第一篇:《平面向量的加法教案》
《平面向量的加法》教案
课题名称:平面向量的加法
教材版本:苏教版《中职数学基础模块*下册》 年 级: 高一
撰写教师: 徐艳
一、理解课程要求
教材分析:
(1)地位和作用
《平面向量的加法》是苏教版《中职数学基础模块*下册》第七章平面向量第二节平面向量的加法﹑减法和数乘向量的第1课时,主要内容为向量加法的三角形法则和运算律.向量的加法是向量线性运算中最基本的一种运算,既是对平面向量这一章第一节向量概念的巩固和应用,也是向量运算的起始课,为后继学习向量的减法运算及其几何意义﹑向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量和立体几何中有很普遍的应用.因此,本节学习起着承上启下的作用.(2)教学内容及教材处理
教材是从两岸直航前后飞机发生的位移作为问题情境引入,让学生结合对平面向量概念的理解感受不同方式的位移对结果的影响,初步体会向量相加的概念,引发思考,引出新知.同时让学生知道数学源于生活并能解决生活中实际问题,更容易激发学习兴趣和激情.教学目标:(1)知识目标
① 理解向量加法的含义,学会用代数符号表示两个向量的和向量; ② 掌握向量加法的三角形法则,学会求作两个向量的和; ③ 掌握向量加法的交换律和结合律,学会运用它们进行向量运算.(2)能力目标
① 经历向量加法的概念﹑三角形法则的建构过程;
② 通过探究、思考、交流、解决问题等方式锻炼培养学生的逻辑思维能力、运算能力.(3)情感目标
努力运用多种形象、直观和生动的教学方法,通过深入浅出的教学,让学生主动学习数学,体验学习数学的乐趣和成功,使学生产生“我努力,我能行”的乐观心态.二、分析学生背景
(1)认知分析:学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础.(2)能力分析:学生已经具备了一定的归纳、猜想能力,主要培养学生分析问题和处理问题的能力.(3)情感分析:职高学生的数学基础相对较差,好在11综计1班学生对数学学习尚有一定兴趣,与教师沟通较好,故此应因势利导,引导学生积极参与探究,指导学生合作互动,讨论交流.教法学法:在教学时,主要运用问题情境教学法﹑启发式教学法和多媒体辅助教学法.在学法上,引导学生采用以“小组合作﹑自主探究以及练习法.三、选择媒体资源
媒体资源1 名 称: 两岸直航视频
媒体格式: avr 媒体资源2 名 称: 《爱的直航》 媒体格式: MP3
四、教学过程
一﹑创设情境
书本P39探究(给学生放映两岸直航视频)
★ 设计理念与意图:通过实际生活事件引入课题,提出数学问题,激发学生的兴趣,引发学生的探究欲望,为探究新知作铺垫.二﹑探求新知
1.向量加法定义:求两个向量和的运算.2.求作两个向量的和向量:
a b B a b abC A(1)在平面内任取一点A;作法: (2)作ABa,BCb;(3)则向量AC=ab.3.例题 书本P40
例2 用三角形法则作共线向量的和向量.设计意图:帮助学生突破难点,即理解三角形法则.4.练习: 书本P41练习1,2 设计意图:让学生分组练习,进一步加深对三角形法则的理解,巩固所学知识.5.加法运算律
(1)交换律:ab=b+a
(2)结合律:(ab)+c=a(bc)
练习:书本P41页练习3 设计意图:让学生运用加法交换律和结合律进行向量运算.思考:
如果平面内有n个向量依次首尾连接组成一条封闭折线,那么这n个向量的和是什么?
C例
A
三、课堂小结(学生归纳总结)
ABBCCA0B
1、向量加法的三角形法则:首尾相接,首尾连.2、向量运算律:交换律和结合律.给学生放映歌曲《爱的直航》
四、课后作业 练习册相应练习设计意图:帮助学生及时巩固所学知识.五、教学反思
这节课是向量运算的起始课,既复习了前面所学的知识,又为后面学习向量的减法及数乘运算奠定了基础,起着承上启下的作用.本节课主要引导学生探究向量加法的三角形法则和运算律,学生对不共线向量的和向量作法掌握很好,但是对与共线的向量,部分学生有些糊涂,认为三角形法则要构成三角形,没有理解其实质,需关注.同时,一部分学生书写向量不知加箭头,需反复强调.
