两个平面会不会是平行的.师:这位同学用到了一个重要的研究数学问题的方法——类比.就是从已经学过的定理出发,对其中的某些条件作修改,得出一个新的命题.当然,这只是一种猜想,正确与否,还要大家
进一步证明.这位同学的猜想简单的说就是:垂直于同一条直线的两个平面平行.下面我们就来证明这一 命题.已知:AA′⊥平面α于A,AA′⊥平面β于A′.求α∥β.师:本题要证的是两个平面平行,有哪些工具呢? 生:两个面平行的判定定理.师:应用该定理的条件是什么?
生:是其中一面中心须有两条相交直线与另一面平行.师:显然,题目中并不具备这一条件,我们是否改用其它方法?
[学生激烈讨论]
生甲:直接在平面β内作直线a∩b=O,如图2(教师画图,使O与A′不重合,突出矛盾)生乙:这样做不好,没有充分利用题目的已知条件,不妨直接在平面α内作直线a∩b=A.而 直线a与AA′确定一平面γ,设γ∩β=a′.能证:a′∥a,则a∥β,得出线面平行.同理
也可证b∥β.所以α∥β.师:不错.能够充分的利用题目中的条件,为解决问题带来大的方便.下面我们把作辅助线 的方法,稍作改进,写出证明.证明:设经过直线AA′的两个平面γ,δ分别与平面α,β交于直线a,a′和b,b′.因为 AA′⊥α,AA′⊥β,所以 AA′⊥a,AA′⊥a′, 故 a∥a′.则a′∥α.5
同理 b′∥α,又因为a′∩b′=A,所以α∥β.师:通过类比的方法,证明得到了两平面平行的又一个判定定理,它是在上一个判定定理的 基础上得到的.要注意的是,为了得到两条相交直线,并未直接在一个面内作,而是过AA′作两
个相交平面δ,γ,它们分别与α,β相交,得到相交直线.由线线平行,得线面平行,最 后证明面面平行.这一证明方法是转化的思想方法的又一体现.生:在上题的证明过程中,我发现:“如果一个平面内两条相交直线分别平行于另一个平面 内的两条相交直线,那么这两个平面平行.”这样就可直接由线线平行证面面平行,不知对 不对? 师与生:对.[在授课过程中,学生往往能根据所研究问题,思考得到自己的想法,这是学生深入课堂,积极思维的一种体现,也是课堂上的一种反馈,教师应抓住机会,热情鼓励,同时给出肯定 或否定的答复]
师:想法很好,大家能证明吗?(学生议论)对,用第一个判定定理很快就能证明.但此命题 不易作为判定定理直接应用.不过这一命题为我们今后判定两个平面平行提供了一条思路.三、例题分析
[通过例题分析,复习巩固本节课的主要内容]
师:前面我们得到了两个平面平行的判定定理,为方便,把前者叫判定定理,后者叫判定定 理二.下面通过例题来分析如何使用判定定理.例 已知正方体ABCD-A1B1C1D1.求证:平面AB1D1∥平面C1BD.师:欲证面面平行,由两个判定定理,必须有线面平行或是线面垂直.而题目所给的是正方 体及体内的截面,隐含较多的线面平行的位置关系.我们先来考虑应用判定定理一.6
生:因为ABCD-A1B1C1D1为正方体,所以 D1C1∥=A1B1,AB∥=A1B1,所以 D1C1∥=AB,所以 D1C1BA为平行四边形,所以 D1A∥C1B,因为 C1B平面C1BD,故 D1A∥平面C1BD.同理 D1B1∥平面C1BD.又 D1A∩D1B1=D1, 所以平面AB1D1∥平面C1BD.师:大家再思考,能否用判定定理二来证明呢? [学生有的思考,有的议论]
师:若要用判定定理二,遇到的问题是什么? 生:条件中没有直接与面AB1D1和面BC1D垂直的直线.师:能解决吗? 生:作辅助线.连结A1C,证明它与两个面都平行.师:要证线面垂直,要先转化为线线垂直.证明线线垂直的一个重要方法是什么? 生:三垂线定理及其逆定理.连结AC.可证A1C⊥BD.7
[至此,在教师的启发引导下,已基本解决问题,把证明过程规范化]
证明:连结A1C,AC,因为 ABCD-A1B1C1D1为正方体,所以 A1A⊥平面ABCD.所以 AC为A1C在面ABCD上的射影.又因为 BD⊥AC,且BD面ABCD,所以 A1C⊥BD.同理: A1C⊥BC1.又因为 BD∩BC1=B,所以 A1C⊥面C1BD.同理:A1C⊥平面AB1D1,所以平面AB1D1∥平面C1BD.[通过一题多解,训练学生思维的灵活性] 小结
1.由学生用文字语言和符号语言两种形式表述面面平行的两个判定定理.教师指出,两个判 定定理是判定面面平行的两个基本的理论工具.2.空间两条直线平行,直线与平面平行,以及两个平面平行,三类平行关系的联系十分密切,它们相互依赖,相互转化.在实际运用中,我们可以通过线线平行,或线面平行来推论平面与平面平行.3.转化的思想方法,是数学思维的重要方法.解决数学问题的过程实质就是一个转化的过程,同学们要认真掌握.布置作业
课本p.38习题五1,3.课堂教学设计说明 1.指导思想
这节课本着“教师为主导,学生为主体,课本为主线”的原则进行设计.教师的主导作用,在于激发学生的求知欲,通过教师在课堂上的精心设计,以启发式教学为主,引导学生步入 问题情境,同时发挥学生的主观能动性,师生共同推进课堂教学活动,使学生有一个积极的 态度接受新知识.学生是课堂教学的主体.教师就是要引导学生讨论、学生发言,使得学生参加到数学教学活 动中,使得学生兴趣盎然,思维活跃,这样有利于培养学生独立思考问题的习惯,发展学生 的创造性思维能力,教师要注重学生的活动,同时给于肯定及鼓励.2.教学实施
