第一篇:空间线面平行与垂直的证明
空间线面平行与垂直的证明
本考点以空间几何体为载体,既考查几何体的概念和性质,又考查空间线面位置关系(平行与垂直)的判定与性质,还可结合一些简单的计算进行考查,是每年高考的必考内容,也是重点考查的内容.该部分试题难度适中,一般都可用几何综合法解决,少部分不易证明的才通过建立空间直角坐标系用坐标法求解.(1)掌握线面平行、垂直的判定与性质定理,能用判定定理证明线面平行与垂直,会用性质定理解决线面平行与垂直的问题.(2)通过线面平行、垂直的证明,培养同学们的空间观念及观察、操作、实验、探索、合情推理的能力.该知识点的重点、难点是:线线垂直、线面垂直及面面垂直之间的灵活转化;同时要注意推理表达的规范与完整.(1)证明平行或垂直问题,一般利用平行或垂直的判定定理及其推论,将面面平行转化为线面平行或线线平行来证明;而无论是线面垂直还是面面垂直,都源自于线线垂直.可见,转化是证明平行、垂直问题的关键.(2)在处理实际问题的过程中,可以先从题设条件入手,再从结论中分析所要证明的关系,从而架起已知与未知之间的桥梁.增添辅助线是解决问题的关键,常见的添辅助线的方法有:中点、垂足等特殊点,用中位线、高线转化;有面面垂直的条件,则作交线的垂线,等等.例1 如图12,矩形ABCD所在的平面和平面ABEF互相垂直,在等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,∠BAF=60°,O,P分别为AB,CB的中点,M为底面△OBF的重心.图12
(1)求证:平面ADF⊥平面CBF;?摇
(2)求证:PM∥平面AFC.破解思路 对于第(1)问,将证明面面垂直转化为证明线面垂直;
(2)根据面面平行的性质定理,将线面平行的问题转化为面面平行来证明.答案详解(1)因为矩形ABCD所在的平面和平面ABEF互相垂直,且CB⊥AB,所以CB⊥平面ABEF.?摇 又AF?奂平面ABEF,所以CB⊥AF.又AB=2,AF=1,∠BAF=60°,由余弦定理知BF=,所以AF2+BF2=AB2,所以AF⊥BF.又BF∩CB=B,所以AF⊥平面CFB.因为AF?奂平面ADF,所以平面ADF⊥平面CBF.?摇
(2)连结OM并延长交BF于H,则H为BF的中点.又P为CB的中点,所以PH∥CF.又因为CF?奂平面AFC,所以PH∥平面AFC.连结PO,则PO∥AC.因为AC?奂平面AFC,所以PO∥平面AFC.又PO∩PH=P,所以平面POH∥平面AFC.因为PM?奂平面POH,所以PM∥平面AFC.?摇
例2 如图13,平面ABCD⊥平面ABE,其中四边形ABCD是正方形,△ABE是等边三角形,且AB=2,点F,G分别是BC,AE的中点.(1)求三棱锥F-ABE的体积;
(2)求证:BG∥平面EFD;
(3)若点P在线段DE上运动,求证:BG⊥AP.图13 图14
破解思路 对于第(1)问,求出三棱锥F-ABE的高后可直接求解.对于第(2)问,根据线面平行的判定定理,在平面EFD中,只要找出与BG平行的直线即可证明.对于第(3)问,可通过证明线面垂直来转化.答案详解(1)因为平面ABCD⊥平面ABE,且ABCD是正方形,所以BC⊥平面ABE.因为G是等边三角形ABE的边AE的中点,所以BG⊥AE,所以VF-ABE= S△ABE?BF= ? ?AE?BG?BF= ×2× ×1=.(2)如图14,取DE的中点M,连结MG,FM.因为MG AD,BF AD,所以MG BF,所以四边形FBGM是平行四边形,所以BG∥FM.又因为FM?奂平面EFD,BG?埭平面EFD,所以BG∥平面EFD.(3)因为DA⊥平面ABE,BG?奂平面ABE,所以DA⊥BG.又BG⊥AE,AD∩AE=A,所以BG⊥平面DAE.又AP?奂平面DAE,所以BG⊥AP.1.如图15,直角梯形ACDE与等腰直角三角形ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2.图15
(1)求证:平面BCD⊥平面ABC;
(2)求证:AF∥平面BDE;
(3)求四面体B-CDE的体积.2.如图16,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.图16
(1)求证:MD⊥AC;
(2)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.
