第一篇:直线与平面垂直的判定定理练习
直线与平面垂直的判定定理
1、如果直线ab,且a平面,则b与的位置关系是
2、过一点有
3、下列说法中正确的有(1)平行于同一条直线的两条直线互相平行;(2)垂直于同一条直线的两条直线互相平行(3)平行于同一个平面的两条直线互相平行;(4)垂直于同一个平面的两条直线互相平行(5)一条直线和一个平面平行,则它和这个平面内的任何直线平行;(6)一条直线和一个平面垂直,则它和这个平面内的任何直线垂直;
(7)如果一条直线平行于平面内无数条直线,那么这条直线和这个平面平行;
P
(8)如果一条直线垂直于平面内无数条直线,那么这条直线和这个平面垂直。
4、如图,四边形ABCD是矩形,AC是对角线,PA平面ABCD 则图中共有个直角三角形 A5、正方体ABCDA1BC11D1中,AC与BD1的位置关系是与棱AB垂直的面有,与对角线AC1垂直的面有B6、如图ABC中,ACB90,直线l过点A且垂直于平面ABC
P
C
D
动点Pl,当点P远离点A时,PCB变化情况是
7、正方形SG1G2G3中,E,F分别为G1G2,G2G3的中点,D是EF 的中点,现在沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3
S
Al
C
B
G3
重合,记为G,则(1)SGEFG所在平面;(2)GDEFG所在平面
G1(3)GFSEF所在平面;(4)GDSEF所在平面
10、如图,在五面体ABFCDE中,点O是矩形ABCD的对角线的交点,棱EF//BC且
F
E
G2
EF
BC,求证:FO//平面CDE 2
FE
AD
O
B
C11、已知四棱锥PABCD,PD底面ABCD,底面ABCD为正方形,且PDCD,E,F分别为PB,PC的中点,求证:(1)AC平面PBD(2)PAAB(3)PC平面ADFE
A
P
F
D
E
C
第二篇:直线与平面平行判定定理说课稿
直线与平面平行说课稿
一、教材分析
本节课是在人教版数学必修二第二章第二节直线与平面平行的判定。主要学习直线和平面平行的判定定理,以及初步应用。它与前面所学习的平面几何中两条直线的位置关系以及立体几何中直线与平面的位置关系等知识都有密切的关系,而其本身就是判断直线与平面平行的的一个重要的方法;同时又是后面将要学习的平面与平面位置关系的基础,又是连接线线平行和面面平行的纽带!
二、教学目标
考虑到学生的接受能力和课容量以及《课程标准》的要求,本节课只要求学生在线面平行定义的基础上探究线面平行的判定定理并进行定理的初步运用。故而本节课教学目标为:
知识方面:通过对图片,实例的观察以及实践操作,初步感知直线与平面平行的判定定理。
能力方面:通过直观感知操作确认归纳线面平行的判定定理,并将归纳用客观论证说明,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念 情感方面:让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣
三、教学难点与重点
由于学生的抽象概括能力,空间想象力还有待提高,线面平行的定义比较抽象,要让学生体会“直线与平面无公共点”有一定困难,线面平行的判定的发现有一定隐蔽性,所以我确定本节的重点是:通过观察和操作确认直观感知概括出线面平行的判定定理
难点是:应用反证法客观证明直观感知及确认定理。
四、教学过程
(一)、复习空间直线的位置关系及空间直线与平面的位置关系,为课程的进展做好必备知识的准备
(二).定理的探求
本环节是教学的第一个重点,分四步
a创设情境,感知概念
用多媒体展示日常生活中的常见线面平行的实例提出思考问题:如何判定一条直线与一个平面平行?
b观察归纳,猜想定理
将事例转化为具体的直线与平面,通过提问逐渐引导学生思考平外一条直线与平面内的一条直线平行是否可以得到直线与平面平行。教师用准备好的直角梯形演示平面外一条直线与平面内的一条直线平行时,该直线与平面给人平行的印象,引导学生有直观感受猜想出当直线与平面内一条直线平行时,该直线与平面平行。
c客观证明,确认定理
教师带领学生将猜想出的结果用反证法进行客观的论证说明,确认猜想正确并给出定理的文字描述,及符号描述。这一环节深化猜想,是其具有较强的确定性,使学生经历从实际背景中抽象出几何概念的全过程,从而形成完整和正确的概念,最后通过客观证明,加紧学生对定理形成,这种立足于感性认识的归纳过程,即由特殊到一般,由具体到抽象,既有利于学生对定理本质的理解,又使学生的抽象思维得到发展,培养学生几何直观能力。d质疑反思,深化定理
强调定理中的条件以及应注意的问题。
判断正误:如果a,b是两条直线,并且a平行于b,那么a平行于经过b的任何平面
(突出一条线在面内,一条线在面外)
强调深化平面与直线平行的必须条件a在平面内,b在平面外,a平行于b
(三)定理初步应用
课本例一
空间四边形相邻两边中点的连线,平行于经过另外两边的平面
考虑到学生处于初学阶段,此题可以帮助学生由线面的感性认识上升的理性认识。练习,第一题,找出长方体ABCD-A’B’C’D’与AB平行的面及与AA’平行的面,与AD平行的面。让学生对定理的条件进一步理解加深巩固。
(四)反思提高,小结课程
教师给出问题:
1.通过这节课的学习,你学会了哪些线面平行的方法?