(1)复习提问,不仅是旧知识的复习,而是有所深入、提高,同时在思维方法明确转化的思 想方法.(2)在讲解两个平面平行的判定定理一时,教师不要急于得出结论,而是设计三个问题,逐 步深入,引导学生自己发现结论,提高了学生解决问题的兴趣.又考虑到:反证法是高一立 体几何中的一个重要而又难掌握的方法,虽然前几节课有所接触,然而对于同学而言仍属难 点,为了分解难点,在学生提出用反证法之后,仍根据反证法的步骤,依次提出三个问题,引导学生证明,使证明方法容易接受.对于定理二,突出类比方法在解决问题中的应用及证明过程中的转化思想.(3)在选择例题时,讲求不要多,而要精,精心选择例题,使它确实能够起到复习、巩固本 节课所学知识的作用.本节课所选的例题,比较简单.特别是两种证明方法中,第一种容易
想到.但在引导学生得出第一种证明方法后,不能满足,而应启发学生,运用其它知识想更 多的方法进行证明.当然,第二种方法比较难,特别是辅助线不易想到,教师在讲解时要慢 慢启发.一题多解,是训练学生思维的一个较好的方式.
第五篇:平面与平面平行的性质
平面与平面平行的性质
¤知识要点:
1.面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.用符号语言表示为://,a,ba//b.2.其它性质:①//,ll//; ②//,ll;③夹在平行平面间的平行线段相等.¤例题精讲:
【例1】如图,设平面α∥平面β,AB、CD是两异面直线,M、N分别是AB、CD的中点,且A、C∈α,B、D∈β.求证:MN∥α.【例2】如图,A,B,C,D四点都在平面,外,它们在内的射影A1,B1,C1,D1是平行四边形的四个顶点,在内的射影A2,B2,C2,D2在一条直线上,求证:ABCD是平行四边形.
C1C B1 A1F
E MNEC
D N MA
【例
3】如图,在正三棱柱ABC—A1B1C1中,E、F、G是侧面对角线上的点,且BECFAG,求证:平面EFG∥平面ABC.【例4】如图,已知正方体ABCDA1B1C1D1,面对角线AB1,BC1上分别有两点E、F,且B1EC1F.求证:EF∥平面ABCD.直线与平面垂直的判定
¤知识要点:
1.定义:如果直线l与平面内的任意一条直线都垂直,则直线l与平面互相垂直,记作l.l-平面的垂线,-直线l的垂面,它们的唯一公共点P叫做垂足.(线线垂直线面垂直)
2.判定定理:一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直.符号语言表示为:若l⊥m,l⊥n,m∩n=B,m,n,则l⊥
3.斜线和平面所成的角,简称“线面角”,它是平面的斜线和它在平面内的射影的夹角.求直线和平面所成的角,几何法一般先定斜足,再作垂线找射影,然后通过解直角三角形求解,可以简述为“作(作出线面角)→证(证所作为所求)→求(解直角三角形)”.通常,通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线是产生线面角的关键.¤例题精讲:
【例1】四面体ABCD中,ACBD,E,F分别为AD,BC的中点,且EF
BDC90,求证:BD平面ACD.AC,【例2】已知棱长为1的正方体ABCD-A1B1C1D1,E是A1B1的中点,求直线AE与平面ABC1D1所成角的正弦值.【例3】三棱锥PABC中,PABC,PBAC,PO平面ABC,垂足为O,求证:O为底面△ABC垂心.【例4】已知RtABC,斜边BC//平面,A, AB,AC分别与平面成30°和45°的角,已知BC=6,求BC到平面的距离.平面与平面垂直的判定
¤知识要点: 1.定义:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle).这条直线叫做二面角的棱,这两个半平面叫做二面角的面.记作二面角-AB-.(简记P-AB-Q)
2.二面角的平面角:在二面角-l-的棱l上任取一点O,以点O为垂足,在半平面,内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的AOB叫做二面角的平面角.范围:0180.3.定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.记作.4.判定:一个平面过另一个平面的垂线,则这两个平面垂直.(线面垂直面面垂直)
¤例题精讲:
【例1】已知正方形ABCD的边长为1,分别取边BC、CD的中点E、F,连结AE、EF、AF,以AE、EF、FA为折痕,折叠使点B、C、D重合于一点P.(1)求证:AP⊥EF;(2)求证:平面APE⊥平面APF.ABC
1E
A
C
【例2】如图, 在空间四边形ABCD中,ABBC,CDDA, E,F,G分别是
CD,DA,AC的中点,求证:平面BEF平面CBGD.【例3】如图,在正方体ABCDA1B1C1D1BC中,E是CC1的中点,求证:B1平面A1BD平面BED.
