第一篇:直线与平面垂直的判定教案
《直线与平面垂直的判定》
选自人教版《普通高中课程标准实验教科书·数学》必修2第二章第三节
一、教学目标 1.知识与技能目标
(1).掌握直线与平面垂直的定义
(2).理解并掌握直线与平面垂直的判定定理(3).会判断一条直线与一个平面是否垂直
(4).培养学生的空间想象能力和对新知识的探索能力
2.过程与方法目标
(1).加强学生空间与平面之间的转化意识,训练学生的思维灵活性
(2).要善于应用平移手法将分散的条件集中到某一个图形中进行研究,特别是辅助线的添加
3.情感态度价值观目标
(1).培养学生的探索精神(2).加强学生对数学的学习兴趣
二、重点难点
1.教学重点:直线与平面垂直的定义及其判定定理 2.教学难点:直线与平面垂直判定定理的理解
三、课时安排
本课共安排一课时
四、教学用具
多媒体、三角形纸片、三角板或直尺
五、教学过程设计 1.创设情境
问题1:空间一条直线和一个平面有哪几种位置关系?
设计意图:此问基于学生已有的数学现实,通过对已学相关知识的追忆,寻找新知识学习的“固着点”。
问题2:列举在日常生活中你见到的可以抽象成直线与平面相交的事例? 寻找特殊的事例并引入课题。设计意图:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面相交中一种特例:直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的意义。
2.提炼定义
问题3:结合对下列问题的思考,试着给出直线和平面垂直的定义.(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?
(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?
(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么? 设计意图:第(1)与(2)两问旨在让学生发现旗杆AB所在直线始终与地面上任意一条过点B的直线垂直,第(3)问进一步让学生发现旗杆AB所在直线始终与地面上任意一条不过点B的直线也垂直,在这里,主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念。
(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)
思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?
(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?(对问(1),在学生回答的基础上用直角三角板在黑板上直观演示;对问(2)可引导学生给出符号语言表述:若,则)
设计意图:通过对问题(1)的辨析讨论,深化直线与平面垂直的概念。通过对问题(2)的辨析讨论旨在让学生掌握线线垂直的一种判定方法。
通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无法去一一检验。这就有必要去寻找比定义法更简捷、可行的直线与平面垂直的判定方法。
3.探究新知
创设情境
猜想定理:某公司要安装一根8米高的旗杆,两位工人先从旗杆的顶点挂两条长10米的绳子,然后拉紧绳子并把绳子的下端放在地面上两点(和旗杆脚不在同一直线上)。如果这两点都和旗杆脚距离6米,那么表明旗杆就和地面垂直了,你知道这是为什么吗?
设计意图:引导学生根据直观感知以及已有经验,进行合情推理,猜想判定定理。师生活动:(折纸试验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD(如图1),将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)
问题4:(1)折痕AD与桌面垂直吗?
(2)如何翻折才能使折痕AD与桌面所在的平面垂直?
(组织学生动手操作、探究、确认)
设计意图:通过折纸让学生发现当且仅当折痕AD是BC边上的高时,且B、D、C不在同一直线上的翻折之后竖起的折痕AD才不偏不倚地站立着,即AD与桌面垂直(如图2),其它位置都不能使AD与桌面垂直。
问题5:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线,把BD、CD抽象为直线 m,n,把桌面抽象为平面件是什么?
(如图3),那么你认为保证直线与平面
垂直的条
对于两条相交直线必须在平面内这一点,教师可引导学生操作:将纸片绕直线AD(点D始终在桌面内)转动,使得直线CD、BD不在桌面所在平面内。问:直线AD现在还垂直于桌面所在平面吗?(此处引导学生认识到直线CD、BD都必须是平面内的直线)设计意图:通过操作让学生认识到两条相交直线必须在平面内,从而更凸现出直线与平面垂直判定定理的核心词:平面内两条相交直线。
问题6:如果将图3中的两条相交直线、的位置改变一下,仍保证
吗?,(如图4)你认为直线还垂直于平面设计意图:让学生明白要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,这是无关紧要的。
根据试验,请你给出直线与平面垂直的判定方法。
(学生叙写判定定理,给出文字、图形、符号这三种语言的相互转化)
问题7:(1)与直线与平面垂直的定义相比,你觉得这个判定定理的优越性体现在哪里?(2)你觉得定义与判定定理的共同点是什么?