第二篇:平面向量概念教案
平面向量概念教案
一.课题:平面向量概念
二、教学目标
1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。
2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。
3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣
三.教学类型:新知课
四、教学重点、难点
1、重点:向量及其几何表示,相等向量、平行向量的概念。
2、难点:向量的概念及对平行向量的理解。
五、教学过程
(一)、问题引入
1、在物理中,位移与距离是同一个概念吗?为什么?
2、在物理中,我们学到位移是既有大小、又有方向的量,你还能举出一些这样的量吗?
3、在物理中,像这种既有大小、又有方向的量叫做矢量。在数学中,我们把这种既有大小、又有方向的量叫做向量。而把那些只有大小,没有方向的量叫数量。
(二)讲授新课
1、向量的概念
练习1 对于下列各量:
①质量 ② 速度 ③位移 ④力 ⑤加速度 ⑥路程 ⑦密度 ⑧功 ⑨体积 ⑩温度
其中,是向量的有:②③④⑤
2、向量的几何表示
请表示一个竖直向下、大小为5N的力,和一个水平向左、大小为8N的力(1厘米表示1N)。思考一下物理学科中是如何表示力这一向量的?
(1)有向线段及有向线段的三要素(2)向量的模
(4)零向量,记作____;(5)单位向量
练习2 边长为6的等边△ABC中,=__,与 相等的还有哪些?
总结向量的表示方法: 1)、用有向线段表示。
2)、用字母表示。
3、相等向量与共线向量(1)相等向量的定义(2)共线向量的定义
六.教具:黑板 七.作业 八.教学后记
第三篇:平面向量教案
平面向量教案
课
件www.xiexiebang.com
二、复习要求
、向量的概念;
2、向量的线性运算:即向量的加减法,实数与向量的乘积,两个向量的数量积等的定义,运算律;
3、向量运算的运用
三、学习指导、向量是数形结合的典范。向量的几何表示法--有向线段表示法是运用几何性质解决向量问题的基础。在向量的运算过程中,借助于图形性质不仅可以给抽象运算以直观解释,有时甚至更简捷。
向量运算中的基本图形:①向量加减法则:三角形或平行四边形;②实数与向量乘积的几何意义--共线;③定比分点基本图形--起点相同的三个向量终点共线等。
2、向量的三种线性运算及运算的三种形式。
向量的加减法,实数与向量的乘积,两个向量的数量积都称为向量的线性运算,前两者的结果是向量,两个向量数量积的结果是数量。每一种运算都可以有三种表现形式:图形、符号、坐标语言。
主要内容列表如下:
运算图形语言符号语言坐标语言
加法与减法
=
-=
记=,=
则=
-==
实数与向量
的乘积
=λ
λ∈R记=
则λ=两个向量
的数量积
·=||||
cos<,>
记=,=
则·=x1x2y1y2
3、运算律
加法:=,=
实数与向量的乘积:λ=λλ;=λμ,λ=
两个向量的数量积:·=·;·=·=λ,·=··
说明:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算,例如2=
4、重要定理、公式
平面向量基本定理;如果是同一平面内的两个不共线向量,那么对于该平面内任一向量,有且只有一对数数λ1,λ2,满足=λ1λ2,称λ1λλ2为,的线性组合。
根据平面向量基本定理,任一向量与有序数对一一对应,称为在基底{,}下的坐标,当取{,}为单位正交基底{,}时定义为向量的平面直角坐标。
向量坐标与点坐标的关系:当向量起点在原点时,定义向量坐标为终点坐标,即若A,则=;当向量起点不在原点时,向量坐标为终点坐标减去起点坐标,即若A,B,则=