2.证明线面平行时,注意哪些问题?
侧重三点:
(1)归纳线面平行的判断方法
一、定义
二、判定定理
(2)说明本课蕴含转化、类比、归纳、猜想等数学思想方法,强调“平面化”是解决立体几何问题的一般思路
(五)布置作业
在学习定理之后,让学生自己应用定理自主做题,通过运用更深刻的掌握定理,加深巩固。
五、板书设计(略)
六、教学媒体使用
在教学过程中,用多媒体展示复习的知识,以及教学过程中的图片,使学生在较短的时间内回顾所学知识,并直观感受生活中直线与平面平行的例子,将抽象的想象用多媒体展示图片具体化,并提高课堂时间的利用率。
七、教法学法
教法:通过对大量实例、图片的观察感知,模型的分析猜想,实验直观感知发现线面平行的判定定理。学生在问题的带动下,进行主动的思维活动,经历从现实生活中抽象出几何图形和几何问题的过程,体会转化、归纳、猜想等数学思想方法在解决问题中的作用,发展学生的合情推理能力和空间想象力,培养学生的质疑、思辨、创新的精神。并在课程结束时,对整堂课的内容进行归纳总结,使学生能够系统的掌握所学知识。
学法:课前安排学生列举生活中线面平行的实例,从中体现出学生活跃的思维,浓厚的兴趣,强烈的参与意识和自主探究能力,在初中学生已经掌握了平面内证明线线平行的方法,前面又刚刚学过在空间中直线的位置关系,以及直线与平面的位置关系,对空间概念的建立有一定基础,因而以采用观察归纳猜想论证的方法学习本课。
八、教学反思
教学中时刻注意素质教育的要求,紧紧围绕《课程标准》中的要求,真正让学生动手操作,动脑思考,体验数学学习和研究的过程和方法,使学生投入其中,乐此不疲,主动探究,防止教师为赶进度,赶时间用自己的思路代替学生思路,强加到学生身上,弱化学生本身强烈的求知欲。
第三篇:直线与平面垂直的判定教案
《直线与平面垂直的判定》
选自人教版《普通高中课程标准实验教科书·数学》必修2第二章第三节
一、教学目标 1.知识与技能目标
(1).掌握直线与平面垂直的定义
(2).理解并掌握直线与平面垂直的判定定理(3).会判断一条直线与一个平面是否垂直
(4).培养学生的空间想象能力和对新知识的探索能力
2.过程与方法目标
(1).加强学生空间与平面之间的转化意识,训练学生的思维灵活性
(2).要善于应用平移手法将分散的条件集中到某一个图形中进行研究,特别是辅助线的添加
3.情感态度价值观目标
(1).培养学生的探索精神(2).加强学生对数学的学习兴趣
二、重点难点
1.教学重点:直线与平面垂直的定义及其判定定理 2.教学难点:直线与平面垂直判定定理的理解
三、课时安排
本课共安排一课时
四、教学用具
多媒体、三角形纸片、三角板或直尺
五、教学过程设计 1.创设情境
问题1:空间一条直线和一个平面有哪几种位置关系?
设计意图:此问基于学生已有的数学现实,通过对已学相关知识的追忆,寻找新知识学习的“固着点”。
问题2:列举在日常生活中你见到的可以抽象成直线与平面相交的事例? 寻找特殊的事例并引入课题。设计意图:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面相交中一种特例:直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的意义。
2.提炼定义
问题3:结合对下列问题的思考,试着给出直线和平面垂直的定义.(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?
(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?
(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么? 设计意图:第(1)与(2)两问旨在让学生发现旗杆AB所在直线始终与地面上任意一条过点B的直线垂直,第(3)问进一步让学生发现旗杆AB所在直线始终与地面上任意一条不过点B的直线也垂直,在这里,主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念。
(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)
思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?