设计意图:通过和直线与平面垂直定义的比较,让学生体会“无限转化为有限”的数学思想,通过寻找定义与判定定理的共同点,感悟和体会“空间问题转化为平面问题”、“线面垂直转化为线线垂直”的数学思想.思考:现在,你知道两位工人是根据什么原理安装旗杆的吗?为什么要求绳子在地面上两点和旗杆脚不在同一直线上?
如果安装完了,请你去检验旗杆与地面是否垂直,你有什么好方法?
设计意图:用学到手的知识解释实际生活中的问题,增强学生用数学的意识,同时通过提出 “为什么要求绳子在地面上两点和旗杆脚不在同一直线上?”(对该问题可引导学生用三角形纸片来验证),从而来深化对直线与平面垂直判定定理的理解。
4.练习提高
如图5,在长方体ABCD-A1B1C1D1中,请列举与平面ABCD垂直的直线。并说明这些直线有怎样的位置关系?
思考:如图6,已知,则吗?请说明理由。
(分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明;并让学生用语言叙述:如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面)
设计意图:这个例题给出了判断直线和平面垂直的一个常用的命题,这个命题体现了平行关系与垂直关系之间的联系。
5.小结回授
(1)本节课你学会了哪些判断直线与平面垂直的方法?试用自己理解的语言叙述。(2)直线与平面垂直的判定定理中体现了哪些数学思想方法?
设计意图:以问题讨论的方式进行小结,培养学生反思的习惯,鼓励学生运用自己理解的语言对问题进行质疑和概括。
第二篇:直线与平面垂直的判定教案说明
《直线与平面垂直的判定》教案说明
《直线与平面垂直的判定》教案说明
北京市第五中学熊丹
一、教学内容的分析
本节课的内容包括直线与平面垂直的定义和判定定理两部分.直线与平面垂直的研究是直线与直线垂直研究的继续,也为平面与平面垂直的研究做了准备;这三类垂直问题的研究主线是类似的,都是以定义——判定——性质为主线.判定定理的教学,尽管新课标在必修课程中不要求证明,但通过定理的探索过程,培养和发展学生的几何直觉以及运用图形语言进行交流的能力,是本节课的重要任务.
二、教学目标的确定
新课标中立体几何的体系和内容都发生了较大的变化,要求能通过直观感知、操作确认,归纳出直线和平面垂直的判定定理.
根据教材特点、新课标的教学要求和学生的认知水平,我确定了如下教学目标:
1.通过观察图片和折纸试验,使学生理解直线与平面垂直的定义,归纳和确认直线与平面垂直的判定定理,并能对定义和判定定理进行简单应用;
2.通过对判定定理的探究和运用,初步培养学生的几何直观能力和抽象概括能力;
3.通过对探索过程的引导,努力提高学生学习数学的热情,培养学生主动探究的习惯.
三、教学方法的特点
本节课采用启发式与试验探究式相结合的教学方式.
在启发式教学过程中,以问题引导学生的思维活动.教学设计突出了对问题链的设计,教学中,结合学生的思维发展变化不断追问,使学生对问题本质的思考逐步深入,思维水平不断提高.
尝试通过试验的方法进行立体几何的教学.本节课主要是通过直观感知、操作确认归纳出直线和平面垂直的判定定理.但借助什么去感知?怎样操作才能归纳出判定定理?确认到什么程度,才能在不对定理进行证明的情况下,不失数学的逻辑性和严谨性?本节课立足教材,重视对具体实例的观察、分析,并且给学生提供动手操作的机会,引导学生通过自己的观察、操作等活动获得数学结论,把合情推理作为一个重要的推理方式融入到学生的学习过程中.
第1页(共3页)
四、教学诊断分析
学生在学习本节内容时主要有以下两个困难:
1.理解直线与平面垂直的定义,让学生认识到线面垂直是用线线垂直来刻画的,逐步形成概念体系,体会其中的转化思想,这对于高一的学生来讲是比较困难的.
所以在设计教学时,首先通过一组图片让学生直观感知直线与平面垂直的具体形象,然后将其抽象为几何图形,再用数学语言对几何图形进行精确的描述,让学生在此过程中体会直线与平面垂直定义的合理性.