第二篇:证明空间线面平行与垂直
证明空间平行与垂直
知识梳理
一、直线与平面平行
1.判定方法
(1)定义法:直线与平面无公共点。
(2)判定定理: a
ba//ba//
//
(3)其他方法:a//a
a//
2.性质定理:a
a//b
b
二、平面与平面平行
1.判定方法
(1)定义法:两平面无公共点。
a//
b//
(2)判定定理:a //
b
abP
(3)其他方法:aa// //;// a//
//
2.性质定理:a a//b
b
三、直线与平面垂直
(1)定义:如果一条直线与一个平面内的所有直线都垂直,则这条直线和这个平面垂直。
(2)判定方法
① 用定义.abac
② 判定定理:bcAa
b
c
a
③ 推论: b
a//b
(3)性质 ①
aa
ab②a//bbb
四、平面与平面垂直
(1)定义:两个平面相交,如果它们所成的二面角是直线二面角,就说这两个平面互相垂直。
a
(2)判定定理
a
(3)性质
l
①性质定理
a
al
l②Al
P
PA垂足为A④PA
PPA
“转化思想”
面面平行线面平行 线线平行 面面垂直线面垂直 线线垂直
例题1.如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:AC⊥BC1;(II)求证:AC 1//平面CDB1;例
题2.如图,在棱长为2的正方体
ABCDA1B1C1D1中,O为BD1的中点,M为BC的中点,N为AB的中点,P为BB1的中点.(I)求证:BD1B1C;(II)求证BD1平面MNP;
例题3.如图,在三棱锥VABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且ACBCa,∠VDC0(I)求证:平面VAB⊥平面VCD;
π. 2
π
(II)试确定角的值,使得直线BC与平面VAB所成的角为.
D
例题4.(福建省福州三中2008届高三第三次月考)如图,正三棱柱ABCA1B1C1的所有棱长都是2,D是棱AC的中点,E是棱CC1的中点,AE交A1D于点H.BB
(1)求证:AE平面A1BD;
(2)求二面角DBA1A的大小(用反三角函数表示);
A1
CHA
C
第三篇:空间几何——平行与垂直证明
三、“平行关系”常见证明方法
(一)直线与直线平行的证明
1)利用某些平面图形的特性:如平行四边形的对边互相平行
2)利用三角形中位线性质
3)利用空间平行线的传递性(即公理4):
平行于同一条直线的两条直线互相平行。
4)利用直线与平面平行的性质定理: a∥ca∥bb∥c
如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
a∥
aβ a a∥
b
α b b
5)利用平面与平面平行的性质定理:
如果两个平行平面同时和第三个平面相交,那么它们的交线平行.//aa//b
b
6)利用直线与平面垂直的性质定理:
垂直于同一个平面的两条直线互相平行。
baa∥
b7)利用平面内直线与直线垂直的性质:
8)利用定义:在同一个平面内且两条直线没有公共点
(二)直线与平面平行的证明
1)利用直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
ab
a∥
b
a∥b
2)利用平面与平面平行的性质推论:
两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。
a
∥
a∥
a
β
3)利用定义:直线在平面外,且直线与平面没有公共点
(二)平面与平面平行的证明
常见证明方法:
1)利用平面与平面平行的判定定理:
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
a⊂b⊂a∩bPa//b//
//
b
2)利用某些空间几何体的特性:如正方体的上下底面互相平行等 3)利用定义:两个平面没有公共点
三、“垂直关系”常见证明方法
(一)直线与直线垂直的证明
1)利用某些平面图形的特性:如直角三角形的两条直角边互相垂直等。2)看夹角:两条共(异)面直线的夹角为90°,则两直线互相垂直。3)利用直线与平面垂直的性质:
如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。
a
b
ba
b
a
4)利用平面与平面垂直的性质推论:
如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这两条直线互相垂直。
l
abalbl
a
b
5)利用常用结论:
① 如果两条直线互相平行,且其中一条直线垂直于第三条直线,则另
一条直线也垂直于第三条直线。
a∥b
ac
b
c
② 如果有一条直线垂直于一个平面,另一条直线平行于此平面,那么
这两条直线互相垂直。
a
b∥
ab
b
(二)直线与平面垂直的证明
1)利用某些空间几何体的特性:如长方体侧棱垂直于底面等
2)看直线与平面所成的角:如果直线与平面所成的角是直角,则这条直线垂
直于此平面。
3)利用直线与平面垂直的判定定理:
ababAlalb
l
l
b
A
a
4)利用平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
l
aal
a
l
5)利用常用结论:
①
a∥bb
a
② 两个平面平行,一直线垂直于其中一个平面,则该直线也垂直于另一
个平面。
∥
a
a
(三)平面与平面垂直的证明
1)利用某些空间几何体的特性:如长方体侧面垂直于底面等
2)看二面角:两个平面相交,如果它们所成的二面角是直二面角(即平面角
是直角的二面角),就说这连个平面互相垂直。3)利用平面与平面垂直的判定定理
一个平面过另一个平面的垂线,则这两个平面垂直。
aa
a
第四篇:线线、线面平行垂直的证明
空间线面、面面平行垂直的证明
12.在正方体ABCD-A1B1C1D1中,E、F分别为AB、BC的中点,(Ⅰ)求证:EF//面A1C1B。(Ⅱ)B1D⊥面A1C1B。
D'
3.如图,在正方形ABCDA'B'C'D',A'(1)求证:A'B//平面ACD';
(2)求证:平面ACD'平面DD'B。
A
4.如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1)FD∥平面ABC;(2)AF⊥平面EDB.C'
C
B
5.如图,在正方体ABCDA1B1C1D1中,O是AC和BD的交点.求证:(Ⅰ)OC1∥平面AB1D1;(Ⅱ)平面ACC1平面AB1D1.
