《平面向量》单元教学设计范文

时间:2019-05-13 01:51:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《平面向量》单元教学设计范文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《平面向量》单元教学设计范文》。

第一篇:《平面向量》单元教学设计范文

《平面向量》单元教学设计

武都区两水中学 王斌

向量是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系。

向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

一、单元教学目标

本章主要包括平面向量的实际背景及基本概念、平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容。通过本章学习,应引导学生:

1.通过力和力的分析等实例,知道向量的实际背景,会运用平面向量和向量相等的含义,会向量的几何表示。

2.通过实例,会算向量加、减法的运算,并会求其几何意义。

3.通过实例,熟练运用向量数乘的运算,并解释其几何意义,以及两个向量共线的含义。

4.能说出向量的线性运算性质及其几何意义。5.知道平面向量的基本定理及其意义。6.掌握平面向量的正交分解及其坐标表示。7.会用坐标表示平面向量的加、减与数乘运算。8.解释用坐标表示的平面向量共线的条件。

9.通过物理中“功”等实例,说明平面向量数量积的含义及其物理意义。10.体会平面向量的数量积与向量投影的关系。

11.识记数量积的坐标表达式,会进行平面向量数量积的运算。

12.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。13.经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。

二、学习者特征分析

向量是近代数学中重要的和基本的概念之一,它是沟通代数几何与三角的一种工具。向量对学生来说是比较新的内容,学生对它的学习可以说是充满了探求的欲望,应当说能够使大部分学生在此章节的学习中体会到学习的成功乐趣。学生在学习本单元内容之前,已熟知了实数的运算体系,具备了物理知识.这都为学习向量准备好各方面条件.三、单元教材分析

本章共安排了5个小节及2个选学内容,大约需要12个课时,具体分配如下 2.1平面向量的实际背景及基本概念 2课时 2.2 向量的线性运算 2课时

2.3平面向量的基本定理及坐标表示 2课时 2.4平面向量的数量积 2课时 2.5平面向量应用举例 2课时

小结 2课时

本章知识结构如下:

1.第一节包括向量的物理背景与概念、向量的几何表示、相等向量与共线向量。教科书首先从位移、力等物理量出发,抽象出既有大小、又有方向的量——向量,并说明向量与数量的区别。然后介绍了向量的几何表示、有向线向量的长度(模)、零向量、单位向量、平行向量、相等向量、共线向量等基本概念。

2.第二节有向量加法运算及其几何意义、向量减法运算及其几何意义、向量数乘运算及其几何意义等内容。

教科书先讲了向量的加法、加法的几何意义、加法运算律;再用相反向量与向量的加法定义向量的减法,把向量的减法与加法统一起来,并给出向量减法的几何意义;然后通过向量的加法引入了实数与向量的积的定义,给出了实数与向量的积的运算律;最后介绍了两个向量共线的条件和向量线性运算的运算法则。

3.第三节包括平面向量基本定理、平面向量的正交分解及坐标表示、平面向量的坐标运算、平面向量共线的坐标表示。

平面向量基本定理是平面向量正交分解及坐标表示的基础。教科书首先通过一个具体的例子给出平面向量基本定理,同时介绍了基底、夹角、两个向量垂直的概念;然后在平面向量基本定理的基础上,给出了平面向量的正交分解及坐标表示,向量加、减、数乘的坐标运算和向量坐标的概念,最后给出平面向量共线的坐标表示。坐标表示使平面中的向量与它的坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭起了桥梁。

4.第四节包括平面向量数量积的物理背景及其含义、平面向量数量积的坐标表示、模、夹角。

教科书从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示。向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题。

5.第五节包括平面几何中的向量方法、向量在物理中的应用举例。由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用。本节通过几个具体的例子说明了它的应用。

6.为了拓展学生的知识面,使学生了解向量及向量符号的由来,向量的运算(运算律)与几何图形形式的关系,本章安排了两个“阅读与思考”:向量几向量符号的由来,向量的运算(运算律)与图形性质。

四、教学中要注意的几个问题

1.突出向量的物理背景与几何背景

教科书特别注意从丰富的物理背景和几何背景中引入向量概念。在引言中通过日常生活中确定“位置”中的位移概念,说明学习向量知识的意义;在2.1节,通过物理学中的重力、浮力、弹力、速度、加速度等作为实际背景素材,说明它们都是既有大小又有方向的量,由此引出向量的概念;引出向量概念后,教科书又利用有向线段给出了向量的几何背景,并定义了向量的模、单位向量等概念。这样的安排,可以使学生认识到向量在刻画现实问题、物理问题以及数学问题中的作用,使学生建立起理解和运用向量概念的背景支持。

