第一篇:高中数学:关于三角形的“四心”与平面向量的结合教案 苏教版必修5
关于三角形的“四心”与平面向量的结合
[关键字]高中|数学|平面向量|内心|外心|重心|垂心
[内容摘要]每年全国各地高考试卷中,都有不少习题与三角形的“四心”有关,学生在解决这些问题时错误率较高,甚至是无从下手.笔者搜集了部分资料,结合本人积累的一些高三知识,就高中新课标向量的相关知识进行阐述,对有关三角形的“四心”的相关知识进行复习.特别体现出它们之间的结合,不当疏漏之处,恳请读者批评指正.一、基础知识复习
1.定义:我们把三角形三个内角的角平分线的交点叫做三角形的内心,即三角形内切圆圆心;三角形三条边上的中垂线的交点叫做三角形的外心,即三角形外接圆圆心;三角形三条边上的中线的交点叫做三角形的重心;三角形三条高线的交点叫做三角形的垂心.我们将三角形的“内心”、“外心”、“重心”、“垂心”合称为三角形的“四心”.2.应用:三角形的内心到三角形三边的距离相等;三角形的外心到三角形三个顶点的距离相等;三角形的重心到三角形的顶点的距离是相应中线长的三分之二;三角形的垂心与顶点的连线垂直于该顶点的对边.3.注意点:三角形的“四心”与平面向量知识的结合.二、典型例题分析 [例]已知点G是ABC内任意一点,点 M是ABC所在平面内一点.试根据下列条件判断G点可能通过ABC的__________心.(填“内心”或“外心”或“重心”或“垂心”).[提出问题]
AB(1)若存在常数,满足MGMA(ABABCAC)(0)AC,则点G可能通过的__________.D是ABC(2)若点的底边
BC上的中点,满足GDGBGDGC,则点
G可能通过ABC的__________.ABAC(3)若存在常数,满足MGMA()(0)ABsinBACsinC,则点
G可能通过ABC的__________.ABAC(4)若存在常数,满足MGMA()(0),则点
ABcosBACcosCG可能通过ABC的__________.[思路分析]以上四个问题的解决要求不同,除了熟悉三角形的“四心”的性质,同时更要熟悉平面向量的性质,对于平面向量与三角函数的结合也要相当熟悉.[解答过程](1)记ABACe1,e2ABAC,则AG(e1e2).由平面向量的平行四边形或三角形法则知,点G是角平分线上的点,故应填内心.(2)简单的变形后发现点G是BC边中垂线上的点,故应填外心.(3)ABsinBACsinC,记ABsinBACsinCh'则AG(ABAC)(')h,.由平面向量的平行四边形或三角形法则知,点G是BC边的中线上的点,故应填重心.(4)分析后发现,本题学生难以找到解决问题的突破口,主要在于平面向量的数
量
积的, 充
分
利
用
.由ABACMGMA()(0)ABcosBACcosCABAC得AG()(0), ABcosBACcosCABAC(关键点)AGBC()BC(0)
ABcosBACcosCABBCACBCAGBC()(0)ABcosBACcosC于是.(BCcos(-B)BCcosB)=(BCBC)0从而AGBC,点G是高线上的点,故应填垂心.[教师点评]以上四个问题处理的方法各不相同,注意到平面向量及三角形的“四心”的性质在解答问题时的作用.特别注意第四问两边同乘以某个表达式的技巧.三、综合运用
[提出问题]若O点是ABC的外心, H点是ABC的垂心, 且OHm(OAOBOC),求实数
m的值.[思路分析]许多学生在解答此类题时,只能用特殊值的方法解决.要求学生能够充分利用本节提到的一些基础知识及相关性质解题.[解答过程]由OHm(OAOBOC),得OHOAm(OAOBOC)OA于是HA(m1)OAm(OBOC), ,(关键点)HABC(m1)OABCm(OBOC)BC
即HABC(m1)OABCm(OBOC)(OCOB), 由题意,知HABC0,及(OBOC)(OCOB)0,从而(m1)OABC0, 其中OABC0,因此m10,即m1.[教师点评]请读者特别注意解题中的关键点,解这类问题时的技巧也应熟练掌握.[举一反三]通过上述例题及解答,我们可以总结出关于三角形“四心”的向量表达式.若P点为ABC内任意一点,若P点满足: ABACAP(),0ABACP为ABC的内心1.BABCBPt(),t0BABC;2.D、E两点分别是ABC的边BC、CA上的中点,且
DPPBDPPCP为ABC的外心EPPCEPPA;1AP(ABAC),33.P为ABC的重心1BP(BABC),3APBC0P为ABC的垂心4.BPAC0;.
