第一篇:直线与平面平行的判定和性质(第一课时)说课稿
一。教材分析
本节课主要学习直线和平面平行的定义,判定定理以及初步应用。其中,线面平行的定义是线面平行最基本的判定方法和性质,它是探究线面平行判定定理的基础,线面平行的判定充分体现了线线平行和线面平行之间的转化,它既是后面学习面面平行的基础,又是连接线线平行和面面平行的纽带!(可用箭头学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的非常重要的.二。教法学法
通过对大量实例、图片的观察感知,概括线面平行的定义对实例,模型的分析猜想,实验发现线面平行的判定定理。
学生在问题的带动下,进行主动的思维活动,经历从现实生活中抽象出几何图形和几何问题的过程,体会转化、归纳、类比、猜想等数学思想方法在解决问题中的作用,发展学生的合情推理能力和空间想象力,培养学生的质疑、思辨、创新的精神。
课前安排学生在生活中寻找线面平行的实例,上网查阅有关线面平行的图片、资料,然后网上师生交流,从中体现出学生活跃的思维,浓厚的兴趣,强烈的参与意识和自主探究能力,在初中学生已经掌握了平面内证明线线平行的方法,前一节又刚刚学过在空间中直线与直线的位置关系,对空间概念的建立有一定基础,因而可以采用类比的方法学习本课。
但是学生的抽象概括能力,空间想象力还有待提高,线面平行的定义比较抽象,要让学生体会“与平面无公共点”有一定困难,线面平行的判定的发现有一定隐蔽性,所以我确定本节的 重点是:通过直观感知和操作确认概括出线面平行的定义及判定定理
难点是:
1、操作确认并概括出线面平行的判定定理
2、反证法的证明方法
三。教学目标
考虑到学生的接受能力和课容量以及《课程标准》的要求,本节课只要求学生在构建线面平行定义的基础上探究线面平行的判定定理并进行定理的初步运用,灵活运用定理解决相关问题将安排在下一节课。
故而本节课教学目标为:
知识方面:通过对图片,实例的观察,抽象概括出线面平行的定义,正确理解线面平行的定义;
能力方面:通过直观感知操作确认归纳线面平行的判定定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念;
情感方面:让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
四。教学过程
(一).定义的建构
本环节是教学的第一个重点,是后面探究活动的基础,分三步:
a创设情境,感知概念
针对同学们找的大量图片资料以及日常生活中的常见线面平行的实例提出思考问题:如何定义一条直线与一个平面平行?
b观察归纳,形成概念
1.学生画图请画出电线和地面位置关系相应的几何图形
2.如何定义一条直线平行于一个平面呢?(学生讨论并交流)
3.归纳线面平行的定义,介绍相关概念(直线与平面三种位置关系),并要求学生用符号语言表
示
c辨析讨论,深化概念
这一环节深化本节基础,线面平行的定义较抽象,使学生从线面平行的直观感知中抽象出“直线与平面无公共点”是本环节的关键,因此,教学中充分发挥学生的主观能动性,安排学生收集大量图片多感知,然后通过动手画图,讨论交流和多媒体课件演示,使其经历从实际背景中抽象出几何概念的全过程,从而形成完整和正确的概念,最后通过辨析讨论,加紧学生对概念的理解,这种立足于感性认识的归纳过程,即由特殊到一般,由具体到抽象,既有利于学生对概念本质的理解,又使学生的抽象思维得到发展,培养学生几何直观能力。
(二)直线与平面平行判定定理的探究
这个探究活动是本节的关键所在,分三步:
(1)分析实例,猜想定理
问题1.长方体中,上底面的棱与下底面的关系?你认为保证上底面棱和下底面平行的条件是什么?
问题2.如何把灯管挂平(平行于天花板)?
问题3.由上述两实例,你能猜想出判断一条直线与一个平面平行的方法吗?