两个向量平行的充要条件
符号语言:若∥,≠,则=λ
坐标语言为:设=,=,则∥=λ,即,或x1y2-x2y1=0
在这里,实数λ是唯一存在的,当与同向时,λ>0;当与异向时,λ<0。
|λ|=,λ的大小由及的大小确定。因此,当,确定时,λ的符号与大小就确定了。这就是实数乘向量中λ的几何意义。
两个向量垂直的充要条件
符号语言:⊥·=0
坐标语言:设=,=,则⊥x1x2y1y2=0
线段定比分点公式
如图,设
则定比分点向量式:
定比分点坐标式:设P,P1,P2
则
特例:当λ=1时,就得到中点公式: ,实际上,对于起点相同,终点共线三个向量,,总有=uv,uv=1,即总可以用其中两个向量的线性组合表示第三个向量,且系数和为1。
平移公式:
①点平移公式,如果点P按=平移至P',则
分别称,为旧、新坐标,为平移法则
在点P新、旧坐标及平移法则三组坐标中,已知两组坐标,一定可以求第三组坐标
②图形平移:设曲线c:y=f按=平移,则平移后曲线c'对应的解析式为y-k=f
当h,k中有一个为零时,就是前面已经研究过的左右及上下移
利用平移变换可以化简函数解析式,从而便于研究曲线的几何性质
正弦定理,余弦定理
正弦定理:
余弦定理:a2=b2c2-2cbcosA
b2=c2a2-2cacosB
c2=a2b2-2abcosc
定理变形:cosA=,cosB=,cosc=
正弦定理及余弦定理是解决三角形的重要而又基本的工具。通过阅读课本,理解用向量法推导正、余弦定理的重要思想方法。
5、向量既是重要的数学概念,也是有力的解题工具。利用向量可以证明线线垂直,线线平行,求夹角等,特别是直角坐标系的引入,体现了向量解决问题的“程序性”特点。
四、典型例题
例
1、如图,为单位向量,与夹角为1200,与的夹角为450,||=5,用,表示。
分析:
以,为邻边,为对角线构造平行四边形
把向量在,方向上进行分解,如图,设=λ,=μ,λ>0,μ>0
则=λμ
∵||=||=1
∴λ=||,μ=||
△oEc中,∠E=600,∠ocE=750,由得:
∴
∴
说明:用若干个向量的线性组合表示一个向量,是向量中的基本而又重要的问题,通常通过构造平行四边形来处理
例
2、已知△ABc中,A,B,c,Bc边上的高为AD,求点D和向量坐标。
分析:
用解方程组思想
设D,则=
∵=,·=0
∴-6-3=0,即2xy-3=0①
∵=,∥
∴-6=-3,即x-2y1=0②
由①②得:
∴D,=
例
3、求与向量=,-1)和=夹角相等,且模为的向量的坐标。
分析:
用解方程组思想
法一:设=,则·=x-y,·=xy
∵<,>=<,>
∴&nb ∴
即①
又||=
∴x2y2=2②
由①②得或
∴=
法二:从分析形的特征着手
∵||=||=2
·=0
∴△AoB为等腰直角三角形,如图
∵||=,∠Aoc=∠Boc
∴c为AB中点
∴c
说明:数形结合是学好向量的重要思想方法,分析图中的几何性质可以简化计算。
例
4、在△oAB的边oA、oB上分别取点m、N,使||∶||=1∶3,||∶||=1∶4,设线段AN与Bm交于点P,记=,=,用,表示向量。
分析:
∵B、P、m共线
∴记=s
∴①
同理,记
∴=②
∵,不共线
∴由①②得解之得:
∴
说明:从点共线转化为向量共线,进而引入参数是常用技巧之一。平面向量基本定理是向量重要定理之一,利用该定理唯一性的性质得到关于s,t的方程。
例
5、已知长方形ABcD,AB=3,Bc=2,E为Bc中点,P为AB上一点
利用向量知识判定点P在什么位置时,∠PED=450;
若∠PED=450,求证:P、D、c、E四点共圆。
分析:
利用坐标系可以确定点P位置
如图,建立平面直角坐标系
则c,D,E
设P
∴=,=
∴
·=3y-1
代入cos450=