2.用定义去判定直线与平面垂直是不方便的,如何在较短的时间内,让多数学生找到判定直线与平面垂直的简便方法,这需要一个较好的载体,去引导学生探究直线与平面垂直的判定定理,同时完成对定理条件的确认.
所以,在教学过程中,通过折纸试验,精心设置问题,引导学生归纳出直线与平面垂直的判定定理.并且引导学生通过操作、摆出反例模型,对定理的两个关键条件“双垂直”和“相交”进行理解和确认.
五、教学效果分析
本节课的实施从整体上说是比较顺利的,学生的思维活动在教师的引导下展开的比较充分,基本达到了教学目标.具体给出两个教学片断加以说明.
教学片断一:
在折纸试验的过程中,教师提出问题1:折痕AD与桌面一定垂直吗?
生:不一定.(学生手拿纸片,折出不与桌面垂直的折痕)
师:为什么你认为这条折痕不与桌面垂直?
生:因为它与BD不垂直,与CD也不垂直.
师:这能说明它与桌面不垂直吗?
生:能,因为定义说如果折痕与桌面垂直,那么它就和桌面的任意一条直线都垂直. 师:非常好,其实这也是从另一个角度对定义进行理解:如果想说一条直线与平面不垂直,只要在平面内找到一条直线与它不垂直就够了.
通过这个片断的教学,使学生加深了对定义的认识和理解.
教学片断二:
仍然是在折纸试验过程中,教师提出问题2:如何翻折才能使折痕AD与桌面所在的平面垂直?
生1:当折痕AD是BC边上的高时,AD所在直线与桌面所在平面垂直.
师:如何保证此时折痕和桌面是垂直的?
生1:因为折痕AD与BD、CD所成的角都是直角.
师:那折痕AD与BD、CD两条直线垂直,就能说它与平面垂直吗?
生1:因为BD、CD是两条相交直线,所以它们确定一个平面.
师:两条平行直线也确定一个平面,能说如果一条直线与两条平行直线都垂直,那么就和平面垂直吗?
生2:以AD边为轴将三角形纸片绕轴旋转,刚才已经说明了折痕AD与BD、CD两条直线垂直,旋转的过程中AD与BD、AD与CD的垂直关系没有发生改变,从而保证AD与桌面上过D点的直线都垂直,其他不过D点的直线可以平行移到D点说明与AD垂直,满足直线与平面垂直的定义.
以上的教学过程中,通过老师的不断追问,促使学生对问题深入思考,在发现定理的过程中,不仅有直观上的感知,提高了几何直观能力,而且通过理性的说理,增加了逻辑思维的成分.
在教师的引导下,学生的思维活动展开的比较充分,学生在课堂上认真参与,积极探索,学习热情较高,在基础知识的理解、基本思想的体会、以及几何直观能力和抽象概括能力的提高等方面都有较大的进步.
第三篇:直线与平面垂直的判定的教学设计
直线与平面垂直的判定的教学设计
阜阳市城郊中学
吴桃李
一、内容和内容解析
本节课是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进行的,其主要内容是直线与平面垂直的定义、直线与平面垂直的判定定理及其应用.直线与平面垂直是通过直线和平面内的任意一条直线(无一例外)都垂直来定义的,定义本身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线,这也可以看成是线线垂直的一个判定方法;直线与平面垂直的判定定理本节是通过折纸试验来感悟的,即一条直线只要与平面内的两条相交直线垂直就可以判定直线与平面垂直了,它把原来定义中要求与任意一条(无限)垂直转化为只要与两条(有限)相交直线垂直就行了,概言之,线不在多,相交就行.直线与平面垂直的判定方法除了定义法、判定定理外,还有如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面,这是直线与平面垂直判定的一种间接方法,也是十分重要的.本节学习内容蕴含丰富的数学思想,即“空间问题转化为平面问题”,“无限转化为有限”“线线垂直与线面垂直互相转化”等数学思想.直线与平面垂直是研究空间中的线线关系和线面关系的桥梁,为后继面面垂直的学习、距离的学习奠定基础.