学生猜想出结论后,教师板书
(2)动手实验,确认定理
书平放在桌面上,书封面的边缘与桌面的关系?(两者有无公共点)
(3)质疑反思,深化定理
《课程标准》中不要求严格证明线面平行的判定定理,只要求直观感知,操作确认,注重合情推理,因而安排学生课前自己预先了解证法即可(可以鼓励学生自己寻求不同证明方法),课上安排学生动手实验,讨论交流,增设动态演示模拟实验,让学生更清楚地看到“平面化”的过程。
学生在已有数学知识的基础,加以公理的支撑,便可确认定理。
判断正误:如果a,b是两条直线,并且a平行于b,那么a平行于经过b的任何平面(突出一条线在面内,一条线在面外)
那么我们应该注意哪些呢?学生总结定理中需注意问题(三要素)a在平面内,b在平面外,a平行于b
(三)定理初步应用
课本例一
空间四边形相邻两边中点的连线,平行于经过另外两边的平面
考虑到学生处于初学阶段,此题可以帮助学生由线面的感性认识上升的理性认识。
(四)反思提高
教师给出问题:
1.通过这节课的学习,你学会了哪些线面平行的方法?
2.证明线面平行时,注意哪些问题?
3.本节你还有哪些问题?
侧重三点:
(1)归纳线面平行的判断方法
一、定义
二、判定定理
(2)说明本课蕴含转化、类比、归纳、猜想等数学思想方法,强调“平面化”是解决立体几何问题的一般思路
(3)鼓励学生反思
通过小结使本节课知识系统化,使学生深刻理解数学思想方法在解题中的地位和应用,培养学生认真总结的学习习惯,使学生在知识,能力,情感三个维度得到提高,并为下节的学习提供改进方向。
(五)布置作业,自主探究
布置三个习题
第一题:课本习题9.3的1题直接利用线面平行的判定定理
第二题:习题9.3 的3题 难度稍大
第三题:三角形ABC所在平面外一点p,MN是PC和AC上的点,过MN作平面平行于BC,画出这个平面与其他各面的交线,并说明画法理由
此题为学有余力同学安排,这样就使不同程度学生都有所收获,巩固新知识并培养应用意识
板书设计略
(六)教学反思
教学中时刻注意素质教育的要求,紧紧围绕《课程标准》中的要求,真正让学生动手操作,动脑思考,体验数学学习和研究的过程和方法,使学生投入其中,乐此不疲,主动探究,防止教师为赶进度,赶时间用自己的思路代替学生思路,强加到学生身上,弱化学生本身强烈的求知欲,切忌,切记!
第二篇:直线与平面平行判定定理说课稿
直线与平面平行说课稿
一、教材分析
本节课是在人教版数学必修二第二章第二节直线与平面平行的判定。主要学习直线和平面平行的判定定理,以及初步应用。它与前面所学习的平面几何中两条直线的位置关系以及立体几何中直线与平面的位置关系等知识都有密切的关系,而其本身就是判断直线与平面平行的的一个重要的方法;同时又是后面将要学习的平面与平面位置关系的基础,又是连接线线平行和面面平行的纽带!
二、教学目标
考虑到学生的接受能力和课容量以及《课程标准》的要求,本节课只要求学生在线面平行定义的基础上探究线面平行的判定定理并进行定理的初步运用。故而本节课教学目标为:
知识方面:通过对图片,实例的观察以及实践操作,初步感知直线与平面平行的判定定理。
能力方面:通过直观感知操作确认归纳线面平行的判定定理,并将归纳用客观论证说明,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念 情感方面:让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣
三、教学难点与重点
由于学生的抽象概括能力,空间想象力还有待提高,线面平行的定义比较抽象,要让学生体会“直线与平面无公共点”有一定困难,线面平行的判定的发现有一定隐蔽性,所以我确定本节的重点是:通过观察和操作确认直观感知概括出线面平行的判定定理
难点是:应用反证法客观证明直观感知及确认定理。
四、教学过程
(一)、复习空间直线的位置关系及空间直线与平面的位置关系,为课程的进展做好必备知识的准备
(二).定理的探求
本环节是教学的第一个重点,分四步
a创设情境,感知概念
用多媒体展示日常生活中的常见线面平行的实例提出思考问题:如何判定一条直线与一个平面平行?
