第一篇:平面向量教案
平面向量的综合应用 执教人: 执教人:易燕子
考纲要求: “从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使 考纲要求:
对数学基础知识的考查达到必要的深度”。向量以其独特的数形结合和坐标运算,成为衔接代数与几何的最佳纽带,故以向量知识与三角函数、解析几何、数列、不等式等多项内容的交汇作为设计综合性试题考查考生的综合能力,是高考的一 个热点,也是重点。教学目标(1)进一步理解平面向量的有关知识; 教学目标:(2)了解在平面向量与其他知识交汇点设计试题的几种形式;(3)能综合运用平面向量和相关知识解决问题。教学重点: 教学重点:平面向量与其他知识的相互联系。教学难点: 教学难点:平面向量与其他知识的相互转化。
评述:通过平面向量的运算得出二次不等式,利用恒成立解决。
“ 训练:(2010 北京)a、b 为非零向量,a ⊥ b ”是“函数 f(x)=(xa + b) xb − a)为一次(函数”的()A.充分而不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 四.与三角知识的交汇 例 4.(2009 湖北)已知向量 a =(cos α , sin α), b =(cos β , sin β), c =(− 1,0)(1)求向量 b + c 的长度的最大值;(2)设 a =
r
r
r
r
r
r
r r
r r
π
4
,且 a ⊥(b + c),求 cos β 的值.
r
r r
教学设计: 教学设计:
一.与集合的交汇 例 1.(2009 湖北)已知 P = {a | a =(1, 0)+ m(0,1), m ∈ R},Q = {b | b =(1,1)+ n(−1,1), n ∈ R} 是两个向量集合,则 P I Q = A.〔1,1〕 { }(B.{ 〔-1,1〕 })C.{ 〔1,0〕 }
r r
r r
评述:以平面向量(三角函数)为载体,与三角函数(平面向量)的交叉与综合,是高考命题的一个 重要考点,其解法是利用向量的数量积和模的概念等脱去向量的“外衣”,转化为三角函数问 题,即可解决。训练:(2009 江苏)设向量 a =(4 cos α ,sin α), b =(sin β , 4 cos β), c =(cos β , −4 sin β)(1)若 a 与 b − 2c 垂直,求 tan(α + β)的值;(2)求 | b + c | 的最大值;
r
r
r
D.{ 〔0,1〕 }
r
r
r
r r uuu uuu uuur uuu uuu uuur r r r uuu uuu uuu uuu uuu uuu r r r r r r | OA |=| OB |=| OC |, NA + NB + NC = 0,且 PA • PB = PB • PC = PC • PA, 则点 O,N,P 依 次是 ∆ABC 的()
A.重心 外心 垂心 C.外心 重心 垂心 B.重心 外心 内心 D.外心 重心 内心
变式:若将 Q 集合中的 n 改为 m,结果又如何呢? 评述:借助平面向量的坐标运算,把集合的交集运算转化为向量相等,考查了方程思想和等价 转化的思想。二.与平面几何的交汇 例 2.(2009 宁夏海南)已知 O,N,P 在 ∆ABC 所在平面内,且
r r
(3
第二篇:平面向量概念教案
平面向量概念教案
一.课题:平面向量概念
二、教学目标
1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。
2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。
3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣
三.教学类型:新知课
四、教学重点、难点
1、重点:向量及其几何表示,相等向量、平行向量的概念。
2、难点:向量的概念及对平行向量的理解。
五、教学过程
(一)、问题引入
1、在物理中,位移与距离是同一个概念吗?为什么?
2、在物理中,我们学到位移是既有大小、又有方向的量,你还能举出一些这样的量吗?
3、在物理中,像这种既有大小、又有方向的量叫做矢量。在数学中,我们把这种既有大小、又有方向的量叫做向量。而把那些只有大小,没有方向的量叫数量。
(二)讲授新课
1、向量的概念
练习1 对于下列各量:
①质量 ② 速度 ③位移 ④力 ⑤加速度 ⑥路程 ⑦密度 ⑧功 ⑨体积 ⑩温度
其中,是向量的有:②③④⑤
2、向量的几何表示
请表示一个竖直向下、大小为5N的力,和一个水平向左、大小为8N的力(1厘米表示1N)。思考一下物理学科中是如何表示力这一向量的?
