第一篇:第5讲直线、平面垂直的判定及性质
第5讲直线、平面垂直的判定及性质
1.能以立体几何中的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质和判定定理.
2.能运用公理、定理和已获得的结论,证明一些有关空间图形的位置关系的简单命题.1个重要关系
垂直问题的转化关系:
2种必会方法
1.证明直线和平面垂直的常用方法有:①判定定理;②a∥b,a⊥α=b⊥α;③α∥β,a⊥α⇒a⊥β;④面面垂直的性质.
2.判定面面垂直的方法有:①面面垂直的定义.②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β). 3点必须注意
1.解题时一定要严格按照定理成立的条件规范书写过程,如用判定定理证明线面垂直时,一定要体现出“平面中的两条相交直线”这一条件.
2.两平面垂直的性质定理是把面面垂直转化为线面垂直的依据,应用时常添加的辅助线是在一平面内作两平面交线的垂线.
3.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.课前自主导学
1.直线与平面垂直
(1)直线和平面垂直的定义
直线l与平面α内的________直线都垂直,就说直线l与平面α互相垂直.
(1)命题:如果一条直线和一个平面内的无数条直线都垂直,那么这条直线和这个平面垂直是真命题吗?其逆命题呢?
(2)如果两条平行线中有一条垂直于平面,那么另一条也垂直于这个平面吗? 2.平面与平面垂直
吗?
(2)如果两个平面垂直,那么其中一个平面内的任何一条直线都和另一个平面垂直吗?(3)如果两个平面都和第三个平面垂直,那么这两个平面平行吗?
考点一:有关垂直关系的判断
例1 若有平面α与β,且α∩β=l,α⊥β,P∈α,P∉l,则下列说法中错误的是________.(填序号)
①过点P且垂直于α的直线平行于β; ②过点P且垂直于l的直线平行于β; ③过点P且垂直于β的直线在α内; ④过点P且垂直于l的直线在α内.
点拨:本题利用了几何图形来判断真假.解决本类问题应注意以下几点:
(1)作图要熟练,借助几何图形来说明线面关系要做到作图快、准、甚至无需作图在头脑中形成印象来判断.
(2)善于寻找反例,只要存在反例,那么结论就被驳倒了.
(3)要思考完整,反复验证所有可能的情况,必要时要运用判定或性质定理进行简单说明.
[变式探究] [2012·浙江高考]设l是直线,α,β是两个不同的平面,则下列结论正确的是()
A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥β C.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β 考点二:直线与平面垂直的判定与性质 例2 [2012·福建高考]如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点.
(1)求三棱锥A-MCC1的体积;
(2)当A1M+MC取得最小值时,求证:B1M⊥平面MAC.奇思妙想:在棱A1B1上是否存在一点N,使D1N∥平面A1BM?证明你的结论?
点拨:垂直问题的证明,其一般规律是“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来. [变式探究] [2012·北京高考]如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
考点三:平面与平面垂直的判定与性质 例3 [2012·江苏高考]如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.点拨:证明面面垂直的方法:证明一个面过另一个面的垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线与添加辅助线解决.
[变式探究] [2012·江西高考]如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=42,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合于点G,得到多面体CDEFG.(1)求证:平面DEG⊥平面CFG;(2)求多面体CDEFG的体积.
考点四:线面角、二面角的求法 例4 [2012·浙江高考]如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=,AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.
(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成的角的正弦值.
点拨:1.求角的大致步骤:一找角,二证明,三求解.
2.线面角的求法:找出斜线在平面上的射影,关键是作垂线,找垂足.
3.二面角的大小求法:二面角的大小用它的平面角来度量.平面角的作法常见的有:①定义法;②垂面法.
[变式探究] 如图所示,三棱锥P-ABC中,D是AC的中点,PA=PB=PC=5,AC=22,AB=2,BC=6.(1)求证:PD⊥平面ABC;
(2)求二面角P-AB-C的正切值大小.