(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?(对问(1),在学生回答的基础上用直角三角板在黑板上直观演示;对问(2)可引导学生给出符号语言表述:若,则)
设计意图:通过对问题(1)的辨析讨论,深化直线与平面垂直的概念。通过对问题(2)的辨析讨论旨在让学生掌握线线垂直的一种判定方法。
通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无法去一一检验。这就有必要去寻找比定义法更简捷、可行的直线与平面垂直的判定方法。
3.探究新知
创设情境
猜想定理:某公司要安装一根8米高的旗杆,两位工人先从旗杆的顶点挂两条长10米的绳子,然后拉紧绳子并把绳子的下端放在地面上两点(和旗杆脚不在同一直线上)。如果这两点都和旗杆脚距离6米,那么表明旗杆就和地面垂直了,你知道这是为什么吗?
设计意图:引导学生根据直观感知以及已有经验,进行合情推理,猜想判定定理。师生活动:(折纸试验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD(如图1),将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)
问题4:(1)折痕AD与桌面垂直吗?
(2)如何翻折才能使折痕AD与桌面所在的平面垂直?
(组织学生动手操作、探究、确认)
设计意图:通过折纸让学生发现当且仅当折痕AD是BC边上的高时,且B、D、C不在同一直线上的翻折之后竖起的折痕AD才不偏不倚地站立着,即AD与桌面垂直(如图2),其它位置都不能使AD与桌面垂直。
问题5:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线,把BD、CD抽象为直线 m,n,把桌面抽象为平面件是什么?
(如图3),那么你认为保证直线与平面
垂直的条
对于两条相交直线必须在平面内这一点,教师可引导学生操作:将纸片绕直线AD(点D始终在桌面内)转动,使得直线CD、BD不在桌面所在平面内。问:直线AD现在还垂直于桌面所在平面吗?(此处引导学生认识到直线CD、BD都必须是平面内的直线)设计意图:通过操作让学生认识到两条相交直线必须在平面内,从而更凸现出直线与平面垂直判定定理的核心词:平面内两条相交直线。
问题6:如果将图3中的两条相交直线、的位置改变一下,仍保证
吗?,(如图4)你认为直线还垂直于平面设计意图:让学生明白要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,这是无关紧要的。
根据试验,请你给出直线与平面垂直的判定方法。
(学生叙写判定定理,给出文字、图形、符号这三种语言的相互转化)
问题7:(1)与直线与平面垂直的定义相比,你觉得这个判定定理的优越性体现在哪里?(2)你觉得定义与判定定理的共同点是什么?
设计意图:通过和直线与平面垂直定义的比较,让学生体会“无限转化为有限”的数学思想,通过寻找定义与判定定理的共同点,感悟和体会“空间问题转化为平面问题”、“线面垂直转化为线线垂直”的数学思想.思考:现在,你知道两位工人是根据什么原理安装旗杆的吗?为什么要求绳子在地面上两点和旗杆脚不在同一直线上?
如果安装完了,请你去检验旗杆与地面是否垂直,你有什么好方法?
设计意图:用学到手的知识解释实际生活中的问题,增强学生用数学的意识,同时通过提出 “为什么要求绳子在地面上两点和旗杆脚不在同一直线上?”(对该问题可引导学生用三角形纸片来验证),从而来深化对直线与平面垂直判定定理的理解。
4.练习提高
如图5,在长方体ABCD-A1B1C1D1中,请列举与平面ABCD垂直的直线。并说明这些直线有怎样的位置关系?
思考:如图6,已知,则吗?请说明理由。
(分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明;并让学生用语言叙述:如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面)
设计意图:这个例题给出了判断直线和平面垂直的一个常用的命题,这个命题体现了平行关系与垂直关系之间的联系。
5.小结回授
(1)本节课你学会了哪些判断直线与平面垂直的方法?试用自己理解的语言叙述。(2)直线与平面垂直的判定定理中体现了哪些数学思想方法?