【例4】正三棱柱ABC—A1B1C1中,AA1=2AB,D、E分别是侧棱BB1、CC1上的点,且
EC=BC=2BD,过A、D、E作一截面,求:(1)截面与底面所成的角;(2)截面将三棱柱分成两部分的体积之比.线面、面面垂直的性质
¤知识要点:
1.线面垂直性质定理:垂直于同一个平面的两条直线平行.(线面垂直线线平行)
2.面面垂直性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.用符号语言表示为:若,l,a,al,则a.(面面垂直线面垂直)
¤例题精讲:
【例1】把直角三角板ABC的直角边BC放置于桌面,另一条直角边AC与桌面所在的平面垂直,a是内一条直线,若斜边AB与a垂直,则BC是否与a垂直?
【例2】如图,AB是圆O的直径,C是圆周上一点,PA⊥平面ABC.(1)求证:平面PAC⊥平面PBC;
(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面.【例3】三棱锥PABC中,PAPBPC,PO平面ABC,垂足为O,求证:O为底面△ABC的外心.【例4】三棱锥PABC中,三个侧面与底面的二面角相等,PO平面ABC,垂足为O,求证:O为底面△ABC的内心.小结:
1、证明两直线平行的主要方法是:
①三角形中位线定理:三角形中位线平行并等于底边的一半;
②平行四边形的性质:平行四边形两组对边分别平行;
③线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行;
④平行线的传递性:a//b,c//ba//c
⑤面面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行;
⑥垂直于同一平面的两直线平行;
2、证明两直线垂直的主要方法:
①利用勾股定理证明两相交直线垂直;
②利用等腰三角形三线合一证明两相交直线垂直;
③利用线面垂直的定义证明(特别是证明异面直线垂直);
④利用三垂线定理证明两直线垂直(“三垂”指的是“线面垂”“线影垂”,如图:POOA是PA在平面上的射影aPA又直线a,且aOA
即:线影垂直线斜垂直,反之也成立。
④利用圆中直径所对的圆周角是直角,此外还有正方形、菱形对角线互相垂直等结论。
3、空间角及空间距离的计算
(1)异面直线所成角:使异面直线平移后相交形成的夹角,通常在在两异面直线中的一条上取一点,过该点作另一条直线平行线,如图:直线a与b异面,b//b,直线a与直线b的夹角为两异 面直线 a与b所成的角,异面直线所成角取值范围是(0,90]
(2)斜线与平面成成的角:斜线与它在平面上的射影成的角。如图:PA是平面的一条斜线,A为斜足,O为垂足,OA叫斜线PA在平面上射影,PAO为线面角。
(3)二面角:从一条直线出发的两个半平面形成的图形,如图为二面角l,二面角的大小指的是二面角的平面角的大小。二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直
如图:在二面角-l-中,O棱上一点,OA,OB,且OAl,OBl,则AOB为二面角-l-的平面角。
用二面角的平面角的定义求二面角的大小的关键点是:
①明确构成二面角两个半平面和棱; ②明确二面角的平面角是哪个?而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。(求空间角的三个步骤是“一找”、“二证”、“三计算”)
4.异面直线间的距离:指夹在两异面直线之间的公垂线段的长度。如图PQ是两异面直线间的距离
(异面直线的公垂线是唯一的,指与两异面直线垂直且相交的直线)
5.点到平面的距离:指该点与它在平面上的射影的连线段的长度。如图:O为P在平面上的射影,线段OP的长度为点P到平面的距离
求法通常有:定义法和等体积法
等体积法:就是将点到平面的距离看成是 三棱锥的一个高。如图在三棱锥VABC 中有:VSABCVASBCVBSACVCSAB