教科书借助几何直观,并通过与数的运算的类比引入向量运算,以加强向量的几何背景。

2.强调向量作为解决现实问题和数学问题的工具作用。

为了强调向量作为刻画力、速度、位移等现实中常见现象的有力的数学工具作用,本章特别注意联系实际。特别是在概念引入中加强与实际的联系。另外,向量也是解决数学问题的好工具,例如,和(差)角的三角函数公式、线段的定比分点公式、平面两点间距离公式、平移公式及正弦定理、余弦定理等都可以用向量为工具进行推导;向量作为沟通代数、几何与三角函数的桥梁,是一个很好的数形结合工具,教科书通过“平面几何中的向量方法”进行了介绍,并在第三章用向量方法来推导两角差的余弦公式。这些处理也都是为了体现向量作为基本的、重要的数学工具的地位。

3.强调向量法的基本思想,明确向量运算及运算律的核心地位。

向量具有明确的几何背景,向量的运算及运算律具有明显的几何意义,因此涉及长度、夹角的几何问题可以通过向量及其运算得到解决。另外,向量及其运算(运算律)与几何图形的性质紧密相联,向量的运算(包括运算律)可以用图形直观表示,图形的一些性质也可以用向量的运算(运算律)来表示。这样,建立了向量运算(包括运算律)与几何图形之间的关系后,可以使图形的研究推进到有效能算的水平,向量运算(运算律)把向量与几何、代数有机地联系在一起。

几何中的向量方法与解析几何的思想具有一致性,不同的只是用“向量和向量运算”来代替解析几何中的“数和数的运算”。这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果。如果把解析几何的方法简单地表述为

[形到数]——[数的运算]——[数到形],则向量方法可简单地表述为

[形到向量]——[向量的运算]——[向量和数到形]。

教科书特别强调了向量法的上述基本思想,并根据上述基本思想明确提出了用向量法解决几何问题的“三步曲”。为了使学生体会向量运算及运算律的重要性,教科书注意引导学生在解决具体问题时及时进行归纳,同时还明确使用了“因为有了运算,向量的力量无限;如果没有运算,向量只是示意方向的路标”的提示语。

4.通过与数及其运算的类比,向量法与坐标法的类比,建立相关知识的联系,突出思想性。

向量及其运算与数及其运算既有区别又有联系,在研究的思想方法上可以进行类比。这种类比可以打开学生讨论向量问题的思路,同时还能使向量的学习找到合适的思维固着点。为此,教科书在向量概念的引入,向量的线性运算,向量的数量积运算等内容的展开上,都注意与数及其运算(加、减、乘)进行类比。

5.引导学生用数学模型的观点看待向量内容

在向量概念的教学中,要利用学生的生活经验、其他学科的相关知识,创设丰富的情景,例如物理中的力、速度、加速度,力的合成与分解,物体受力做功等,通过这些实例是学生了解向量的物理背景、几何背景,引导学生认识向量作为描述现实问题的数学模型的作用。同时还要通过解决一些实际问题或几何问题,使学生学会用向量这一数学模型处理问题的基本方法。

6.加强向量与相关知识的联系性,使学生明确研究向量的基本思路

向量既是代数的对象,又是几何的对象。作为代数对象,向量可以运算,而且正是因为有了运算,向量的威力才得到充分的发挥;作为几何对象,向量可以刻画几何元素(点、线、面),利用向量的方向可以与三角函数发生联系,通过向量运算还可以描述几何元素之 4 间的关系(例如直线的垂直、平行等),另外,利用向量的长度可以刻画长度、面积、体积等几何度量问题。教学中,教师应当充分关注到向量的这些特点,引导学生在代数、几何和三角函数的联系中学习本章知识。

五、教学评价

对本单元的教学我主要通过以下几种方式进行:

1、通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定性的评价。

2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。

3、通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。

4、通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。

第二篇:平面向量概念教学设计

篇一:平面向量概念教案

平面向量概念教案

一.课题:平面向量概念

二、教学目标

1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。

2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。

3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣

三.教学类型:新知课

四、教学重点、难点

1、重点:向量及其几何表示,相等向量、平行向量的概念。

2、难点:向量的概念及对平行向量的理解。

五、教学过程

(一)、问题引入

1、在物理中,位移与距离是同一个概念吗?为什么?

2、在物理中,我们学到位移是既有大小、又有方向的量,你还能举出一些这样的量吗?

3、在物理中,像这种既有大小、又有方向的量叫做矢量。

在数学中,我们把这种既有大小、又有方向的量叫做向量。而把那些只有大小,没有方向的量叫数量。

(二)讲授新课

1、向量的概念

练习1 对于下列各量:

①质量② 速度③位移④力⑤加速度⑥路程⑦密度⑧功⑨体积⑩温度

其中,是向量的有:②③④⑤

2、向量的几何表示

请表示一个竖直向下、大小为5n的力,和一个水平向左、大小为8n的力(1厘米表示1n)。思考一下物理学科中是如何表示力这一向量的?