(1)有向线段及有向线段的三要素(2)向量的模
(4)零向量,记作____;(5)单位向量
练习2 边长为6的等边△ABC中,=__,与 相等的还有哪些?
总结向量的表示方法: 1)、用有向线段表示。
2)、用字母表示。
3、相等向量与共线向量(1)相等向量的定义(2)共线向量的定义
六.教具:黑板 七.作业 八.教学后记
第三篇:平面向量教案
平面向量教案
课
件www.xiexiebang.com
二、复习要求
、向量的概念;
2、向量的线性运算:即向量的加减法,实数与向量的乘积,两个向量的数量积等的定义,运算律;
3、向量运算的运用
三、学习指导、向量是数形结合的典范。向量的几何表示法--有向线段表示法是运用几何性质解决向量问题的基础。在向量的运算过程中,借助于图形性质不仅可以给抽象运算以直观解释,有时甚至更简捷。
向量运算中的基本图形:①向量加减法则:三角形或平行四边形;②实数与向量乘积的几何意义--共线;③定比分点基本图形--起点相同的三个向量终点共线等。
2、向量的三种线性运算及运算的三种形式。
向量的加减法,实数与向量的乘积,两个向量的数量积都称为向量的线性运算,前两者的结果是向量,两个向量数量积的结果是数量。每一种运算都可以有三种表现形式:图形、符号、坐标语言。
主要内容列表如下:
运算图形语言符号语言坐标语言
加法与减法
=
-=
记=,=
则=
-==
实数与向量
的乘积
=λ
λ∈R记=
则λ=两个向量
的数量积
·=||||
cos<,>
记=,=
则·=x1x2y1y2
3、运算律
加法:=,=
实数与向量的乘积:λ=λλ;=λμ,λ=
两个向量的数量积:·=·;·=·=λ,·=··
说明:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算,例如2=
4、重要定理、公式
平面向量基本定理;如果是同一平面内的两个不共线向量,那么对于该平面内任一向量,有且只有一对数数λ1,λ2,满足=λ1λ2,称λ1λλ2为,的线性组合。
根据平面向量基本定理,任一向量与有序数对一一对应,称为在基底{,}下的坐标,当取{,}为单位正交基底{,}时定义为向量的平面直角坐标。
向量坐标与点坐标的关系:当向量起点在原点时,定义向量坐标为终点坐标,即若A,则=;当向量起点不在原点时,向量坐标为终点坐标减去起点坐标,即若A,B,则=
两个向量平行的充要条件
符号语言:若∥,≠,则=λ
坐标语言为:设=,=,则∥=λ,即,或x1y2-x2y1=0
在这里,实数λ是唯一存在的,当与同向时,λ>0;当与异向时,λ<0。
|λ|=,λ的大小由及的大小确定。因此,当,确定时,λ的符号与大小就确定了。这就是实数乘向量中λ的几何意义。
两个向量垂直的充要条件
符号语言:⊥·=0
坐标语言:设=,=,则⊥x1x2y1y2=0
线段定比分点公式
如图,设
则定比分点向量式:
定比分点坐标式:设P,P1,P2
则
特例:当λ=1时,就得到中点公式: ,实际上,对于起点相同,终点共线三个向量,,总有=uv,uv=1,即总可以用其中两个向量的线性组合表示第三个向量,且系数和为1。
平移公式:
①点平移公式,如果点P按=平移至P',则
分别称,为旧、新坐标,为平移法则
在点P新、旧坐标及平移法则三组坐标中,已知两组坐标,一定可以求第三组坐标
②图形平移:设曲线c:y=f按=平移,则平移后曲线c'对应的解析式为y-k=f
当h,k中有一个为零时,就是前面已经研究过的左右及上下移
利用平移变换可以化简函数解析式,从而便于研究曲线的几何性质
正弦定理,余弦定理
正弦定理:
余弦定理:a2=b2c2-2cbcosA
b2=c2a2-2cacosB
c2=a2b2-2abcosc
定理变形:cosA=,cosB=,cosc=
正弦定理及余弦定理是解决三角形的重要而又基本的工具。通过阅读课本,理解用向量法推导正、余弦定理的重要思想方法。