b观察归纳,猜想定理
将事例转化为具体的直线与平面,通过提问逐渐引导学生思考平外一条直线与平面内的一条直线平行是否可以得到直线与平面平行。教师用准备好的直角梯形演示平面外一条直线与平面内的一条直线平行时,该直线与平面给人平行的印象,引导学生有直观感受猜想出当直线与平面内一条直线平行时,该直线与平面平行。
c客观证明,确认定理
教师带领学生将猜想出的结果用反证法进行客观的论证说明,确认猜想正确并给出定理的文字描述,及符号描述。这一环节深化猜想,是其具有较强的确定性,使学生经历从实际背景中抽象出几何概念的全过程,从而形成完整和正确的概念,最后通过客观证明,加紧学生对定理形成,这种立足于感性认识的归纳过程,即由特殊到一般,由具体到抽象,既有利于学生对定理本质的理解,又使学生的抽象思维得到发展,培养学生几何直观能力。d质疑反思,深化定理
强调定理中的条件以及应注意的问题。
判断正误:如果a,b是两条直线,并且a平行于b,那么a平行于经过b的任何平面
(突出一条线在面内,一条线在面外)
强调深化平面与直线平行的必须条件a在平面内,b在平面外,a平行于b
(三)定理初步应用
课本例一
空间四边形相邻两边中点的连线,平行于经过另外两边的平面
考虑到学生处于初学阶段,此题可以帮助学生由线面的感性认识上升的理性认识。练习,第一题,找出长方体ABCD-A’B’C’D’与AB平行的面及与AA’平行的面,与AD平行的面。让学生对定理的条件进一步理解加深巩固。
(四)反思提高,小结课程
教师给出问题:
1.通过这节课的学习,你学会了哪些线面平行的方法?
2.证明线面平行时,注意哪些问题?
侧重三点:
(1)归纳线面平行的判断方法
一、定义
二、判定定理
(2)说明本课蕴含转化、类比、归纳、猜想等数学思想方法,强调“平面化”是解决立体几何问题的一般思路
(五)布置作业
在学习定理之后,让学生自己应用定理自主做题,通过运用更深刻的掌握定理,加深巩固。
五、板书设计(略)
六、教学媒体使用
在教学过程中,用多媒体展示复习的知识,以及教学过程中的图片,使学生在较短的时间内回顾所学知识,并直观感受生活中直线与平面平行的例子,将抽象的想象用多媒体展示图片具体化,并提高课堂时间的利用率。
七、教法学法
教法:通过对大量实例、图片的观察感知,模型的分析猜想,实验直观感知发现线面平行的判定定理。学生在问题的带动下,进行主动的思维活动,经历从现实生活中抽象出几何图形和几何问题的过程,体会转化、归纳、猜想等数学思想方法在解决问题中的作用,发展学生的合情推理能力和空间想象力,培养学生的质疑、思辨、创新的精神。并在课程结束时,对整堂课的内容进行归纳总结,使学生能够系统的掌握所学知识。
学法:课前安排学生列举生活中线面平行的实例,从中体现出学生活跃的思维,浓厚的兴趣,强烈的参与意识和自主探究能力,在初中学生已经掌握了平面内证明线线平行的方法,前面又刚刚学过在空间中直线的位置关系,以及直线与平面的位置关系,对空间概念的建立有一定基础,因而以采用观察归纳猜想论证的方法学习本课。
八、教学反思
教学中时刻注意素质教育的要求,紧紧围绕《课程标准》中的要求,真正让学生动手操作,动脑思考,体验数学学习和研究的过程和方法,使学生投入其中,乐此不疲,主动探究,防止教师为赶进度,赶时间用自己的思路代替学生思路,强加到学生身上,弱化学生本身强烈的求知欲。
第三篇:2.2直线、平面平行的判定及其性质 教案2
直线和平面平行的判定与性质
(一)一、素质教育目标
(一)知识教学点
1.直线和平面平行的定义.
2.直线和平面的三种位置关系及相应的图形画法与记法. 3.直线和平面平行的判定.
(二)能力训练点
1.理解并掌握直线和平面平行的定义.
2.掌握直线和平面的三种位置关系,体现了分类的思想.
3.通过对比的方法,使学生掌握直线和平面的各种位置关系的图形的画法,进一步培养学生的空间想象能力.
4.掌握直线和平面平行的判定定理的证明,证明用的是反证法和空间直线与平面的位置关系,进一步培养学生严格的逻辑思维。除此之外,还要会灵活运用直线和平面的判定定理,把线面平行转化为线线平行.
(三)德育渗透点
让学生认识到研究直线与平面的位置关系及直线与平面平行是实际生产的需要,充分体现了理论来源于实践,并应用于实践.
二、教学重点、难点、疑点及解决方法
1.教学重点:直线与平面的位置关系;直线与平面平行的判定定理. 2.教学难点:掌握直线与平面平行的判定定理的证明及应用.
