直线与平面垂直的判定学案(邹汉峰)

时间:2019-05-12 17:22:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《直线与平面垂直的判定学案(邹汉峰)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《直线与平面垂直的判定学案(邹汉峰)》。

第一篇:直线与平面垂直的判定学案(邹汉峰)

数学问答

课题:直线与平面垂直的判定

第18周1课时编写人:邹汉峰审核人:审批人: 班组号姓名:组评:师评: 使用说明:1.依据学习目标,进行预习课本P35-----P36。

2.按照互动要求,积极思维,合作交流。

学习目标:1.掌握直线和平面垂直的判定定理,并能进行简单应用。

2.发展学生的空间想象能力。

学习重点:直线与平面垂直的判定定理。

学习难点:对定理的理解。

一.自主学习知识梳理:

1.殊?

2.3.如果一条直线和一个平面内的两条

4.m,n,mno,lm,ln

5.a∥b,ab

效果检测:。已知长方体ABCDA1B11D1BB1,BC,AB分别垂直的平面有哪些?直线BC1与平面A1B1CD?

二.合作探究:

2.3

4.5中,ACB90.,SA平面ABC,ADSC于D,求证:AD平面SBC

三.随堂检测:

P41习题1-6A组1.2.4

四.我的收获和困惑:

第二篇:直线与平面垂直的判定教案

《直线与平面垂直的判定》

选自人教版《普通高中课程标准实验教科书·数学》必修2第二章第三节

一、教学目标 1.知识与技能目标

(1).掌握直线与平面垂直的定义

(2).理解并掌握直线与平面垂直的判定定理(3).会判断一条直线与一个平面是否垂直

(4).培养学生的空间想象能力和对新知识的探索能力

2.过程与方法目标

(1).加强学生空间与平面之间的转化意识,训练学生的思维灵活性

(2).要善于应用平移手法将分散的条件集中到某一个图形中进行研究,特别是辅助线的添加

3.情感态度价值观目标

(1).培养学生的探索精神(2).加强学生对数学的学习兴趣

二、重点难点

1.教学重点:直线与平面垂直的定义及其判定定理 2.教学难点:直线与平面垂直判定定理的理解

三、课时安排

本课共安排一课时

四、教学用具

多媒体、三角形纸片、三角板或直尺

五、教学过程设计 1.创设情境

问题1:空间一条直线和一个平面有哪几种位置关系?

设计意图:此问基于学生已有的数学现实,通过对已学相关知识的追忆,寻找新知识学习的“固着点”。

问题2:列举在日常生活中你见到的可以抽象成直线与平面相交的事例? 寻找特殊的事例并引入课题。设计意图:此问基于学生的客观现实,通过对生活事例的观察,让学生直观感知直线与平面相交中一种特例:直线与平面垂直的初步形象,激起进一步探究直线与平面垂直的意义。

2.提炼定义

问题3:结合对下列问题的思考,试着给出直线和平面垂直的定义.(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?

(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?

(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么? 设计意图:第(1)与(2)两问旨在让学生发现旗杆AB所在直线始终与地面上任意一条过点B的直线垂直,第(3)问进一步让学生发现旗杆AB所在直线始终与地面上任意一条不过点B的直线也垂直,在这里,主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念。

(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)

思考:(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?

(2)如果一条直线垂直于一个平面,那么这条直线是否垂直于这个平面内的所有直线?(对问(1),在学生回答的基础上用直角三角板在黑板上直观演示;对问(2)可引导学生给出符号语言表述:若,则)

设计意图:通过对问题(1)的辨析讨论,深化直线与平面垂直的概念。通过对问题(2)的辨析讨论旨在让学生掌握线线垂直的一种判定方法。

通常定义可以作为判定依据,但由于利用直线与平面垂直的定义直接判定直线与平面垂直需要考察平面内的每一条直线与已知直线是否垂直,这给我们的判定带来困难,因为我们无法去一一检验。这就有必要去寻找比定义法更简捷、可行的直线与平面垂直的判定方法。

3.探究新知

创设情境

猜想定理:某公司要安装一根8米高的旗杆,两位工人先从旗杆的顶点挂两条长10米的绳子,然后拉紧绳子并把绳子的下端放在地面上两点(和旗杆脚不在同一直线上)。如果这两点都和旗杆脚距离6米,那么表明旗杆就和地面垂直了,你知道这是为什么吗?