(1)有向线段及有向线段的三要素

(2)向量的模

(4)零向量,记作____;

(5)单位向量

练习2 边长为6的等边△abc中,=__,与 相等的还有哪些? 总结向量的表示方法: 1)、用有向线段表示。2)、用字母表示。

3、相等向量与共线向量

(1)相等向量的定义

(2)共线向量的定义

六.教具:黑板

七.作业

八.教学后记

篇二:平面向量的实际背景及基本概念教学设计

平面向量的实际背景及基本概念教学设计 本节课的内容是数学必修4,第二章《平面向量》的引言和第一节平面向量的实际背景及基本概念两部分,所需课时为1课时。

一 教材分析

向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用。向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景。向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学的地位是不言而喻的。

本课是“平面向量”的起始课,具有“统领全局”的作用。本节概念课,重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能

二 学情分析

在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值(线段的长度)、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。

三 目标定位

根据以上的分析,本节课的教学目标定位: 1)、知识目标

⑪ 通过对位移、速度、力等实例的分析,形成平面向量的概念;

⑫ 学会平面向量的表示方法,理解向量集形与数于一身的基本特征;

⑬ 理解零向量、单位向量、相等向量、平行向量的含义。2)、能力目标培养用联系的观点,类比的方法研究向量;获得研究数学新问题的基本思路,学会概念思维; 3)、情感目标使学生自然的、水到渠成的实现“概念的形成”;让学生积极参与到概念本质特征的概括活动中,享受寓教于乐。

重点:向量概念、向量的几何表示、以及相等向量概念;

难点:让学生感受向量、平行或共线向量等概念形成过程;

四、教学过程概述: 4.1 向量概念的形成

4.1.1 让学生感受引入概念的必要性

引子:章节 引言

意图:向量概念不是凭空产生的。用这一简单直观的问题让学生感受“既有大小又有方向的量”的客观存在,自然引出学习内容,学生会有亲切感,有助于激发学习兴趣。

问题1 你能否再举出一些既有大小又有方向的量?

意图:激活学生的已有相关经验。

进一步直观演示,加深印象。

追问:生活中有没有只有大小没有方向的量?请举例。

类比数的概念获得向量概念的定义(板书)。4.1.2 向量的表示方法

问题2 数学中,定义概念后,通常要用符号表示它。怎样把你举例中的向量表示出来呢

意图:让学生先练习力的表示,让错误呈现,激发认知冲突,最后自觉接受用带有箭头的线段(有向线段)来表示向量。(教师引导学生进一步完善)几何表示法: 记作a b |a b|为ab的长度(又称模)。

字母表示法:a、b、c??或a、b、c 4.1.3 单位向量、零向量的概念:

问题3用有向线段表示向量,学生演板,提出问题,大家画得线段长度长短不一怎么回事?如何解决这问题?由单位长度引入单位向量

意图:这样过渡学生不会感觉新的概念是从天而降,而是进一步学习的需要

归纳小结:单位向量——长度等于1个单位长度并与a同向的向量叫做a方向上的单位向量. 让演板学生回到座位之后利用这个情境提出问题,他位移的大小是什么? 归纳小结:零向量——长度(模)为0的向量,记作0 提问:你们认为零向量和单位向量特殊吗?它们的特殊性体现在哪?类比实数集合中的0和1.4.2 相等向量、平行(共线)向量概念的形成

设计活动:传花游戏,游戏中将呈现通过学生之间传递花朵所产生的位移向量,让他们从大小和方向两个方面展开思考,教师适时介入,强化本质特征、规范概念表达,与学生一起完成概念的定义。

意图:通过游戏调动学生的兴趣和积极性,让学生通过亲身经历去体会相等向量与平行向量的本质特征。归纳:

1、从“方向”角度看,有方向相同或相反的非零向量就是平行向量。

记作:a ∥b ∥ c 任一组平行向量都可移到同一条直线上,所以平行向量也叫共线向量。

2、从“长度”角度看,有模相等的向量,︱a︱ =︱ b︱

3、既关注方向有又关注长度有相等向量:记作:a = b a 规定: 0 与任一向量都平行或(共线)。

教师通过动画演示深化上述两个概念

问题4 由相等向量的概念知道,向量完全有它的方向和大小确定。由此,你能说说数学中的向量与物理中的矢量的异同吗?另外,向量的平行、共线与线段的平行、共线有什么区别与联系?

意图:让学生注意把向量概念与物理背景、几何背景明确区分,真正抓住向量的本质特征,完成“数学化”的过程。4.3 课堂练习:

概念辨析

两个长度相等的向量一定相等.

相等向量的起点必定相同.

平行向量就是共线向量.

若 ab 与 cd 共线,则 a、b、c、d 四点必在同一条直线上.

向量 a 与 b平行,则向量 a 与 b 的方向相同或相反.