经典演练提能1.[2012·安徽高考]设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件 2.[2012·宿迁模拟]已知两条直线m,n,两个平面α,β,给出下面四个命题: ①m∥n,m⊥α⇒n⊥α;②α∥β,m⊂α,n⊂β⇒m∥n; ③m∥n,m∥α⇒n∥α;④α∥β,m∥n,m⊥α⇒n⊥β.其中正确命题的序号是()A.①③B.②④C.①④D.②③
3.如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的有________.(填序号)①平面ABC⊥平面ABD ②平面ABD⊥平面BCD ③平面ABC⊥平面BDE,且平面ACD⊥平面BDE ④平面ABC⊥平面ACD,且平面ACD⊥平面BDE
4.[2012·辽宁高考]已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为23的正方形.若PA=26,则△OAB的面积为________.
第二篇:直线与平面垂直的判定和性质练习题
直线与平面垂直的判定和性质、平面与平面垂直的判定和性质(6.8)出题人:娄媛审题人:刘福义
一、选择题
1.两异面直线在平面α内的射影()A.相交直线B.平行直线
C.一条直线—个点D.以上三种情况均有可能 2.若两直线a与b异面,则过a且与b垂直的平面()A.有且只有—个B.可能存在也可能不存在 C.有无数多个D.—定不存在3.若平面α的斜线l在α上的射影为l′,直线b∥α,且b⊥l′,则b与l()
A.必相交B.必为异面直线C.垂直D无法确定 4.如果两个平面同时垂直于第三个平面,则这两个平面的位置关系是().
A.互相垂直 B.互相平行 C.一定相交 D.平行或相交 5.已知平面,直线l,直线m,lm,则l与的位置关系是(). A.l B.l// C.l
D.以上都有可能
6.过平面外一点P:①存在无数个平面与平面平行;②存在无数个平面与平面垂直;③存在无数条直线与平面垂直;④只存在一条直线与平面平行.其中正确的是()
A.1个B.2个C.3个D.4个 7.在二面角-l-的一个面内有一条直线AB,若
AB与棱l的夹角为45,AB与平面所成的角为30,则此二面角的大小是().
A.30
B.30
或150C.45D.45或135
8下列命题
①平面的每条斜线都垂直于这个平面内的无数条直线;②若一条直线垂直于平面的斜线,则此直线必垂直于斜线在此平面内的射影;
③若平面的两条斜线段相等,则它们在同一平面内的射影也相等;
④若一条线段在平面外并且不垂直于这个平面,则它的射影长一定小于线段的长.
其中,正确的命题有()
A.1个B.2个C.3个D.4个
二、填空题
9.正方体ABCDA1B1C1D1中,二面角DA1C1B的大小是________.
10.在空间四面体的四个面中,为直角三角形的最多有____________个.
11.已知二面角ABCD、ACDB、ABDC都相等,则A点在平面BCD上的射影是BCD的___心. 12.、、是相交于点O,且两两垂直的三个平面,点P到、、的距离分别为4cm,6cm,12cm,则PO=________.
三、解答题
13.在四面体SABC中,ASC90,ASBBSC60,SASBSC,求证:平面ASC平面ABC
14如图,在长方体AC1中,已知AB=BC=a,BB1=b(b>a),连结BC1,过Bl作B1E⊥BC1交CC1于E,交BC1于Q,求证:AC1⊥平面EBlD1
15已知,,a,b,a//b,求证://.
第三篇:2.3 直线、平面垂直的判定及其性质 教学设计 教案
教学准备
1.教学目标
1、知识与技能
(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;
(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在数学问题解决上的作用。
2、过程与方法
(1)通过实例让学生直观感知“二面角”概念的形成过程;
(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。
2.教学重点/难点
通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力。
3.教学用具
投影仪等.4.标签
数学,立体几何
教学过程
(一)创设情景,揭示课题
问题1:平面几何中“角”是怎样定义的?
问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?