第二篇:讲义---平面向量与三角形四心的交汇
讲义---平面向量与三角形四心的交汇 一、四心的概念介绍
(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。二、四心与向量的结合
(1)OAOBOC0O是ABC的重心.证法1:设O(x,y),A(x1,y1),B(x2,y2),C(x3,y3)
x1x2x3x(x1x)(x2x)(x3x)03 OOAOBOC0yyy23(y1y)(y2y)(y3y)0y13是ABC的重心.证法2:如图
AOAOBOC OA2OD0
AO2OD
A、O、D三点共线,且O分AD
为2:1
OEO是ABC的重心
(2)OAOBOBOC证明:如图所示O是三角形
BDCOCOAO为ABC的垂心.ABC的垂心,BE垂直AC,AD垂直BC,D、E是垂足.OAOBOBOCOB(OAOC)OBCA0
AOBAC
E同理OABC,OCAB
BOO为ABC的垂心
(3)设a,b,c是三角形的三条边长,O是ABC的内心
aOAbOBcOC0O为ABC的内心.ABAC、分别为AB、AC方向上的单位向量,cbABAC平分BAC, cbABACbc),令 AO(abccb证明:DCAOABACbc()abccb化简得(abc)OAbABcAC0
aOAbOBcOC0
(4)OAOBOCO为ABC的外心。
三、典型例题:
例1:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足OPOA(ABAC),0,,则点P的轨迹一定通过ABC的()
A.外心 B.内心 C.重心 D.垂心
例2:(03全国理4)O是平面上一定点,A、B、C是平面上不共线的三个点,动点
P满足OPOA(ABABACAC),0,,则点P的轨迹一定通过ABC的()
A.外心 B.内心 C.重心 D.垂心
例3:1)O是平面上一定点,A、B、C是平面上不共线的三个点,动点
P满足OPOA(ABABcoBsACACcoCs),0,,则点P的轨迹一定通过ABC的()
A.外心 B.内心 C.重心 D.垂心
2)已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足ABACOPOA(),[0,), 则动点P的轨迹一定通过△ABC的()|AB|sinB|AC|sinCA.重心 B.垂心 C.外心 D.内心
3)已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足OBOCABACOP(), [0,), 则动点P的轨迹一定通过△ABC的()2|AB|cosB|AC|cosCA.重心 B.垂心 C.外心 D.内心
例
4、已知向量OP12P31,OP2,OP3满足条件OP1OP2OP30,|OP1||OP2||OP3|1,求证:△PP是正三角形.
ABC例
5、的外接圆的圆心为O,两条边上的高的交点为H,则实数m = OHm(OAOBOC),.
例
6、点). O是三角形ABC
所在平面内的一点,满足OAOBOBOCOCOA,则点
O是ABC的(A.三个内角的角平分线的交点 C.三条中线的交点
B.三条边的垂直平分线的交点 D.三条高的交点
例7
在△ABC内求一点P,使
AP2BP2CP2最小.
222222例8已知O为△ABC所在平面内一点,满足|OA||BC||OB||CA||OC||AB|,则O为△ABC的 心.