教材例题

3、教材第79页,b组第一题(选择此题,可以进一步理解位移概念,又能为后一步的学习做好铺垫)4.4 课堂小结(引导学生小结)

问题5 欣赏一首关于向量的诗,布置任务能否用拟人的方式把你对向量的认识做个概述呢?

结束语:略

板书设计

5.5明确零向量的意义和作用,不过分纠缠于细节。

首先,规定零向量与任何向量平行是完善概念系统的需要。其次,就像数零的作用在于运算一样,零向量的作用在于运算及其表达的几何意义。因此孤立地讨论零向量与任何向量平行没有多少意义,也不必耗费过多时间。总之,作为现代数学重要标志之一的向量引入中学数学以后,给中学数学带来了无限生机。这节“概念课”,概念的理解无疑是重点,也是难点。概念的教学应在概念的发生发展过程中揭示它的本来面目。要让学生参与概念本质特征的概括活动过程,这也是培养学生创新精神和实践能力的必由之路!

三、教学诊断分析

本节是平面向量的第一堂课,属于“概念课”,概念的理解无疑是重点,也是难点。为了帮助学生建立向量的概念,与数、形的相关概念类比与联系是值得重视的。在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值(线段的长度)、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。具体教学中,要设计一个能让学生开展概括活动的过程,引导他们经历从具体事例中领悟向量概念的本质特征,类比数的概念获得向量概念的定义及表示,类比数的集合认识向量的集合,类比直线的基本关系认识向量的基本关系。使学生从中体会到认识一个数学概念的基本思路,而不是停留在某个具体的概念学习上。这也是本堂课的核心目标。由于数学概念的高度抽象性,学生往往要费很多周折才能理解,教师应从学生的认知水平出发,针对学生的理解困难来展开教学,保证学生参与概念本质特征的概括活动,确保学生有自己想明白的机会和时间,这是至关重要的。

本课的教学,我们力求使学生理了解向量概念的背景和形成过程,了解为什么要引入这个概念,怎样定义这个概念,怎样入手研究一个新的问题。因此,在教学中教师应注意从宏观上为学生勾勒研究框架和总体思路,使学生能“抬头看路”,知道往哪里走,这是起始课的重要任务;微观上,引导学生通过类比,有序地给出向量的定义、讨论向量的表示、定义特殊向量、研究特殊向量的关系。在引导学生展开对向量及其相关概念的学习过程中,应强调“让学生参与到定义概念的活动中来”,不轻易打断学生的思维和活动,恰如其分地“以问题引导学习”,在质疑——反思的过程中深化概念的理解,使概念的理解成为学生自己主动思维的结果。

本课中出现的特殊向量——零向量,很多教师都会在“零向量与任意向量平行上”花太多时间,原因是“这是考试中的一个陷阱”。这其实是对零向量的意义和作用理解不到位的表现:首先,规定零向量与任何向量平行是完善概念系统的需要;其次,就像数零的作用在于运算一样,零向量的作用在于运算及其表达的几何意义。因此孤立地讨论零向量与任何向量平行没有多少意义,也不必耗费过多时间。

四、本课教学特点及预期效果分析

在学生建立向量的概念之初,与数、形的相关概念类比与联系是值得重视的。在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值(线段的长度)、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。因此在具体教学中,我设计了一个能让学生开展概括活动的过程,引导他们经历从具体事例中领悟向量概念的本质特征,类比数的概念获得向量概念的定义及表示,类比数的集合认识向量的集合,类比直线的基本关系认识向量的基本关系。使学生从中体会到认识一个数学概念的基本思路,而不是停留在某个具体的概念学习上。

在向量的几何表示中,我让学生大胆探索,而不是“全包全揽”,教师引导,学生补充改进,最终明确向量几何表示的正确方法。整个过程全体同学热情参与,自我教育,互帮互学,课堂气氛生动活泼。

当同学们能将向量正确的几何表示时,我又适时地提出问题:大家画出的线段长短不一,怎么解决?由此自然过渡到单位长度上,使得单位向量的引入也就顺理成章了。

为了帮助学生学习相等向量、平行(共线)向量的概念,本课设计了“传花游戏”,通过学生之间传递花朵所产生的位移向量,让学生积极参与,仔细观察,自己概括出概念的本质特征,将课堂气氛推向一个新的高潮。在结束本课之前,为了让同学对向量加深印象,我让学生先欣赏一首关于向量的诗歌,再让学生在课外动笔写出自己对向量的感受。

本节课是从现实世界的常见实例出发,以学生自主探究的教学方式为主。在课堂上,创建了一个以全班学生共同参与的向量游戏平台,让学生在轻松愉悦的课堂环境中,共同参与,共同讨论,共同分析,让学生自然地、水到渠成的完成本节内容的学习。