5、向量既是重要的数学概念,也是有力的解题工具。利用向量可以证明线线垂直,线线平行,求夹角等,特别是直角坐标系的引入,体现了向量解决问题的“程序性”特点。
四、典型例题
例
1、如图,为单位向量,与夹角为1200,与的夹角为450,||=5,用,表示。
分析:
以,为邻边,为对角线构造平行四边形
把向量在,方向上进行分解,如图,设=λ,=μ,λ>0,μ>0
则=λμ
∵||=||=1
∴λ=||,μ=||
△oEc中,∠E=600,∠ocE=750,由得:
∴
∴
说明:用若干个向量的线性组合表示一个向量,是向量中的基本而又重要的问题,通常通过构造平行四边形来处理
例
2、已知△ABc中,A,B,c,Bc边上的高为AD,求点D和向量坐标。
分析:
用解方程组思想
设D,则=
∵=,·=0
∴-6-3=0,即2xy-3=0①
∵=,∥
∴-6=-3,即x-2y1=0②
由①②得:
∴D,=
例
3、求与向量=,-1)和=夹角相等,且模为的向量的坐标。
分析:
用解方程组思想
法一:设=,则·=x-y,·=xy
∵<,>=<,>
∴&nb ∴
即①
又||=
∴x2y2=2②
由①②得或
∴=
法二:从分析形的特征着手
∵||=||=2
·=0
∴△AoB为等腰直角三角形,如图
∵||=,∠Aoc=∠Boc
∴c为AB中点
∴c
说明:数形结合是学好向量的重要思想方法,分析图中的几何性质可以简化计算。
例
4、在△oAB的边oA、oB上分别取点m、N,使||∶||=1∶3,||∶||=1∶4,设线段AN与Bm交于点P,记=,=,用,表示向量。
分析:
∵B、P、m共线
∴记=s
∴①
同理,记
∴=②
∵,不共线
∴由①②得解之得:
∴
说明:从点共线转化为向量共线,进而引入参数是常用技巧之一。平面向量基本定理是向量重要定理之一,利用该定理唯一性的性质得到关于s,t的方程。
例
5、已知长方形ABcD,AB=3,Bc=2,E为Bc中点,P为AB上一点
利用向量知识判定点P在什么位置时,∠PED=450;
若∠PED=450,求证:P、D、c、E四点共圆。
分析:
利用坐标系可以确定点P位置
如图,建立平面直角坐标系
则c,D,E
设P
∴=,=
∴
·=3y-1
代入cos450=
解之得,或y=2
∴点P为靠近点A的AB三等分处
当∠PED=450时,由知P
∴=,=
∴·=0
∴∠DPE=900
又∠DcE=900
∴D、P、E、c四点共圆
说明:利用向量处理几何问题一步要骤为:①建立平面直角坐标系;②设点的坐标;③求出有关向量的坐标;④利用向量的运算计算结果;⑤得到结论。
同步练习
选择题、平面内三点A,B,c,若∥,则x的值为:
A、-5B、-1c、1D、5
2、平面上A,B,D,c点满足,连Dc并延长至E,使||=||,则点E坐标为:
A、B、c、D、或
2、点沿向量平移到,则点沿平移到:
3、A、B、c、D、4、△ABc中,2cosB·sinc=sinA,则此三角形是:
A、直角三角形B、等腰三角形c、等边三角形D、以上均有可能
5、设,是任意的非零平面向量,且相互不共线,则:
①-=0
②||-||<|-|
③-不与垂直
④·=9||2-4|2中,真命题是:
A、①②B、②③c、③④D、②④
6、△ABc中,若a4b4c4=2c2,则∠c度数是:
A、600B、450或1350c、1200D、300
7、△oAB中,=,=,=,若=,t∈R,则点P在
A、∠AoB平分线所在直线上B、线段AB中垂线上
c、AB边所在直线上D、AB边的中线上
8、正方形PQRS对角线交点为m,坐标原点o不在正方形内部,且=,=,则=
A、B、c、D、填空题
9、已知{,|是平面上一个基底,若=λ,=-2λ-,若,共线,则λ=__________。
0、已知||=,||=1,·=-9,则与的夹角是________。
1、设,是两个单位向量,它们夹角为600,则·=____________。