设计意图:以问题讨论的方式进行小结,培养学生反思的习惯,鼓励学生运用自己理解的语言对问题进行质疑和概括。
第四篇:《两个平面垂直的判定定理》
《两个平面垂直的判定定理》教材结构与内容简析:
1.1 本节内容在全书及章节的地位;
两平面垂直的判定定理出现在高中立几第一章最后一节,这之前学生已学习了空间两直线位置关系,空间直线和平面位置关系,特别是已学习了直线和平面垂直判定定理,二面角的平面角,这是学习本节内容的基础,而本节内容是第二章多面体、旋转体的学习基础,因此,本节的学习有着极其重要的地位。
1.2 数学思想方法分析:
1.2.1 从定理的证明过程,面面垂直可转化为线面垂直,就可以看到数学的化归,“降维”思想。
1.2.2 在教材所提供的材料中,从建构手段角度分析,可以看到归纳思想,而这一思想中包含着重组的意识和能力。教学目标:
根据上述教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:
2.1 基础知识目标:掌握平面与平面垂直的判定定理及其变
式,能利用它们解决相关的问题。
2.2 能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。
2.3 创新素质目标:引导学生从日常生活中发现判定定理,培养学生的发现意识和能力;判定定理及变式的教学培养学生的重组意识和能力;判定定理在现实生活中的应用培养学生的应用的意识和能力。
2.4 个性品质目标:培养学生勇于探索,善于发现,独立的意识,不断超越自我的创新品质。教学重点、难点、关键:
重点:判定定理的证明及变式探索
难点:判定定理的变式。
关键:本节课通过判定定理的证明及变式探索,着重培养和发展学生的认知和元认知能力。教材处理
建构主义学习理论认为,建构即认知结构的组建,其过程一般是先把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线联构成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。本课时为何提出变式呢,应该说,这一处理方法正是基于此理论的体现。其次,本节课处理过程力求达到解决如下问题:知识是如何产生的?如何发展?又如何从实际问题抽象成数学问题,并赋予抽象的数学符号和表达式,如何反映生活中客观事物之间简单的和谐关系。教学模式
遵循教学过程是教师活动和学生活动的十分复杂的动态性总体,是教师和每一个学生积极参与下进行集体认识的过程,教为主导,学为主体,又互为客体,启动学生主动学习,启发引导学生实践思维过程,自得知识,自觅规律,自悟原理,主动发展思维和能力。6 学法
6.1 让学生在认知过程中,着重掌握元认知过程:
6.2 使学生把独立思考与多向交流相结合。教学程序及设想
环节教学程序及设计设计意图7.1 设置问题,创设情景1.提出问题:教室两相邻墙面与地面位置关系如何?在日常生活中,你是如何验证两平面垂直的实际问题。2.(在学生讨论基础上,教师引导)建筑工人在砌墙过程中,为了验证墙面与地面是否垂直,常用一端系有铅锤的线来检查所砌的墙面是否和水平面垂直1.把教材内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,惊讶,困感,感到棘手;紧张地沉思,期待寻找理由和证明的过程。2.我们知道,学习总与一定知识背景即情景相联系,在实际情境下进行学习,可以使学生利用已有知识与经验同化和索引出当前学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情境中。7.2 提供实际背景材料,形成假说1.在实际生活中,建筑工人用一端系有铅锤的线来检查墙面与地面是否垂直,即若紧贴墙面的铅锤的线,如垂直地面,则确定墙面与地面垂直,否则不垂直。2.紧贴墙面的线?这句话的实质意义是什么?(学生讨论,期望回答:即此线在墙所在平面)3.由此实际问题如何抽象为数学问题呢?(学生交流讨论,期望回答:若平面过另一平面的垂线,则平面垂直)1.教师站在稍稍超前于学生智力发展的边界上(即思维的最邻近发展)通过问题引领,来促成学生形成面面垂直的判定定理。2.通过学生交流讨论,把实际问题抽象成数学问题,并赋予抽象的数学符号和表达方式。7.3 引导探索,寻找解决方案1.如何证明上述假说呢?从已学过知识可知,只能从定义出发。2.定义的实质是什么呢?即证明两平面垂直的根据是什么?期望回答:即证二面角的平面是直角。3.二面角的平面角如何做出呢?在本假说中,如何做出二面角的平面角?关键在哪里?(学生交流)期望回答:假说中已知平面的垂线故此垂线必垂直于两平面的交线,所以关键在于在已知平面做与公共棱垂直的直线。尽可能地揭示出认知思想方法的全貌,使学生从整体上把握问题的解决方法。