解之得,或y=2
∴点P为靠近点A的AB三等分处
当∠PED=450时,由知P
∴=,=
∴·=0
∴∠DPE=900
又∠DcE=900
∴D、P、E、c四点共圆
说明:利用向量处理几何问题一步要骤为:①建立平面直角坐标系;②设点的坐标;③求出有关向量的坐标;④利用向量的运算计算结果;⑤得到结论。
同步练习
选择题、平面内三点A,B,c,若∥,则x的值为:
A、-5B、-1c、1D、5
2、平面上A,B,D,c点满足,连Dc并延长至E,使||=||,则点E坐标为:
A、B、c、D、或
2、点沿向量平移到,则点沿平移到:
3、A、B、c、D、4、△ABc中,2cosB·sinc=sinA,则此三角形是:
A、直角三角形B、等腰三角形c、等边三角形D、以上均有可能
5、设,是任意的非零平面向量,且相互不共线,则:
①-=0
②||-||<|-|
③-不与垂直
④·=9||2-4|2中,真命题是:
A、①②B、②③c、③④D、②④
6、△ABc中,若a4b4c4=2c2,则∠c度数是:
A、600B、450或1350c、1200D、300
7、△oAB中,=,=,=,若=,t∈R,则点P在
A、∠AoB平分线所在直线上B、线段AB中垂线上
c、AB边所在直线上D、AB边的中线上
8、正方形PQRS对角线交点为m,坐标原点o不在正方形内部,且=,=,则=
A、B、c、D、填空题
9、已知{,|是平面上一个基底,若=λ,=-2λ-,若,共线,则λ=__________。
0、已知||=,||=1,·=-9,则与的夹角是________。
1、设,是两个单位向量,它们夹角为600,则·=____________。
2、把函数y=cosx图象沿平移,得到函数___________的图象。
解答题
3、设=,=,⊥,∥,试求满足=的的坐
14、若=,-=,求、及与夹角θ的余弦值。
5、已知||=,||=3,和夹角为450,求当向量λ与λ夹角为锐角时,λ的取值范围。
参考答案
1、c2、B3、D4、B5、D6、B7、A8、9、10、11、12、y=sinx1 13、4、=,=,5、λ<,或λ>且λ≠ 课
件www.xiexiebang.com
A
第四篇:平面向量教案
平面向量的综合应用 执教人: 执教人:易燕子
考纲要求: “从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使 考纲要求:
对数学基础知识的考查达到必要的深度”。向量以其独特的数形结合和坐标运算,成为衔接代数与几何的最佳纽带,故以向量知识与三角函数、解析几何、数列、不等式等多项内容的交汇作为设计综合性试题考查考生的综合能力,是高考的一 个热点,也是重点。教学目标(1)进一步理解平面向量的有关知识; 教学目标:(2)了解在平面向量与其他知识交汇点设计试题的几种形式;(3)能综合运用平面向量和相关知识解决问题。教学重点: 教学重点:平面向量与其他知识的相互联系。教学难点: 教学难点:平面向量与其他知识的相互转化。
评述:通过平面向量的运算得出二次不等式,利用恒成立解决。
“ 训练:(2010 北京)a、b 为非零向量,a ⊥ b ”是“函数 f(x)=(xa + b) xb − a)为一次(函数”的()A.充分而不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 四.与三角知识的交汇 例 4.(2009 湖北)已知向量 a =(cos α , sin α), b =(cos β , sin β), c =(− 1,0)(1)求向量 b + c 的长度的最大值;(2)设 a =
r
r
r
r
r
r
r r
r r
π
4
,且 a ⊥(b + c),求 cos β 的值.