2、把函数y=cosx图象沿平移,得到函数___________的图象。
解答题
3、设=,=,⊥,∥,试求满足=的的坐
14、若=,-=,求、及与夹角θ的余弦值。
5、已知||=,||=3,和夹角为450,求当向量λ与λ夹角为锐角时,λ的取值范围。
参考答案
1、c2、B3、D4、B5、D6、B7、A8、9、10、11、12、y=sinx1 13、4、=,=,5、λ<,或λ>且λ≠ 课
件www.xiexiebang.com
A
第四篇:平面向量基本定理教案
§2.3.1平面向量基本定理教学设计
教学目的:
(1)了解平面向量基本定理;
(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.教学重点:平面向量基本定理.教学难点:平面向量基本定理的理解与应用.授课类型:新授课 教学过程:
一、复习引入:
1.实数与向量的积:实数λ与向量a的积是一个向量,记作:λa
(1)|λa|=|λ||a|;
(2)λ>0时λa与a方向相同;λ<0时λa与a方向相反;λ=0时λa=0
2.运算定律
结合律:λ(μa)=(λμ)a ;
分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb
3.向量共线定理 向量b与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b=λa.二、讲解新课:
1.提出问题:由平行四边形想到:
(1)是不是每一个向量都可以分解成两个不共线向量?且分解是唯一?(2)对于平面上两个不共线向量e1,e2是不是平面上的所有向量都可以用它们来表示?
2.设e1,e2是不共线向量,a是平面内任一向量,e1 a
MC
N B e2
O OA=e1,OM=λ
1e2; OB=e2,ON=λe2
21OC=a=OM+ON=λ
e1+λe2,2平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对
于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2.探究:
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式惟一.λ1,λ2是被a,e1,e2唯一确定的数量
3、两个非零向量的夹角:
如图所示,已知两个非零向量a,b,在平面上任取一点O,作OAaO ,Bb,则AOB0叫做向量a与b的夹角,ba BAO θbθ bAOB aa【说明】(1)研究两个非零向量的夹角时,必须先将这两个向量的起点移至同一个点;但是当两个向量的终点重合时,表示向量的这两条线段所成的0,范围内的角也等于这两个向量之间的夹角。(2)只有非零向量之间才存在夹角;
(3)如果∠AOB=0°a与b同向;
(4)如果∠AOB=90°,我们就说向量a与b垂直,记作:ab;
(5)如果∠AOB=180°a与b反向。
三、讲解范例:
例1 已知向量e1,e2 求作向量2.5e1+3e2.作法:见教材
四、课堂练习:
1.设e1、e2是同一平面内的两个向量,则有()A.e1、e2一定平行
e2e1B.e1、e2的模相等
C.同一平面内的任一向量a都有a =λe1+μe2(λ、μ∈R)D.若e1、e2不共线,则同一平面内的任一向量a都有a =λe1+ue2(λ、u∈R)2.已知矢量a = e1-2e2,b =2e1+e2,其中e1、e2不共线,则a+b与c =6e1-2e2的关系
A.不共线 B.共线 C.相等 D.无法确定
3.已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于()A.3 B.-3 C.0 D.2
五、小结:平面向量基本定理,其实质在于:同一平面内任一向量都可以表示为两个不共线向量的线性组合.