3.教学疑点:除直线在平面内的情形外,空间的直线和平面,不平行就相交,课本中用记号a≮α统一表示a‖α,a∩α=A两种情形,统称直线a在平面α外.
三、课时安排
1.7直线和平面的位置关系与1.8直线和平面平行的判定与性质这两个课题安排为2课时.本节课为
注意,如图1-58画法就不明显我们不提倡这种画法.
下面请同学们完成P.19.练习1.
1.观察图中的吊桥,说出立柱和桥面、水面,铁轨和桥面、水面的位置关系:(图见课本)
答:立柱和桥面、水面都相交;铁轨在桥面内,铁轨与水面平行.
(二)直线和平面平行的判定
师:直线和平面平行的判定不仅可以根据定义,一般用反证法,还有以下的方法.我们先来观察:门框的对边是平行的,如图1-59,a∥b,当门扇绕着一边a转动时,另一边b始终与门扇不会有公共点,即b平行于门扇.由此我们得到:
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.
求证:a∥α.
师提示:要证明直线与平面平行,只有根据定义,用反证法,并结合空间直线和平面的位置关系来证明.
∴ a∥α或 a∩α=A. 下面证明a∩α=A不可能. 假设a∩α=A ∵a∥b,在平面α内过点A作直线c∥b.根据公理4,a∥c.这和a∩c=A矛盾,所以a∩α=A不可能.
∴a∥α.
师:从上面的判定定理可以知道,今后要证明一条直线和一个平面平行,只要在这个平面内找出一条直线和已知直线平行,就可断定这条已知直线必和这个平面平行,即可由线线平行推得线面平行.
下面请同学们完成例题和练习.
(三)练习
例1 空间四边形相邻两边中点的连线,平行于经过另外两边的平面. 已知:空间四边形ABCD中,E、F分别是AB、AD的中点. 求证:EF∥平面BCD.
师提示:根据直线与平面平行的判定定理,要证明EF∥平面BCD,只要在平面BCD内找一直线与EF平行即可,很明显原平面BCD内的直线BD∥EF.
证明:连结BD.
性,这三个条件是证明直线和平面平行的条件,缺一不可. 练习(P.22练习1、2.)
1.使一块矩形木板ABCD的一边AB紧靠桌面α,并绕AB转动,AB的对边CD在各个位置时,是不是都和桌面α平行?为什么?(模型演示)
答:不是.
2.长方体的各个面都是矩形,说明长方体每一个面的各边及对角线为什么都和相对的面平行?(模型演示)
答:因为长方体每一个面的对边及对角线都和相对的面内的对应部分平行,所以,它们都和相对的面平行.
(四)总结
这节课我们学习了直线和平面的三种位置关系及直线和平面平行的两种判定方法.学习直线和平面平行的判定定理,关键是要会把线面平行转化为线线平行来解题.
五、作业
P.22中习题三1、2、3、4.
六、板书设计
一、直线和平面的位置关系直线在平面内——有无数个公共点. 直线在平面外
二、直线和平面平行的判定 1.根据定义:一般用反证法.
2.根据判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.
直线和平面的位置关系:
直线和平面平行的判定定理
求证:a∥α 例:
已知:空间四边形ABCD中,E、F分别是AB、AD的中点. 求证:EF∥平面BCD.
第四篇:直线与平面平行的性质导学
§2.2.3直线与平面平行的性质
班级:姓名:
【学习目标】
1.理解直线与平面平行的性质定理的含义.2.会用图形、文字、符号语言准确地描述直线与平面平行的性质定理,并知道其
地位和作用,证明一些空间线面平行关系的简单问题.【重点、难点】
直线与平面平行的性质定理的应用.【课前自主学案】
一、(看书本P58—P59)
探究(1)如果一条直线与一个平面平行,那
么这条直线与这个平面内的直线有哪些位置
关系?
(2)如果一条直线与一个平面平行,那么这
条直线与这个平面内的所有直线平行吗?把“所有”改成“无数”呢?
(3)教室内日光灯管所在的直线与地面平行,如何在地面上作一条直线与灯管所
在的直线平行?