以上问题让学生自由发言,教师再作小结,并顺势抛出问题:在生产实践中,有许多问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、发射人造卫星等,而这样的角有何特点,该如何表示呢?下面我们共同来观察,研探。
(二)研探新知
1、二面角的有关概念
老师展示一张纸面,并对折让学生观察其状,然后引导学生用数学思维思考,并对以上问题类比,归纳出二面角的概念及记法表示(如下表所示)
2、二面角的度量
二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些,那我们应如何度量二两角的大小呢?师生活动:师生共同做一个小实验(预先准备好的二面角的模型)在其棱上位取一点为顶点,在两个半平面内各作一射线(如图2.3-3),通过实验操作,研探二面角大小的度量方法——二面角的平面角。教师特别指出:
(1)在表示二面角的平面角时,要求“OA⊥L”,OB⊥L;(2)∠AOB的大小与点O在L上位置无关;(3)当二面角的平面角是直角时,这两个平做法:教师引导学生分析题意,先让学生自己动手推理证明,然后抽检学生掌握情况,教师最后讲评并板书证明过程。
(四)运用反馈,深化巩固 问题:课本P.73的探究问题
做法:学生思考(或分组讨论),老师与学生对话完成。
(五)小结归纳,整体认识
(1)二面角以及平面角的有关概念;
(2)两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系?
(六)课后巩固,拓展思维
1、课后作业:自二面角内一点分别向两个面引垂线,求证:它们所成的角与二两角的平面角互补。
2、课后思考问题:在表示二面角的平面角时,为何要求“OA⊥L、OB⊥L”?为什么∠AOB 的大小与点O在L上的位置无关?
课堂小结
(1)二面角以及平面角的有关概念;(2)两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系?
课后习题
1、课后作业:自二面角内一点分别向两个面引垂线,求证:它们所成的角与二两角的平面角互补。
2、课后思考问题:在表示二面角的平面角时,为何要求“OA⊥L、OB⊥L”?为什么∠AOB 的大小与点O在L上的位置无关?
板书 略
第四篇:直线与平面垂直的判定教案
《直线与平面垂直的判定》
选自人教版《普通高中课程标准实验教科书·数学》必修2第二章第三节
一、教学目标 1.知识与技能目标
(1).掌握直线与平面垂直的定义
(2).理解并掌握直线与平面垂直的判定定理(3).会判断一条直线与一个平面是否垂直
(4).培养学生的空间想象能力和对新知识的探索能力
2.过程与方法目标
(1).加强学生空间与平面之间的转化意识,训练学生的思维灵活性
(2).要善于应用平移手法将分散的条件集中到某一个图形中进行研究,特别是辅助线的添加
3.情感态度价值观目标
(1).培养学生的探索精神(2).加强学生对数学的学习兴趣
二、重点难点
1.教学重点:直线与平面垂直的定义及其判定定理 2.教学难点:直线与平面垂直判定定理的理解
三、课时安排
本课共安排一课时
四、教学用具
多媒体、三角形纸片、三角板或直尺
五、教学过程设计 1.创设情境
问题1:空间一条直线和一个平面有哪几种位置关系?
设计意图:此问基于学生已有的数学现实,通过对已学相关知识的追忆,寻找新知识学习的“固着点”。
问题2:列举在日常生活中你见到的可以抽象成直线与平面相交的事例? 寻找特殊的事例并引入课题。设计意图:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面相交中一种特例:直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的意义。
2.提炼定义
问题3:结合对下列问题的思考,试着给出直线和平面垂直的定义.(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?
(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?
(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么? 设计意图:第(1)与(2)两问旨在让学生发现旗杆AB所在直线始终与地面上任意一条过点B的直线垂直,第(3)问进一步让学生发现旗杆AB所在直线始终与地面上任意一条不过点B的直线也垂直,在这里,主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念。
(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)
思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?