设计意图:引导学生根据直观感知以及已有经验,进行合情推理,猜想判定定理。师生活动:(折纸试验)请同学们拿出一块三角形纸片,我们一起做一个试验:过三角形的顶点A翻折纸片,得到折痕AD(如图1),将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)

问题4:(1)折痕AD与桌面垂直吗?

(2)如何翻折才能使折痕AD与桌面所在的平面垂直?

(组织学生动手操作、探究、确认)

设计意图:通过折纸让学生发现当且仅当折痕AD是BC边上的高时,且B、D、C不在同一直线上的翻折之后竖起的折痕AD才不偏不倚地站立着,即AD与桌面垂直(如图2),其它位置都不能使AD与桌面垂直。

问题5:在你翻折纸片的过程中,纸片的形状发生了变化,这是变的一面,那么不变的一面是什么呢?(可从线与线的关系考虑)如果我们把折痕抽象为直线,把BD、CD抽象为直线 m,n,把桌面抽象为平面件是什么?

(如图3),那么你认为保证直线与平面

垂直的条

对于两条相交直线必须在平面内这一点,教师可引导学生操作:将纸片绕直线AD(点D始终在桌面内)转动,使得直线CD、BD不在桌面所在平面内。问:直线AD现在还垂直于桌面所在平面吗?(此处引导学生认识到直线CD、BD都必须是平面内的直线)设计意图:通过操作让学生认识到两条相交直线必须在平面内,从而更凸现出直线与平面垂直判定定理的核心词:平面内两条相交直线。

问题6:如果将图3中的两条相交直线、的位置改变一下,仍保证

吗?,(如图4)你认为直线还垂直于平面设计意图:让学生明白要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,这是无关紧要的。

根据试验,请你给出直线与平面垂直的判定方法。

(学生叙写判定定理,给出文字、图形、符号这三种语言的相互转化)

问题7:(1)与直线与平面垂直的定义相比,你觉得这个判定定理的优越性体现在哪里?(2)你觉得定义与判定定理的共同点是什么?

设计意图:通过和直线与平面垂直定义的比较,让学生体会“无限转化为有限”的数学思想,通过寻找定义与判定定理的共同点,感悟和体会“空间问题转化为平面问题”、“线面垂直转化为线线垂直”的数学思想.思考:现在,你知道两位工人是根据什么原理安装旗杆的吗?为什么要求绳子在地面上两点和旗杆脚不在同一直线上?

如果安装完了,请你去检验旗杆与地面是否垂直,你有什么好方法?

设计意图:用学到手的知识解释实际生活中的问题,增强学生用数学的意识,同时通过提出 “为什么要求绳子在地面上两点和旗杆脚不在同一直线上?”(对该问题可引导学生用三角形纸片来验证),从而来深化对直线与平面垂直判定定理的理解。

4.练习提高

如图5,在长方体ABCD-A1B1C1D1中,请列举与平面ABCD垂直的直线。并说明这些直线有怎样的位置关系?

思考:如图6,已知,则吗?请说明理由。

(分别用直线与平面垂直的判定定理、直线与平面垂直的定义证明;并让学生用语言叙述:如果两条平行直线中的一条直线垂直于一个平面,那么另一条直线也垂直于这个平面)

设计意图:这个例题给出了判断直线和平面垂直的一个常用的命题,这个命题体现了平行关系与垂直关系之间的联系。

5.小结回授

(1)本节课你学会了哪些判断直线与平面垂直的方法?试用自己理解的语言叙述。(2)直线与平面垂直的判定定理中体现了哪些数学思想方法?