第三篇:第二章平面向量教学设计

第二章平面向量教学设计

本资料为woRD文档,请点击下载地址下载全文下载地址

新课标人教版

必修4第二章平面向量

内容:《平面向量》

课型:新授课

第二部分

教学设计

2.1平面向量的概念及其线性运算

授课人:苏仕剑

【学习目标】、理解平面向量和向量相等的含义,理解向量的几何表示;

2、掌握向量加、减法的运算,并理解其几何意义;

3、掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义;

4、了解向量线性运算的性质及其几何意义。

【学习要点】

、向量概念

________________________________________________________叫零向量,记作;长度为______的向量叫做单位向量;方向___________________的向量叫做平行向量。

规定:与______向量平行;长度_______且方向_______的向量叫做相等向量;平行向量也叫______向量。

2、向量加法

求两个向量和的运算,叫做向量的加法,向量加法有___________法则与______________法则。

3、向量减法

向量加上的相反向量叫做与的差,记作_________________________,求两个向量差的运算,叫做向量的减法。

4、实数与向量的积

实数与向量的积是一个_______,记作________,其模及方向与____的值密切相关。

5、两向量共线的充要条件

向量与非零向量共线的充要条件是有且只有一个实数,使得__________。

【典型例题】

例1

在四边形ABcD中,等于

()

A、B、c、D、例2

若平行四边形ABcD的对角线Ac和BD相交于o,且,则、表示向量为

()

A、+

B、—

c、—+

D、——

例3

设、是两个不共线的向量,则向量

与向量共线的充要条件是

()

A、0

B、,c、1

D、2

例4

下列命题中:

(1)=,=则=

(2)||=||是=的必要不充分条件

(3)=的充要条件是

(4)

=

)的充要条件是=

其中真命题的有__________________。

例5

如图5-1-1,以向量

,为边作平行四边形AoBD,又,用、表示、和。

图5-1-1

【课堂练习】

、()

A、B、c、D、2、“两向量相等”是“两向量共线”的()

A、充分不必要条件

B、必要不充分条件

c、充要条件

D、既不充分也不必要条件

3、已知四边形ABcD是菱形,点P在对角线Ac上(不包括端点A、c),则等于

()

A、B、c、D、4、若||=1,||=2,=且,则向量与的夹角为()

A、300

B、600

c、1200

D、1500

【课堂反思】

2.2平面向量的坐标运算

授课人:陈银辉

【学习目标】、知识与技能:了解平面向量的基本定理及其意义、掌握平面向量的正交分解及其坐标表示;理解用坐标表示的平面向量共线的条件。

2、能力目标:会用坐标表示平面向量的加、减与数乘运算;

3、情感目标:通过对平面向量的基本定理来理解坐标,实现从图形到坐标的转换过程,锻炼学生的转化能力。

【学习过程】

、平面向量基本定理

如果、是同一平面内的两个 的向量,那么对这一平面内的任一向量,有且只有一对实数、使,其中不共线的向量、叫做表示这一平面内所有向量的一组。

2、平面向量的正交分解及坐标表示

把一个向量分解为两个互相 的向量,叫做把向量正交分解。在平面直角坐标系内,分别取与轴、轴正方向相同的两个

向量、作为基底,对任一向量,有且只有一对实数、使得,则实数对(,)叫做向量的直角坐标,记作=,其中、分别叫做在轴、轴上的坐标,叫做向量的 表示。相等向量其坐标

,坐标相同的向量是

向量。

3、平面向量的坐标运算

(1)若=,=,则

=

(2)若A,B,则

(3)若=(,),则

4、平面向量共线的坐标表示

若=,=,则//的充要条件是

5、若,其中,则有:。

【典型例题】

例1

设、分别为与轴、轴正方向相同的两个单位向量,若则向量的坐标是()

A、(2,3)

B、(3,2)

c、(—2,—3)

D、(—3,—2)

例2

已知向量,且//则等于

A、B、—

c、D、—

分析

同共线向量的充要条件易得答案。

例3

若已知、是平面上的一组基底,则下列各组向量中不能作为基底的一组是

A、与—

B、3与2

c、+与—

D、与2

例4

已知当实数取何值时,+2与2—4平行?