二、教学目标和解析
1.借助对实例、图片的观察,提炼直线与平面垂直的定义,并能正确理解直线与平面垂直的定义;
2.通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题;
3.在探索直线与平面垂直判定定理的过程中发展合情推理能力,同时感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想.三、教学问题诊断分析
学生已有的认知基础是熟悉的日常生活中的具体直线与平面垂直的直观形象(学生的客观现实)和直线与直线垂直的定义、直线与平面平行的判定定理等数学知识结构(学生的数学现实),这为学生学习直线与平面垂直定义和判定定理等新知识奠定基础.学生学习的困难在于如何从直线与平面垂直的直观形象中提炼出直线与平面垂直的定义,感悟直线与平面垂直的意义;以及如何从折纸试验中探究出直线与平面垂直的判定定理.
教学的重点是直线与平面垂直的定义和直线与平面垂直判定定理的探究; 教学的难点是操作确认并概括出直线与平面垂直的判定定理及初步运用.
四、学习行为分析
本节课安排在立体几何的初始阶段,是学生空间观念形成的关键时期,课堂上学生通过感知、观察、提炼直线与平面垂直的定义,进而通过辨析讨论,深化对定义的理解.进一步,在一个具体的数学问题情境中猜想直线与平面垂直的判定定理,并在教师的指导下,通过动手操作、观察分析、自主探索等活动,切身感受直线与平面垂直判定定理的形成过程,体会蕴涵在其中的思想方法.继而,通过例1的学习概括直线与平面垂直的几种常用判定方法.再通过练习与课后小结,使学生进一步加深对直线与平面垂直的判定定理的理解.
五、教学支持条件分析
观察和展示现实生活中的实例与图片,以直观感知直线与平面垂直的形象;准备三角形纸片,用于探究直线与平面垂直的判定定理;制作多媒体课件动态演示,以加深对直线与平面垂直定义及判定定理的感知与理解.
六、教学过程设计
1.从实际背景中感知直线与平面垂直的形象
问题1:空间一条直线和一个平面有哪几种位置关系?
设计意图:此问基于学生已有的数学现实,通过对已学相关知识的追忆,寻找新知识学习的“固着点”. 问题2:在日常生活中你见得最多的直线与平面相交的情形是什么?请举例说明.
设计意图:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面相交中一种特例:直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的意义.
2.提炼直线与平面垂直的定义
问题3:你能给出直线和平面垂直的定义吗?回忆一下直线与直线垂直是如何定义的?
设计意图:两直线垂直有相交垂直和异面垂直,而异面直线垂直是转化为两直线相交垂直,实质上是将空间问题转化为平面问题,让学生回忆直线与直线垂直的定义,旨在由此得到启发:用“平面化”的思想来思考问题,即能否用一条直线垂直于一个平面内的直线,来定义这条直线与这个平面垂直?
问题4:结合对下列问题的思考,试着给出直线和平面垂直的定义.(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?
(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?
(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么?
设计意图:第(1)与(2)两问旨在让学生发现旗杆AB所在直线始终与地面上任意一条过点B的直线垂直,第(3)问进一步让学生发现旗杆AB所在直线始终与地面上任意一条不过点B的直线也垂直,在这里,主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念.
(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?
(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?(对问(1),在学生回答的基础上用直角三角板在黑板上直观演示;对问(2)可引导学生给出符号语言表述:若,则)
设计意图:通过对问题(1)的辨析讨论,深化直线与平面垂直的概念.通过对问题(2)的辨析讨论旨在让学生掌握线线垂直的一种判定方法. 通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无法去一一检验.这就有必要去寻找比定义法更简捷、可行的直线与平面垂直的判定方法. 3.探究直线与平面垂直的判定定理 创设情境 猜想定理:某公司要安装一根8米高的旗杆,两位工人先从旗杆的顶点挂两条长10米的绳子,然后拉紧绳子并把绳子的下端放在地面上两点(和旗杆脚不在同一直线上).如果这两点都和旗杆脚距离6米,那么表明旗杆就和地面垂直了,你知道这是为什么吗?
设计意图:引导学生根据直观感知以及已有经验,进行合情推理,猜想判定定理. 师生活动:(折纸试验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD(如图1),将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)
问题5:(1)折痕AD与桌面垂直吗?