设计意图:以问题讨论的方式进行小结,培养学生反思的习惯,鼓励学生运用自己理解的语言对问题进行质疑和概括。

第三篇:平行关系的判定学案(邹汉峰)

课题:平行关系的判定

高一__班__组姓名___________编写人邹汉峰 编写时间 2010-12-18 组评_______师评_________审核人______审批人________ 使用说明:请认真动手实践进行预习学案

学习目标:⒈理解直线与平面的判定定理;⒉理解平面与平面平行的判定定理

⒊两个定理的简单应用

学习重点:理解两个判定定理

学习难点:两个定理的应用

教学过程:自主学习:【知识梳理】

1.一个平面α与平面外一条直线a可能的位置关系有,如果a与αα内的任意一条直线b与a可能的位置关系有。若在αca平行,那么此时a与c的位置关系是。

2.两个不同平面α与β可能的位置关系有,若

直线与β平行?这些直线的位置关系是?

3.如果在平面α中找到两条相交的直线m、nβα与β的位置关系是?

【效果检测】1.若a2.若m,nd,则在α中能找到多少条,a||b,b||b αβ ,mn,||,n||,则α【合作探究】1.如果a

2.若

a与b的位置关系可能是? ||,a aα的关系是?

3.31页练习1的1、3、4题

我的收获:

我的困惑:

第四篇:直线与平面垂直的判定定理练习

直线与平面垂直的判定定理

1、如果直线ab,且a平面,则b与的位置关系是

2、过一点有

3、下列说法中正确的有(1)平行于同一条直线的两条直线互相平行;(2)垂直于同一条直线的两条直线互相平行(3)平行于同一个平面的两条直线互相平行;(4)垂直于同一个平面的两条直线互相平行(5)一条直线和一个平面平行,则它和这个平面内的任何直线平行;(6)一条直线和一个平面垂直,则它和这个平面内的任何直线垂直;

(7)如果一条直线平行于平面内无数条直线,那么这条直线和这个平面平行;

P

(8)如果一条直线垂直于平面内无数条直线,那么这条直线和这个平面垂直。

4、如图,四边形ABCD是矩形,AC是对角线,PA平面ABCD 则图中共有个直角三角形 A5、正方体ABCDA1BC11D1中,AC与BD1的位置关系是与棱AB垂直的面有,与对角线AC1垂直的面有B6、如图ABC中,ACB90,直线l过点A且垂直于平面ABC

P

C

D

动点Pl,当点P远离点A时,PCB变化情况是

7、正方形SG1G2G3中,E,F分别为G1G2,G2G3的中点,D是EF 的中点,现在沿SE,SF,EF把这个正方形折成一个四面体,使G1,G2,G3

S

Al

C

B

G3

重合,记为G,则(1)SGEFG所在平面;(2)GDEFG所在平面

G1(3)GFSEF所在平面;(4)GDSEF所在平面

10、如图,在五面体ABFCDE中,点O是矩形ABCD的对角线的交点,棱EF//BC且

F

E

G2

EF

BC,求证:FO//平面CDE 2

FE

AD

O

B

C11、已知四棱锥PABCD,PD底面ABCD,底面ABCD为正方形,且PDCD,E,F分别为PB,PC的中点,求证:(1)AC平面PBD(2)PAAB(3)PC平面ADFE

A

P

F

D

E

C

第五篇:直线与平面垂直的判定和性质练习题

直线与平面垂直的判定和性质、平面与平面垂直的判定和性质(6.8)出题人:娄媛审题人:刘福义

一、选择题

1.两异面直线在平面α内的射影()A.相交直线B.平行直线

C.一条直线—个点D.以上三种情况均有可能 2.若两直线a与b异面,则过a且与b垂直的平面()A.有且只有—个B.可能存在也可能不存在 C.有无数多个D.—定不存在3.若平面α的斜线l在α上的射影为l′,直线b∥α,且b⊥l′,则b与l()

A.必相交B.必为异面直线C.垂直D无法确定 4.如果两个平面同时垂直于第三个平面,则这两个平面的位置关系是().