六、课后作业:课本:101页1,2 板书设计:略
第五篇:平面向量的概念教案
平面向量基本概念
【教学目标】
知识目标:
(1)了解向量的概念;
(2)理解平面向量的含义、向量的几何表示,向量的模.能力目标:
(1)能将生活中的一些简单问题抽象为向量问题;
(2)理解零向量、单位向量、平行向量、相等向量、共线向量的含义,能在图形中辨认相等向量和共线向量.(3)从“平行向量→相等向量→共线向量”的逐步认识,充分揭示向量的两个要素及向量可以平移的特点.(4)通过相关问题的解决,培养计算技能和数学思维能力 情感目标:
(1)经历利用有向线段研究向量的过程,发展“数形结合”的思维习惯.(2)经历合作学习的过程,树立团队合作意识. 【教学重点】
向量、相等向量、共线向量的含义及向量的几何表示.【教学难点】
向量的含义.【教学过程】
(一)情境创设
1.南辕北辙——战国时,有个北方人要到南方的楚国去.他从太行山脚下出发,乘着马车一直往北走去.有人提醒他:“到楚国应该朝南走,你怎能往北呢?”他却说:“不要紧,我有一匹好马!”
结果 原因
2.如图1,在同一时刻,老鼠由A向西北方向的C处逃窜,猫由B向正东方向的D处追去,猫能否抓到老鼠?
结果 原因 思考:上述情景中,描绘了物理学中的那些量? 咱们还认识类似于上面的量,你能举出来吗? 这些量的共同特征是什么?
(二)概念形成
观察:如图2中的三个量有什么区别?
1.向量的概念——既有大小又有方向的量叫向量.2.向量的表示方法
思考:物理学中如何画物体所受的力?(1)几何表示法:常用一条有向线段表示向量.符号表示:以A为起点、B为终点的有向线段,记作AB.(注意起终点顺序).(2)字母表示法:可表示AB为a.练习.如图4,小船由A地向西北方向航行15海里到达 B地,小船的位移如何表示?(用1cm表示5海里)
(三)理性提升 3.向量的模
向量AB的大小——向量AB长度称为向量的模.记作:|AB|.强调:数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有大小,方向,不能比较大小,模是实数,可以比较大小的.4.两个特殊的向量(1)零向量——长度为零的向量,记作0.(2)单位向量——长度等于1个单位长度的向量. 5.向量间的关系
观察如图5,你认为向量之间有那些关系?
(1)平行向量——方向相同或相反的非零向量,记作a∥b∥c.规定: 0与任一向量平行.(2)相等向量——长度相等且方向相同的向量,记作ab.规定:00.注意: 1°零向量与零向量相等.
2°任意两个相等的非零向量,都可以用一条有向线段来表示,并且与有向线段的起点无关.
思考:如果我们把一组平行向量的起点全部移到同一点O,这时各向量的终点之间有什么关系?这时它们是不是平行向量?
(3)共线向量——平行向量又叫做共线向量.
(四)拓展应用
例1.下列命题中,正确的是()A.|a|=|b|a=b
B.|a|=|b|且a∥ba=b C. a=ba∥b
D.a∥0|a|=0 例2.如图6,设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、OC相等的向量.思考:
(1)与向量OA长度相等的向量有多少个?(2)是否有与向量OA长度相等,方向相反的向量?(3)与向量OA共线的向量有哪些?
例3.如图7,在45的方格图中,有一个向量AB,分别以图中的格点为起点和终点作向量.(1)与向量AB相等的向量有多少个?
(2)与向量AB长度相等的向量有多少个? 练习巩固:P77.1~4
(五)归纳小结
1.描述一个向量有两个指标——模、方向.2.平行向量不是平面几何中平行线概念的简单移植,这儿的平行是指方向相同或相反的一对向量,与长度无关.3.共线向量是指平行向量,与是否真的画在同一条直线上无关.4.向量的图示,要标上箭头及起、终点,以体现它的直观性.