二、直线与平面平行的性质定理:。
符号表示为:
图形表示:
三、例题自学P59例3例4
【知能优化训练】
如图,空间四边形ABCD被一平面所截,截面EFGH是平行四边形,求证:
(1)EF//平面BCD; A(2)DC//平面EFGH.F BD
G
第五篇:第五课时 直线与平面平行的判定平面与平面平行的判定 - 学生版
直线与平面平行的判定平面与平面平行的判定
一、直线与平面平行的判定
判定定理:__________________________________
判定直线与平面平行的条件有三个分别是
(1)___________________________
(2)___________________________
(3)___________________________
符号语言:________________
思想:
(一).课前预习
1、直线与平面有哪几种位置关系?
2、判断两条直线平行有几种方法?
3.门扇的两边是平行的,当门扇绕着一边转动时,另一边与门框所在平面具有什么样的位置关系?课本的对边是平行的,将课本的一边紧贴桌面,沿着这条边转动课本,课本的上边缘与桌面所在平面具有什么样的位置关系?
(二)新课探究a 例1.1:如图.直线a与直线b共面吗?
2.直线a与平面 相交吗?
练习1:判断对错
(1).如果一条直线不在平面内,那么这条直线就与这个平面平行;
(2).过直线外一点有无数个平面与这条直线平行;
(3).过平面外一点有无数个直线与这条平面平行。
(4)直线a与平面α不平行,即a与平面α相交.
(5)直线a∥b,直线b平面α,则直线a∥平面α.
(6)直线a∥平面α,直线b平面α,则直线a∥b.
2.已知直线a,b和平面α,下列命题正确的是()
A.若a//α,bÌα则a//bB.若a//α,b//α则a//b
C.若a//b,bÌα则a//αD.若a//b,bÌα则a//α或bÌα
3.在长方体ABCD-A1B1C1D1的面中:
(1)与直线AB平行的平面是:(2)与直线A A1平行的平面是:
(3)与直线AD平行的平面是:__________
A
1例2如图, 已知E、F分别是三棱锥A-BCD的侧棱AB、AD中点, 求证: EF//平面BCD.D
A
练习1.如图,三棱柱ABC-A1B1C1中,M、N分别是BC和A1B1的中点,求证:MN∥平面
AAC11CN B
1C1
2.已知正方形ABCD所在的平面和正方形ABEF所在的平面相交与AB,M、N分别
是AC、BF上的点且AM=FN 求证:MN//平面BCE
F
C D
E
B
3..一个长方体木块如图所示, 要经过平面A1C1内一点P和棱BC将木块锯开, 应怎样画线 ?
1A
二、平面与平面平行的判定
平面与平面平行的判定定理:_________________________________________ 利用判定定理证明两个平面平行,必须具备两个条件:(1)______________________,(2)______________________。符号表示:________________________________ 思想:_________________________________
(一)课前预习
(1)平面β内有一条直线与平面α平行,α、β平行吗?(2)平面β内有两条直线与平面α平行,α、β平行吗?
(二)新课探究
例1(1)、如果一个平面内有两条直线分别平行于另一个平面,那么这两个平面平行.()
(2)、如果一个平面内有无数条直线分别平行于另一个平面,那么这两个平面平行.()(3)、如果一个平面内任意一条直线平行于另一个平面,那么这两个平面平行.()
练习1.(1).若平面α内的两条直线分别与平面β平行,则α与β平行;(2)若平面α内的有无数条直线与平面β平行,则α与β平行;(3)平行于同一条直线的两个平面平行;(4)过已知平面外一点,有且仅有一个平面与已知平面平行;(5)过已知平面外一条直线,必能作出与已知平面平行的平面。
其中正确的有_______________
2.直线a∥平面α,平面α内有无数条直线交于一点,那么这无数条直线中与直线 a平行的()
(A)至少有一条(B)至多有一条(C)有且只有一条(D)不可能有
3.已知三条互相平行的直线a,b,c中,a,b,c,则两个平面,的位置关系是.4.如果两个平面分别平行于第三个平面,那么这两个平面的位置关系是
例
2、已知正方体ABCD-A1B1C1D1,求证:平面AB1D1//平面C1BD。
练习1:如图,设E,F,E1,F1分别是长方体ABCD-A1B1C1D1的棱AB,CD,A1B1,C1D
1的中点,求证:平面ED1//平面BF1
2.如图为ACD所在平面外一点,M、N、G分别为ABC、ABD、BCD的重心,(1)求证:平面MNG//平面ACD;(2)求SMNG:SADC
D H C
A
A
3.正方体ABCDA1B1C1D1中,E为DD1的中点,判断BD1与平面AEC的位置关系,并给出证明。
A