A.互相垂直 B.互相平行 C.一定相交 D.平行或相交 5.已知平面,直线l,直线m,lm,则l与的位置关系是(). A.l B.l// C.l

D.以上都有可能

6.过平面外一点P:①存在无数个平面与平面平行;②存在无数个平面与平面垂直;③存在无数条直线与平面垂直;④只存在一条直线与平面平行.其中正确的是()

A.1个B.2个C.3个D.4个 7.在二面角-l-的一个面内有一条直线AB,若

AB与棱l的夹角为45,AB与平面所成的角为30,则此二面角的大小是().

A.30

B.30

或150C.45D.45或135

8下列命题

①平面的每条斜线都垂直于这个平面内的无数条直线;②若一条直线垂直于平面的斜线,则此直线必垂直于斜线在此平面内的射影;

③若平面的两条斜线段相等,则它们在同一平面内的射影也相等;

④若一条线段在平面外并且不垂直于这个平面,则它的射影长一定小于线段的长.

其中,正确的命题有()

A.1个B.2个C.3个D.4个

二、填空题

9.正方体ABCDA1B1C1D1中,二面角DA1C1B的大小是________.

10.在空间四面体的四个面中,为直角三角形的最多有____________个.

11.已知二面角ABCD、ACDB、ABDC都相等,则A点在平面BCD上的射影是BCD的___心. 12.、、是相交于点O,且两两垂直的三个平面,点P到、、的距离分别为4cm,6cm,12cm,则PO=________.

三、解答题

13.在四面体SABC中,ASC90,ASBBSC60,SASBSC,求证:平面ASC平面ABC

14如图,在长方体AC1中,已知AB=BC=a,BB1=b(b>a),连结BC1,过Bl作B1E⊥BC1交CC1于E,交BC1于Q,求证:AC1⊥平面EBlD1

15已知,,a,b,a//b,求证://.

下载直线与平面垂直的判定学案(邹汉峰)word格式文档
下载直线与平面垂直的判定学案(邹汉峰).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《直线与平面垂直的判定》教学设计[精选合集]

    《直线与平面垂直的判定》教学设计 一、背景分析: 直线与平面垂直是直线和平面相交中的一种特殊情况,它是空间中线线垂直位臵关系的拓展,又是面面垂直的基础,是空间中垂直位臵......

    直线与平面垂直的判定的教学设计

    直线与平面垂直的判定的教学设计 阜阳市城郊中学吴桃李 一、内容和内容解析 本节课是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进......

    直线与平面垂直的判定教案说明

    《直线与平面垂直的判定》教案说明《直线与平面垂直的判定》教案说明北京市第五中学熊丹一、教学内容的分析本节课的内容包括直线与平面垂直的定义和判定定理两部分.直线与平......

    直线与平面垂直的判定的教学反思

    2013年5月13日《直线与平面垂直的判定》的教学反思 一、复习引入部分 在复习回顾过程中,我首先提出了一个问题:问直线和平面有几种位置关系。我们研究了直线和平面平行,直线在......

    直线与平面垂直的判定教学反思

    《直线与平面垂直的判定》的教学反思 焉耆一中数学组李新华 本节是高一《必修2》第二章第三节第一课时的内容。本节课所要达到的知识目标是:(1)掌握线面垂直的定义;(2)掌握线面垂......

    两条直线平行与垂直的判定学案

    高一数学教学设计方案3.1.2两条直线平行与垂直的判定课时:2学习目标:1. 探究两条直线平行的充要条件,并会判断两条直线是否平行。2. 探究两条直线垂直的充要条件,并会判断两条直......

    《直线与平面垂直的判定》教学设计(最终版)

    《直线与平面垂直的判定》教学设计 一、内容和内容解析 本节课是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进行的,其主要内容是直线......

    《直线与平面垂直的定义与判定》教学案例

    《直线与平面垂直的定义与判定》教学案例1 案例背景笔者上课的时间是2010年3月9日第三节,围绕新课改的精神,如何进行课堂教学上的公开课。我校是乡下普通高中,上课的班级是高二......