(2)如何翻折才能使折痕AD与桌面所在的平面垂直?(组织学生动手操作、探究、确认)
设计意图:通过折纸让学生发现当且仅当折痕AD是BC边上的高时,且B、D、C不在同一直线上的翻折之后竖起的折痕AD才不偏不倚地站立着,即AD与桌面垂直(如图2),其它位置都不能使AD与桌面垂直.
问题6:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线,把BD、CD抽象为直线,把桌面抽象为平面(如图3),那么你认为保证直线与平面垂直的条件是什么?
对于两条相交直线必须在平面内这一点,教师可引导学生操作:将纸片绕直线AD(点D始终在桌面内)转动,使得直线CD、BD不在桌面所在平面内.问:直线AD现在还垂直于桌面所在平面吗?(此处引导学生认识到直线CD、BD都必须是平面内的直线)
设计意图:通过操作让学生认识到两条相交直线必须在平面内,从而更凸现出直线与平面垂直判定定理的核心词:平面内两条相交直线.
问题7:如果将图3中的两条相交直线、的位置改变一下,仍保证,(如图4)你认为直线还垂直于平面吗?
设计意图:让学生明白要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,这是无关紧要的.
根据试验,请你给出直线与平面垂直的判定方法.
(学生叙写判定定理,给出文字、图形、符号这三种语言的相互转化)问题8:(1)与直线与平面垂直的定义相比,你觉得这个判定定理的优越性体现在哪里?(2)你觉得定义与判定定理的共同点是什么? 设计意图:通过和直线与平面垂直定义的比较,让学生体会“无限转化为有限”的数学思想,通过寻找定义与判定定理的共同点,感悟和体会“空间问题转化为平面问题”、“线面垂直转化为线线垂直”的数学思想.思考:现在,你知道两位工人是根据什么原理安装旗杆的吗?为什么要求绳子在地面上两点和旗杆脚不在同一直线上?
如果安装完了,请你去检验旗杆与地面是否垂直,你有什么好方法?
设计意图:用学到手的知识解释实际生活中的问题,增强学生用数学的意识,同时通过提出 “为什么要求绳子在地面上两点和旗杆脚不在同一直线上?”(对该问题可引导学生用三角形纸片来验证),从而来深化对直线与平面垂直判定定理的理解.
4.直线与平面垂直判定定理的应用
如图5,在长方体ABCD-A1B1C1D1中,请列举与平面ABCD垂直的直线.并说明这些直线有怎样的位置关系?
思考:如图6,已知,则吗?请说明理由.
(分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明;并让学生用语言叙述:如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面)设计意图:这个例题给出了判断直线和平面垂直的一个常用的命题,这个命题体现了平行关系与垂直关系之间的联系.
练习:如图7,在三棱锥V-ABC中,VA=VC,AB=BC,K是AC的中点. 求证:AC⊥平面VKB
思考:
(1)在三棱锥V-ABC中,VA=VC,AB=BC,求证:VB⊥AC;
(2)在⑴中,若E、F分别是AB、BC 的中点,试判断EF与平面VKB的位置关系;
(3)在⑵的条件下,有人说“VB⊥AC,VB⊥EF,∴VB⊥平面ABC”,对吗? 设计意图:例2重在对直线与平面垂直判定定理的应用.变式(1)在例2的基础上,应用了直线与平面垂直的意义;变式(2)是对例1判定方法的应用;变式(3)的判断在于进一步巩固直线与平面垂直的判定定理.3个小题环环相扣,汇集了本节课的学习内容,突出了知识间内在联系和融会贯通.
5.小结回授
(1)本节课你学会了哪些判断直线与平面垂直的方法?试用自己理解的语言叙述.(2)直线与平面垂直的判定定理中体现了哪些数学思想方法?
设计意图:以问题讨论的方式进行小结,培养学生反思的习惯,鼓励学生运用自己理解的语言对问题进行质疑和概括.
七、目标检测设计
1.PA⊥平面ABC,BC⊥AC,写出图中所有的直角三角形.