r
r r
教学设计: 教学设计:
一.与集合的交汇 例 1.(2009 湖北)已知 P = {a | a =(1, 0)+ m(0,1), m ∈ R},Q = {b | b =(1,1)+ n(−1,1), n ∈ R} 是两个向量集合,则 P I Q = A.〔1,1〕 { }(B.{ 〔-1,1〕 })C.{ 〔1,0〕 }
r r
r r
评述:以平面向量(三角函数)为载体,与三角函数(平面向量)的交叉与综合,是高考命题的一个 重要考点,其解法是利用向量的数量积和模的概念等脱去向量的“外衣”,转化为三角函数问 题,即可解决。训练:(2009 江苏)设向量 a =(4 cos α ,sin α), b =(sin β , 4 cos β), c =(cos β , −4 sin β)(1)若 a 与 b − 2c 垂直,求 tan(α + β)的值;(2)求 | b + c | 的最大值;
r
r
r
D.{ 〔0,1〕 }
r
r
r
r r uuu uuu uuur uuu uuu uuur r r r uuu uuu uuu uuu uuu uuu r r r r r r | OA |=| OB |=| OC |, NA + NB + NC = 0,且 PA • PB = PB • PC = PC • PA, 则点 O,N,P 依 次是 ∆ABC 的()
A.重心 外心 垂心 C.外心 重心 垂心 B.重心 外心 内心 D.外心 重心 内心
变式:若将 Q 集合中的 n 改为 m,结果又如何呢? 评述:借助平面向量的坐标运算,把集合的交集运算转化为向量相等,考查了方程思想和等价 转化的思想。二.与平面几何的交汇 例 2.(2009 宁夏海南)已知 O,N,P 在 ∆ABC 所在平面内,且
r r
(3
第五篇:平面向量基本定理教案
§2.3.1平面向量基本定理教学设计
教学目的:
(1)了解平面向量基本定理;
(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.教学重点:平面向量基本定理.教学难点:平面向量基本定理的理解与应用.授课类型:新授课 教学过程:
一、复习引入:
1.实数与向量的积:实数λ与向量a的积是一个向量,记作:λa
(1)|λa|=|λ||a|;
(2)λ>0时λa与a方向相同;λ<0时λa与a方向相反;λ=0时λa=0
2.运算定律
结合律:λ(μa)=(λμ)a ;
分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb
3.向量共线定理 向量b与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b=λa.二、讲解新课:
1.提出问题:由平行四边形想到:
(1)是不是每一个向量都可以分解成两个不共线向量?且分解是唯一?(2)对于平面上两个不共线向量e1,e2是不是平面上的所有向量都可以用它们来表示?
2.设e1,e2是不共线向量,a是平面内任一向量,e1 a
MC
N B e2
O OA=e1,OM=λ
1e2; OB=e2,ON=λe2
21OC=a=OM+ON=λ
e1+λe2,2平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对
于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2.探究:
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式惟一.λ1,λ2是被a,e1,e2唯一确定的数量
3、两个非零向量的夹角:
如图所示,已知两个非零向量a,b,在平面上任取一点O,作OAaO ,Bb,则AOB0叫做向量a与b的夹角,ba BAO θbθ bAOB aa【说明】(1)研究两个非零向量的夹角时,必须先将这两个向量的起点移至同一个点;但是当两个向量的终点重合时,表示向量的这两条线段所成的0,范围内的角也等于这两个向量之间的夹角。(2)只有非零向量之间才存在夹角;
(3)如果∠AOB=0°a与b同向;
(4)如果∠AOB=90°,我们就说向量a与b垂直,记作:ab;
(5)如果∠AOB=180°a与b反向。
三、讲解范例:
例1 已知向量e1,e2 求作向量2.5e1+3e2.作法:见教材
四、课堂练习:
1.设e1、e2是同一平面内的两个向量,则有()A.e1、e2一定平行
e2e1B.e1、e2的模相等
C.同一平面内的任一向量a都有a =λe1+μe2(λ、μ∈R)D.若e1、e2不共线,则同一平面内的任一向量a都有a =λe1+ue2(λ、u∈R)2.已知矢量a = e1-2e2,b =2e1+e2,其中e1、e2不共线,则a+b与c =6e1-2e2的关系
A.不共线 B.共线 C.相等 D.无法确定
3.已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于()A.3 B.-3 C.0 D.2
五、小结:平面向量基本定理,其实质在于:同一平面内任一向量都可以表示为两个不共线向量的线性组合.
六、课后作业:课本:101页1,2 板书设计:略