(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?(对问(1),在学生回答的基础上用直角三角板在黑板上直观演示;对问(2)可引导学生给出符号语言表述:若,则)
设计意图:通过对问题(1)的辨析讨论,深化直线与平面垂直的概念。通过对问题(2)的辨析讨论旨在让学生掌握线线垂直的一种判定方法。
通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无法去一一检验。这就有必要去寻找比定义法更简捷、可行的直线与平面垂直的判定方法。
3.探究新知
创设情境
猜想定理:某公司要安装一根8米高的旗杆,两位工人先从旗杆的顶点挂两条长10米的绳子,然后拉紧绳子并把绳子的下端放在地面上两点(和旗杆脚不在同一直线上)。如果这两点都和旗杆脚距离6米,那么表明旗杆就和地面垂直了,你知道这是为什么吗?
设计意图:引导学生根据直观感知以及已有经验,进行合情推理,猜想判定定理。师生活动:(折纸试验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD(如图1),将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)
问题4:(1)折痕AD与桌面垂直吗?
(2)如何翻折才能使折痕AD与桌面所在的平面垂直?
(组织学生动手操作、探究、确认)
设计意图:通过折纸让学生发现当且仅当折痕AD是BC边上的高时,且B、D、C不在同一直线上的翻折之后竖起的折痕AD才不偏不倚地站立着,即AD与桌面垂直(如图2),其它位置都不能使AD与桌面垂直。
问题5:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线,把BD、CD抽象为直线 m,n,把桌面抽象为平面件是什么?
(如图3),那么你认为保证直线与平面
垂直的条
对于两条相交直线必须在平面内这一点,教师可引导学生操作:将纸片绕直线AD(点D始终在桌面内)转动,使得直线CD、BD不在桌面所在平面内。问:直线AD现在还垂直于桌面所在平面吗?(此处引导学生认识到直线CD、BD都必须是平面内的直线)设计意图:通过操作让学生认识到两条相交直线必须在平面内,从而更凸现出直线与平面垂直判定定理的核心词:平面内两条相交直线。
问题6:如果将图3中的两条相交直线、的位置改变一下,仍保证
吗?,(如图4)你认为直线还垂直于平面设计意图:让学生明白要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,这是无关紧要的。
根据试验,请你给出直线与平面垂直的判定方法。
(学生叙写判定定理,给出文字、图形、符号这三种语言的相互转化)
问题7:(1)与直线与平面垂直的定义相比,你觉得这个判定定理的优越性体现在哪里?(2)你觉得定义与判定定理的共同点是什么?
设计意图:通过和直线与平面垂直定义的比较,让学生体会“无限转化为有限”的数学思想,通过寻找定义与判定定理的共同点,感悟和体会“空间问题转化为平面问题”、“线面垂直转化为线线垂直”的数学思想.思考:现在,你知道两位工人是根据什么原理安装旗杆的吗?为什么要求绳子在地面上两点和旗杆脚不在同一直线上?
如果安装完了,请你去检验旗杆与地面是否垂直,你有什么好方法?
设计意图:用学到手的知识解释实际生活中的问题,增强学生用数学的意识,同时通过提出 “为什么要求绳子在地面上两点和旗杆脚不在同一直线上?”(对该问题可引导学生用三角形纸片来验证),从而来深化对直线与平面垂直判定定理的理解。
4.练习提高
如图5,在长方体ABCD-A1B1C1D1中,请列举与平面ABCD垂直的直线。并说明这些直线有怎样的位置关系?
思考:如图6,已知,则吗?请说明理由。
(分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明;并让学生用语言叙述:如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面)
设计意图:这个例题给出了判断直线和平面垂直的一个常用的命题,这个命题体现了平行关系与垂直关系之间的联系。
5.小结回授
(1)本节课你学会了哪些判断直线与平面垂直的方法?试用自己理解的语言叙述。(2)直线与平面垂直的判定定理中体现了哪些数学思想方法?
设计意图:以问题讨论的方式进行小结,培养学生反思的习惯,鼓励学生运用自己理解的语言对问题进行质疑和概括。
第五篇:两个平面垂直的判定和性质(一)
两个平面垂直的判定和性质(一)
一、教学目标
1、理解并掌握两个平面垂直的定义.
2.掌握两个平面垂直的判定定理的证明过程,培养学生严格的逻辑推理,增强学生分析、解决问题的能力.