第四篇:直线与平面垂直的判定定理练习
直线与平面垂直的判定定理
1、如果直线ab,且a平面,则b与的位置关系是
2、过一点有
3、下列说法中正确的有(1)平行于同一条直线的两条直线互相平行;(2)垂直于同一条直线的两条直线互相平行(3)平行于同一个平面的两条直线互相平行;(4)垂直于同一个平面的两条直线互相平行(5)一条直线和一个平面平行,则它和这个平面内的任何直线平行;(6)一条直线和一个平面垂直,则它和这个平面内的任何直线垂直;
(7)如果一条直线平行于平面内无数条直线,那么这条直线和这个平面平行;
P
(8)如果一条直线垂直于平面内无数条直线,那么这条直线和这个平面垂直。
4、如图,四边形ABCD是矩形,AC是对角线,PA平面ABCD 则图中共有个直角三角形 A5、正方体ABCDA1BC11D1中,AC与BD1的位置关系是与棱AB垂直的面有,与对角线AC1垂直的面有B6、如图ABC中,ACB90,直线l过点A且垂直于平面ABC
P
C
D
动点Pl,当点P远离点A时,PCB变化情况是
7、正方形SG1G2G3中,E,F分别为G1G2,G2G3的中点,D是EF 的中点,现在沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3
S
Al
C
B
G3
重合,记为G,则(1)SGEFG所在平面;(2)GDEFG所在平面
G1(3)GFSEF所在平面;(4)GDSEF所在平面
10、如图,在五面体ABFCDE中,点O是矩形ABCD的对角线的交点,棱EF//BC且
F
E
G2
EF
BC,求证:FO//平面CDE 2
FE
AD
O
B
C11、已知四棱锥PABCD,PD底面ABCD,底面ABCD为正方形,且PDCD,E,F分别为PB,PC的中点,求证:(1)AC平面PBD(2)PAAB(3)PC平面ADFE
A
P
F
D
E
C
第五篇:直线与平面垂直的判定教学反思
《直线与平面垂直的判定》的教学反思
焉耆一中数学组李新华
本节是高一《必修2》第二章第三节第一课时的内容。本节课所要达到的知识目标是:(1)掌握线面垂直的定义;(2)掌握线面垂直的判定定理,并能利用判定定理证明一些简单的线面垂直问题。所要达到的知识目标很明确,但学生的实际情况是空间想象能力较弱。所以本节课我先是以生活实例让学生比较直观的认识线面垂直,同时让学生自己动手比划找出线面垂直的条件,鼓励学生自己给出线面垂直的定义。然后,引导学生探索发现线面垂直的判定定理。最后,利用判定定理证明一些简单线面垂直问题。
本节课我最满意的地方是线面垂直定义、定理的引入。最大亮点是我依次给出了三个设问,大胆鼓励让学生自己动手比划,再结合生活实例,得出结论。设问:(1)如果一条直线和平面内的一条直线垂直,那么这条直线一定能和这个平面垂直吗?(2)如果一条直线和平面内的无数条直线都垂直,那这条直线一定与这个平面垂直吗?(3)如果一条直线和平面内的任意一条直线都垂直,那这条直线一定和这个平面垂直吗?完全放开让学生自己动手比划,让学生在动手的过程中发现问题,最后由他们自己总结出定义。这个过程使学生很有成就感,而且极大的调动了学生学习兴趣和积极性。好些学生说:“立体几何太有兴趣了,根本没有想象的难嘛!”之后,我又给出设问:如果一条直线和平面内的两条直线垂直,那这条直线一定与这个平面垂直吗?然后还是由学生动手比划得出结论。为了使他们的结论更具有说服力,我又举了生活中的实例,比如教室的墙拐角所体现的线面垂直等。最后得出本节课的重点知识线面垂直的判定定理。这部分之所以感到满意,是因为所有的内容基本都是让学生亲自动手比划得出的,这使他们对定义的理解更到位,更深刻。以至于在后面的实践证明中原本很愁人的地方反而比较顺手,学生也一直比较兴奋,课堂气氛很活跃。之后的作业反馈,大部分学生都能证明出一些简单的线面垂直问题,这也说明我的这堂课的确是比较成功的一堂课。
通过这堂课,让我对立体几何这部分的教学有了全新的看法:一定要以最大的可能让学生自己动手,自己比划,发现问题,试着自己总结规律,得出结论。要努力把他们的态度从“要我学”变为“我要学”升华为“我爱学”。