DA
C1
C
(5题图)
6.如图,长方体ABCDA1B1C1D1中,ABAD1,AA12,点P为
DD1的中点。
(1)求三棱锥DPAC的体积;(2)求证:直线BD1∥平面PAC;(3)求证:直线PB1平面PAC.C1
D1
B1
A1
P
DC
B
A
7.如图,在四棱锥PABCD,底面ABCD是正方形,侧棱
PD底面ABCD,PDDC,E是PC的中点,作EFPB于点F。
(1)证明:PA//平面EDB;(2)证明:DEBC
(3)证明:PB平面EFD。
8.ABCDA1B1C1D1是长方体,底面ABCD是边长为1的正方形,侧棱
A
AA12,E是侧棱BB1的中点.(Ⅰ)求证:AE平面A1D1E;
(Ⅱ)求三棱锥AC1D1E的体积.
第五篇:线面平行与垂直的证明题
勤志数学
线面平行与垂直的证明
1:如图,在棱长为1的正方体ABCD-A1B1C1D1中.(1)求证:AC⊥平面B1BDD1;
(2)求三棱锥B-ACB1体积.
2:如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点.
A
D
C
B
DA
1B1 1
求证:(1)PA∥平面BDE;(2)平面PAC平面BDE.
3:如图:在底面是直角梯形的四棱锥S—ABCD中,∠ABC = 90°,SA⊥面ABCD,SA = AB = BC = 1,AD(Ⅰ)求四棱锥S—ABCD的体积;(Ⅱ)证明:平面SBC⊥平面SCD.4:已知多面体ABCDFE中,四边形ABCD为矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD,O、M分别为AB、FC的中点,且AB = 2,AD = EF = 1.(Ⅰ)求证:AF⊥平面FBC;(Ⅱ)求证:OM∥平面DAF.1.
25:.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明 PA//平面EDB;(2)证明PB⊥平面EFD;
6:已知正方形ABCD和正方形ABEF所在的平面相
交于AB,点M,N分别在AC和BF上,且AM=FN.求证:MN‖平面BCE.7:如图,正方体ABCDA1B1C1D1中,棱长为a(1)求证:直线A1B//平面ACD1(2)求证:平面ACD1平面BD1D;
8: 如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:(1)FD∥平面ABC(2)AF⊥平面EDB.C
9:如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,(1)求证:平面A B1D1∥平面EFG;(2)求证:平面AA1C⊥面EFG.10:如图,PA矩形ABCD所在的平面,M、N分别是AB、PC的中点.(1)求证:MN//平面PAD;(2)求证:MNCD;
P
N
D
C
A
M
B
11:如图,棱长为1的正方体ABCD-A1B1C1D1中,求证:⑴AC⊥平面B1D1DB;
⑵求证:BD1⊥平面ACB1⑶ 求三棱锥B-ACB1体积.
D
A
B
C
D
1AB1
P
12: 四棱锥ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO底面ABCD,E是PC的中点. 求证:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC平面BDE.13:在三棱锥SABC中,已知点D、E、F分别为棱AC、SA、SC的中点.①求证:EF∥平面ABC.②若SASC,BABC,求证:平面SBD⊥平面ABC.14:如图, 已知正三角形PAD, 正方形ABCD,B
平面PAD平面ABCD, E为PD的中点.(Ⅰ)求证:CDAE;(Ⅱ)求证:AE平面PCD.15:四棱锥PABCD中,底面ABCD是矩形,PA平面ABCD,M、N分别是
AB、PC的中点,PAAOa.
(1)求证:MN//平面PAD;(2)求证:平面PMC⊥平面PCD.(自己画图)
P
A
B
C
16:如图,在三棱锥PABC中,PC⊥底面ABC,ABBC,D、E分别是AB、PB的中点.(1)求证:DE∥平面PAC;(2)求证:AB⊥PB;