【课堂练习】、已知=(1,2),=(—2,3)若

则____________,_________________。

2、已知点A(,1)、B(0,0)、c(,0),设∠BAc的平分线AE与Bc相交于E,那么有其中等于

A、2

B、c、—3

D、3、平面直角坐标系中,o为坐标原点,已知两点c满足,其中、且+则点c的轨迹方程为

A、B、c、D、4、已知A(—2,4)、B(3,—1)、c求点m、N的坐标及向量的坐标。

【课堂反思】

2.3平面向量的数量积及其运算

授课人:曾俊杰

【学习目标】

.知识与技能:

A若点3,—4)且,(—

(1)理解向量数量积的定义与性质;

(2)理解一个向量在另一个向量上的投影的定义;

(3)掌握向量数量积的运算律;

(4)理解两个向量的夹角定义;

2.过程与方法:

(1)能用投影的定义求一个向量在另一个向量上的投影;

(2)能区别数乘向量与向量的数量积;

(3)掌握两向量垂直、平行和反向时的数量积;

3.情感、态度与价值观:

(1)培养学生用数形结合的思想理解向量的数量积及它的几何意义;

(2)使学生体会周围事物周期变化的奥秘,从而激发学生学习数学的兴趣;

(3)培养数形结合的数学思想;

【学习过程】、请写出平面向量的坐标运算公式:

(1)若=,=,则

=

(2)若A,B,则

(3)若=(,),则

2、平面向量共线的坐标表示

若=,=,则//的充要条件是

3、两个非零向量夹角的概念 已知非零向量与,作=,=,则_________________________叫与的夹角.4、我们知道,如果一个物体在力F(与水平方向成θ角)的作用下产生位移s,那么力F所做的功w=

5、数量积的概念:

(1)两个非零向量、,过o作=,=,则∠AoB叫做向量与的夹角,显然,夹角

(2)若与的夹角为90,则称与垂直,记作⊥

(3)、是两个非零向量,它们的夹角为,则

叫做与的数量积(或内积),记作•。

即•=||•||•cos

规定•=0,显然,数量积的公式与物理学中力所做功的运算密切相关。

特别提醒:

(1)

(0≤θ≤π).并规定与任何向量的数量积为0

(2)

两个向量的数量积的性质:

设、为两个非零向量,)

=0

2)

当与同向时,=||||;当与反向时,=||||

特别的 =||2或.3)

cos= ;

4)

|

|≤||||

6、“投影”的概念:如图

定义:_____

_______叫做向量b在a方向上的投影

特别提醒:

投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当=0时投影为|b|;当=180时投影为|b|

3、平面向量数量积的运算律

交换律:=______

数乘结合律:=_________=__________

分配律:=_____________

【典型例题】

例1边长为的正三角形ABc中,设,则

=

例2已知△ABc中,,ABc的面积,且||=3,||=5,则与的夹角为

例3

已知=(1,2),=(6,—8)则在上的投影为

【课堂练习】、已知、均为单位向量,它们的夹角为那么=

2、已知单位向量与的夹角为,且,求及与的夹角。

3、若,且向量与垂直,则一定有

A、B、c、D、且

4、设是任意的非零平面向量,且它们相互不共线,下列命题

不与垂直

其中正确的有()

A、①②

B、②③

c、③④

D、②④

5、已知平面上三点A、B、c满足,则

的值等于____

______

【课后反思】

2.4平面向量的应用

授课人:刘晓聪

【学习目标】

一、知识与技能

.经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力

2.运用向量的有关知识对物理中的问题进行相关分析和计算,并在这个过程中培养学生探究问题和解决问题的能力

二、过程与方法

.通过例题,研究利用向量知识解决物理中有关“速度的合成与分解”等问题

2.通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化.[:学科网]

三、情感、态度与价值观

.以学生为主体,通过问题和情境的设置,充分调动和激发学生的学习兴趣,培养学生解决实际问题的能力.2.通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力.【学习过程】

请认真思考后,回答下列问题:

、判断:

(1)若四点共线,则向量()

(2)若向量,则四点共线()

(3)若,则向量

()

(4)只要向量满足,就有

()

2、提问:

(1)两个非零向量平行的充要条件是什么?(你能写出几种表达形式)

(2)两个非零向量垂直的充要条件是什么?(你能写出几种表达形式)

【典型例题】

例1

已知⊿ABc中,∠BAc=60o,AB=4,Ac=3,求Bc长.

变式

已知⊿ABc中,∠BAc=60o,AB=4,Ac=3,点D在线段Bc

上,且BD=2Dc求AD长.

例2

如图,已知Rt⊿oAB中,∠AoB=90o,oA=3,oB=2,m在oB上,且om=1,N在oA上,且oN=1,P为Am与BN的交点,求∠mPN.

【课堂练习】

⊿ABc中,AD,BE是中线,AD,BE相交于点G

(1)求证:AG=2GD

(2)若F为AB中点,求证G、F、c三点共线.