3.利用转化的方法掌握和应用两个平面垂直的判定定理.
二、教学重点、难点
1.教学重点:掌握两个平面垂直的判定.
2.教学难点:掌握两个平面垂直的判定及应用.
三、课时安排
本课题安排2课时.本节课为第一课时:主要讲解两个平面垂直的判定.
四、教与学的过程设计
(一)复习近平面角的有关知识
1、是二面角的平面角?
以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.
2、一般地,作二面角的平面角有哪几种方法?
三种.一是利用定义;二是利用三垂线(逆)定理;三是利用棱的垂面.
3、练习(幻灯显示).
已知:二面角α-AB-β等于45°,CD<α,D∈AB,∠CDB=45°.
求:CD与平面β所成的角.
证明:作CO⊥β交β于点O,连结DO,则∠CDO为DC与β所成的角.
过点O作OE⊥AB于E,连结CE,则CE⊥AB,∴∠CEO为二面角α-AB-β的平面角,即∠CEO=45°.
∵CO⊥OE,OC=OE,∴∠CDO=30°.
即DC与β成30°角.
点评:本题涉及到直线与平面所成角的范围[0°,90°]以及利用三垂线定理寻找二面角的平面角.事实上,利用三垂线定理作二面角的平面角是最常用,也是最有效的一种方法.
(二)两个平面垂直的定义、画法
1、两个平面垂直是两个平面相交的特殊情况,日常我们见到的墙面和地面、以及一个长方体中,相邻的两个面都是互相垂直的.那么,什么是两个平面互相垂直呢?
两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.
2、知道了两个平面互相垂直的概念.如何画它们呢?
如图1-128,把直立平面的竖边画成和水平平面的横边垂直.记作α⊥β.
3、练习:(P.45中练习1)
画互相垂直的两个平面、两两垂直的三个平面.如图1-129.
(三)两个平面垂直的判定
两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 提示:要证明两个平面互相垂直,只有根据两个平面互相垂直的定义,证明由它们组成的二面角是直二面角,因此必须作出它的一个平面角,并证明这个平面角是直角.如何作平面角呢?根据平面角的定义,可以作BE⊥CD,使∠ABE为二面角α-CD-β的平面角.让学生独自写出证明过程.
求证:α⊥β.
证明:设a∩β=CD,则B∈CD.
∴AB⊥CD.
在平面β内过点B作直线BE⊥CD,则∠ABE是二面角α-CD-β的平面角,又AB⊥BE,即二面角α-CD-β是直二面角.
∴α⊥β.
师:两个平面垂直的判定定理,不仅是判定两个平面互相垂直的依据,而且是找出垂直于一个平面的另一个平面的依据.如:建筑工人在砌墙时,常用一端系有铅锤的线来检查所砌的墙面是否和水平面垂直(图见课本P.43中图1-49),实际上,就是依据这个原理.
另外,这个定理说明要证明面面垂直,实质上是转化为线面垂直来证明.下面我们来做一道练习. 练习:(P.45中练习2)
如图1-131,检查工件的相邻两个面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动一下,观察尺边是否和这个面密合就可以了.为什么?如果不转动呢?
如果不转动,只能确定两条直线OA⊥OB,无法确定OA⊥β,从而无法确定α⊥β.
(四)练习
例:⊙O在平面α内,AB是⊙O的直径,PA⊥α,C为圆周上不同于A、B的任意一点. 求证:平面PAC⊥平面PBC.图1-13
3证明:在θO内.
∵AB为θO的直径,∴BC⊥AC.
又PA⊥BC,∴BC⊥平面PAC.
(五)总结
本节课我们讲解了两个平面垂直的定义、画法及判定方法.判定方法有两种,一是利用定义,二是利用判定定理.如何应用两个平面垂直的判定定理,把面面垂直的问题转化为线面垂直的问题是本节课学习的关键.
五、作业
P.46中习题六.6、7、8、10(1),∴平面PAC⊥平面PBC.