7.4 总结结论,强化认识经过引导,学生得出结论,教师强调此定理的含义促进学生数学思想方法的形成,引导学生确实掌握“降维”的思想方法7.5 变式延伸,进行重构1.教师引导:在此判定定理中已经知道,欲证两平面垂直,可以转化为证明直线与平面垂直进行解决。下面继续研究,已知平面α.β,直线L考察面α,β的位置关系,引导学生利用模型演示进行观察。命题1:如果一个平面平行另一个平面的垂线则这两个平面垂直。事实上此命题实质是判定定理中若平面不经过已知平面垂线时,我们给予加上此平面与垂线平行这一条件。命题2:如果一个平面与另一个平面的平行线垂直,则这两个平面垂直。3.教师引导:若问题中,只出现平面与平面位置关系时你是否能找出这样一个命题证明两平面垂直吗?学生的演示模型命题3:如果一个平面垂直于两个平行面中的一个平面则必垂直于另一个平面。1.学生在教师引导下,在积累了已有探索经验的基础上进行讨论交流,相互评价,共同完成了面面垂直判定定理变式定义上的建构。2.这一问题设计试图让学生不唯书敢于和善于质疑批判和超越书本和教师,这是创新素质的突出表现,让学生不满足于现状,执着的追求。3.让学生对教学思想方法,及其应情境达到较为纯熟的认识,并将这种认识思维地贮存在大脑中,随时提取和应用。7.6 总结回授调整1.知识性内容:证明两平面垂直的方法,常有判定定理,命题1,命题2,命题3。2.对运用数学思想方法创新素质培养的小结:a.要善于在实际生活中,发现问题,从而提练出相应的数学问题。发现作为一种意识,可以解释为“探察问题的意识”;发现作为一种能力,可以解释为“找到新东西”的能力,这是培养创造力的基本途径。b.问题的解决,采用了化归降维等数学思想,体现了数学思想方法是解决问题的根本途径:c.问题的变式探究的过程,是一个创新思维活动过程中一种多维整合过程。重组知识的过程,是一种多维整合的过程,是一个高层次的知识综合过程,是对教材知识在更高水平上的概括和总结,有利于形成一个自我再生力强的开放的动态的知识系统,从而使得思维具有整体的功能,创新的能力。
1、知识性内容的总结,可以把课堂教学传授的知识尽快转化为学生的素质。
2、运用数学方法,创新素质的小结能让学生更系统,更深刻地理解数学理想
方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质。这是每堂课必不可少的一个重要环节。7.7布置作业反馈命师
1、命题
2、命题3的探究过程,并整理证明过程。
第五篇:直线与平面垂直的判定和性质练习题
直线与平面垂直的判定和性质、平面与平面垂直的判定和性质(6.8)出题人:娄媛审题人:刘福义
一、选择题
1.两异面直线在平面α内的射影()A.相交直线B.平行直线
C.一条直线—个点D.以上三种情况均有可能 2.若两直线a与b异面,则过a且与b垂直的平面()A.有且只有—个B.可能存在也可能不存在 C.有无数多个D.—定不存在3.若平面α的斜线l在α上的射影为l′,直线b∥α,且b⊥l′,则b与l()
A.必相交B.必为异面直线C.垂直D无法确定 4.如果两个平面同时垂直于第三个平面,则这两个平面的位置关系是().
A.互相垂直 B.互相平行 C.一定相交 D.平行或相交 5.已知平面,直线l,直线m,lm,则l与的位置关系是(). A.l B.l// C.l
D.以上都有可能
6.过平面外一点P:①存在无数个平面与平面平行;②存在无数个平面与平面垂直;③存在无数条直线与平面垂直;④只存在一条直线与平面平行.其中正确的是()
A.1个B.2个C.3个D.4个 7.在二面角-l-的一个面内有一条直线AB,若
AB与棱l的夹角为45,AB与平面所成的角为30,则此二面角的大小是().
A.30
B.30
或150C.45D.45或135
8下列命题
①平面的每条斜线都垂直于这个平面内的无数条直线;②若一条直线垂直于平面的斜线,则此直线必垂直于斜线在此平面内的射影;
③若平面的两条斜线段相等,则它们在同一平面内的射影也相等;
④若一条线段在平面外并且不垂直于这个平面,则它的射影长一定小于线段的长.
其中,正确的命题有()
A.1个B.2个C.3个D.4个
二、填空题
9.正方体ABCDA1B1C1D1中,二面角DA1C1B的大小是________.
10.在空间四面体的四个面中,为直角三角形的最多有____________个.
11.已知二面角ABCD、ACDB、ABDC都相等,则A点在平面BCD上的射影是BCD的___心. 12.、、是相交于点O,且两两垂直的三个平面,点P到、、的距离分别为4cm,6cm,12cm,则PO=________.
三、解答题
13.在四面体SABC中,ASC90,ASBBSC60,SASBSC,求证:平面ASC平面ABC
14如图,在长方体AC1中,已知AB=BC=a,BB1=b(b>a),连结BC1,过Bl作B1E⊥BC1交CC1于E,交BC1于Q,求证:AC1⊥平面EBlD1
15已知,,a,b,a//b,求证://.