第四篇:平面向量基本定理(教学设计)

平面向量基本定理

教学设计

平面向量基本定理教学设计

一、教材分析

本节课是在学习了共线向量基本定理的前提下,进一步研究平面内任一向量的表示,为今后平面向量的坐标运算打下坚实的基础。所以,本节在本章中起到承上启下的作用。

平面向量基本定理揭示了平面向量之间的基本关系,是向量解决问题的理论基础。平面向量基本定理提供了一种重要的数学思想—转化思想。

二、教学目标

知识与技能: 理解平面向量基本定理,学会利用平面向量基本定理解决问题,掌握基向量表示平面上的任一向量.过程与方法:通过学习习近平面向量基本定理,让学生体验数学的转化思想,培养学生发现问题的能力.情感态度与价值观:通过学习习近平面向量基本定理,培养学生敢于实践的创新精神,在解决问题中培养学生的应用意识。

教学重点:平面向量基本定理的应用; 教学难点:平面向量基本定理的理解.三、教学教法

1.学情分析: 学生已经学习了向量的基本知识,并且对向量的物理背景有了初步的了解.2.教学方法:采用“问题导学—讨论探究—展示演练”的教学方法,完成教学目标.3.教学手段:有效使用多媒体和视频辅助教学,直观形象.四、学法指导

1.导学:设置问题情境,激发学生学习的求知欲,引发思考.2.探究:引导学生合作探究,解决问题,注重知识的形成过程.3.应用:在解决问题中培养学生的应用意识与学以致用的能力.五、教学过程

针对以上情况,结合我校“学本课堂”模式,我设计了如下教学过程,分为六个环节。第一环节:问题导学 自主学习

首先是课前预习,预习学案分为问题导学、典例精析、巩固拓展三大部分。通过预习学案,可以帮助学生完成课前预习。设计意图:通过预习学案让学生预习新知识,发现问题,使学习更具针对性,培养学生的自学与探索能力.第二环节:创设情境 导入课题

进入新课,引入课题采用问题情境的办法。通过导弹的飞行方向和力的分解两个实例,将问题类比,引入本节问题-向量的分解。为了帮助学生理解,提供了两段直观的视频,直观形象。设计意图:借助实际与物理问题设置情境,引发学生思考与想象,将问题类比,引入本节课题。

第三环节:分组讨论 合作探究

提出问题,进入探究阶段。采用分组讨论,合作探究的方法,先让学生回顾知识-向量加法的平行四边形法则。进入小组讨论,共同讨论两个问题。

问题1:向量a与向量e1,e2共起点,向量a是同一平面内任一向量,e1与e2不共线,探究向量a与e1,e2之间的关系.问题2:向量e1与e2是同一平面内不共线的两个向量,向量a是同一平面内任一向量,探究向量a与e1,e2之间的关系.设计意图:各小组成员讨论交流,合作学习,共同探讨问题,寻求结果,展示结果.第四环节:成果展示 归纳总结

小组讨论完毕,由几个小组展示研究成果。结合小组展示成果,借助多媒体展示,由师生共同探究向量的分解。展示过程中,要重点强调平移共起点,借助平行四边形法则解说分解过程,加深学生的直观映像,完成向量的分解。通过向量的分解,由学生小组讨论,共同归纳本节的核心知识—平面向量基本定理。在定理中重点补充强调以下几点说明:(1)基底e1,e2不共线,零向量不能做基底;(2)定理中向量a是任一向量,实数1,2唯一;(3)1e1e2叫做向量a关于基底e1,e2的分解式.第五环节:问题解决 巩固训练

引入定理后,应用定理解决学案例题与练习。例题1重在考查基底的概念,引导学生思考向量作为基底的条件,将问题转化为两个向量的共线问题。讲解完例题1之后,通过一个练习,巩固所学。通过两个问题,让学生认识理解基底的概念,把握基底的本质,突出重点——平面向量基本定理的应用。在例题2中继续强化对基底概念的理解,采用分组讨论,合作探究的教学方法,共同探讨解法,并由小组板演解题过程,最后强调解题步骤;此后,给出例2的一个变式题,让学生进一步深刻理解基底,体会基底的重要作用。解决本节难点——平面向量基本定理的理解,通过例题3对平面向量基本定理综合应用,解决三点共线问题。采用先启发引导后学生探究的方法,解决学生的困惑。例题讲解完毕后,对本题结论适当拓展,得到“当t11,点P是AB的中点,OP=(OAOB)”的重要结论。通过探究22本题,可以使学生深化对平面向量基本定理的理解,培养学生综合运用知识的能力.为了加强对定理的应用,在学案中设计了几个巩固练习,在课堂上当场完成,并及时纠错,巩固本节所学。

第六环节:拓展演练 反馈检测

为了攻克难点,检测效果,最后设计了几道课后习题进行拓展延伸,培养学生的综合能力。通过这些设计,可以增强教学的针对性,提高教学效果。在本节尾声,让学生回顾本节主要内容,完成小结,并在小结中强调转化的数学思想及方法。最后是布置课后作业及时间分配与板书设计。

六、评价感悟

本节教学设计在“学本课堂”的教学模式下,采用“问题导学—讨论探究—展示演练”的教学方法,引导学生自主学习,发现问题,小组讨论,合作探究,解决问题。在教学过程中,学生处于主体地位,教师充分发挥学生的积极性,力求打造高效课堂。

以平面向量基本定理为主题,从预习知识到探究定理,学生始终参与学习,参与探究,主观性与积极性得到了充分发挥,学习与探求知识的能力得到了极大的提升;应用定理解决问题,培养了学生的应用意识;通过学习定理,让学生体会了转化思想,提高了学习的综合能力。

第五篇:第二单元 数列、三角函数、平面向量教学设计2

沧源民族中学高三年级数学复习教学设计第六周2011年3月19日星期六

第二单元数列、三角函数、平面向量

第一讲三角函数(6课时)

主备教师肖平聪

一、教学内容及其解析

1、三角函数式的化简与求值:两角和的正弦、余弦、正切;二倍角的正弦、余弦、正切;诱导公式的运用。

2、三角函数的图象与性质:正弦函数、余弦函数、正切函数图象及其性质。

3、三角形中的三角函数问题:正弦定理、余弦定理以及三角形面积公式的运用。

二、目标及其解析

1、能灵活运用三角函数的有关公式,对三角函数进行变形与化简。

2、理解和掌握三角函数的图像及性质。

3、能用正弦定理、余弦定理解三角形问题。

三、问题诊断分析:

高考中,三角函数主要考查学生的运算能力、灵活运用能力,在客观题中,突出考察基本公式所涉及的运算、三角函数的图像基本性质,尤其是对角的范围及角之间的特殊联系较为注重。解答题中以中等难度题为主,涉及解三角形、向量及简单运算。三角函数部分,公式较多,易混淆,在运用过程中,要观察三角函数中函数名称的差异、角的差异、关系式的差异,确定三角函数变形化简方向。

四 教学过程设计

1、三角函数式的化简与求值

问题1两角和的正弦、余弦、正切的公式?

问题2二倍角的正弦、余弦、正切的公式呢?

问题3三角函数的诱导公式呢?

例题(见高考调研二轮重点讲练p30)

变式训练(见高考调研二轮重点讲练p30)

2、三角函数的图象与性质

问题1三角函数的正弦函数、余弦函数、正切函数图象怎么画?

问题2三角函数的正弦函数、余弦函数、正切函数的性质有哪些?

例题(见高考调研二轮重点讲练p31-33)

变式训练(见高考调研二轮重点讲练p31-33)

3、三角形中的三角函数问题

问题1正弦定理、余弦定理是什么?

问题2三角形面积公式怎么用?

例题(见高考调研二轮重点讲练p33)

变式训练(见高考调研二轮重点讲练p33)

五、目标检测:(见二轮复习用书p34)

六、配餐作业:(见二轮复习用书p34-36)热点集训作业和2011届先知专题卷专题.

下载《平面向量》单元教学设计范文word格式文档
下载《平面向量》单元教学设计范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《平面向量的坐标运算》教学设计

    《平面向量的坐标运算》教学设计 【教学目标】 1.理解平面向量的坐标的概念,会写出给定向量的坐标,会作出已知坐标表示的向量; 2.掌握平面向量的坐标运算,能准确表述向量的加法......

    平面向量基本定理(教学设计)5篇

    平面向量基本定理 教学设计 教材分析: 分析基本定理在教材中的作用,让学生有目标性地学习. 教学目标: 1.通过作图法理解并掌握平面向量基本定理的内容及含义. 2.深刻理解向量的基底......

    平面向量复习题

    平面 向 量向量思想方法和平面向量问题是新考试大纲考查的重要部分,是新高考的热点问题。题型多为选择或填空题,数量为1-2题,均属容易题,但是向量作为中学数学中的一个重要工具......

    平面向量教学反思五篇范文

    篇一:从平面向量到空间向量教学反思淮北实验高级中学 李德锋“空间向量与立体几何”一章是数学必修4“平面向量”在空间的推广,又是数学必修2“立体几何初步”的延续,本节是概......

    平面向量的数量积及应用教学设计[推荐]

    高效课堂教学模式探讨公开课平面向量的数量积及应用教学设计 华罗庚中学 袁劲竹 一、教材分析 向量作为一种基本工具,在数学解题中有着极其重要的地位和作用。利用向量知识......

    《平面向量基本定理》教学设计(共五篇)

    《平面向量基本定理》教学设计 一、内容和内容解析 内容:平面向量基本定理。 内容解析:向量不仅是沟通代数与几何的桥梁,还是解决许多实际问题的重要工具。从问题中抽象出向量......

    《平面向量加法运算及其几何意义 》教学设计

    《平面向量加法运算及其几何意义 》教学设计 〖教学目标〗 (1) 知识与技能:理解掌握向量加法运算,能够运用向量加法三角形法则和平行四边形法则求任意两个向量的和向量;初步尝试......

    《平面向量的数量积》教学设计及反思

    《平面向量的数量积》教学设计及反思 交口第一中学 赵云鹏平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,它是沟通代数、几何与三角函......