例9..已知O是△ABC所在平面上的一点,若OAOBOBOCOCOA,则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
222222例10 已知O为△ABC所在平面内一点,满足|OA||BC||OB||CA|=|OC||AB|,则O点是△ABC的()A.垂心 B.重心 C.内心 D.外心
例11已知O是△ABC所在平面上的一点,若(OAOB)AB=(OBOC)BC=(OCOA)CA= 0,则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
例12:已知O是△ABC所在平面上的一点,若aOAbOBcOC= 0,则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
aPAbPBcPC例13:已知O是△ABC所在平面上的一点,若PO(其中P是△ABC所在平面内任意一点),abc则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
四、配套练习:
1.已知ABC三个顶点A、B、C及平面内一点
P,满足
PAPBPC0,若实数满足:ABACAP,则的值为()
A.2 B.32 C.3 D.6 3
2.若ABC的外接圆的圆心为O,半径为1,OAOBOCA.
0,则OAOB()12 B.0 C.1 D.1 23.点O在ABC内部且满足OA2OB2OC0,则ABC面积与凹四边形A.0 B.
ABOC面积之比是()
C.
D.
是ABC的()4.ABC的外接圆的圆心为O,若OHOAOBOC,则HA.外心 B.内心 C.重心 D.垂心
5.O是平面上一定点,A、B、C是平面上不共线的三个点,若OABCOB222
CAOCAB222,则O是ABC的()
A.外心 B.内心 C.重心 D.垂心 6.ABC的外接圆的圆心为O,两条边上的高的交点为H,OH则实数m =
17.(06陕西)已知非零向量与满足(+)〃=0且〃= , 则△ABC为()
2A.三边均不相等的三角形 B.直角三角形 C.等腰非等边三角形 D.等边三角形 8.已知ABC三个顶点
m(OAOBOC),A、B、C,若ABABACABCBBCCA,则ABC为()
2A.等腰三角形 B.等腰直角三角形
C.直角三角形 D.既非等腰又非直角三角形
9.已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足OPOA(ABAC), [0,).则P点的轨迹一定通过△ABC的()A.外心 B.内心 C.重心 D.垂心
10.已知O是△ABC所在平面上的一点,若OAOBOC= 0, 则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
111.已知O是△ABC所在平面上的一点,若PO(PAPBPC)(其中P为平面上任意一点), 则O点是△ABC
3的()A.外心 B.内心 C.重心 D.垂心
第三篇:高中数学必修4人教A教案第二章平面向量复习
第二章
平面向量复习课
(一)一、教学目标
1.理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。2.了解平面向量基本定理.3.向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。4.了解向量形式的三角形不等式:||a|-|b|≤|a±b|≤|a|+|b|(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a|2+|b|2)=|a-b|2+|a+b|2.5.了解实数与向量的乘法(即数乘的意义): 6.向量的坐标概念和坐标表示法
7.向量的坐标运算(加.减.实数和向量的乘法.数量积)
8.数量积(点乘或内积)的概念,a·b=|a||b|cos=x1x2+y1y2注意区别“实数与向量的乘法;向量与向量的乘法”
二、知识与方法
向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视.数量积的主要应用:①求模长;②求夹角;③判垂直
三、教学过程
(一)重点知识:
1.实数与向量的积的运算律:
(1)(a)()a(2)()a aa(3)(ab)ab
2.平面向量数量积的运算律:
(1)abba
(2)(a)b(ab)a(b)
(3)(ab)c acbc
3.向量运算及平行与垂直的判定: 设a(x1,y1),b(x2,y2),(b0).则ab(x1x2,y1y2)
ab(x1x2,y1y2)
abx1x2y1y2
a//bx1y2x2y10.abx1x2y1y20.4.两点间的距离:
|AB|(x1x2)2(y1y2)2
5.夹角公式: cosab a bx1x2y1y2 x1y1x2y22222
6.求模:
aaa
ax2ya(x1x2)2(y1y2)2
(二)习题讲解:第二章 复习参考题
(三)典型例题
例1. 已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设OA=a,OB=b,OC=c,且|a|=2,|b|=1,| c|=3,用a与b表示c
解:如图建立平面直角坐标系xoy,其中i, j是单位正交基底向量, 则B(0,1),C(-3,0),设A(x,y),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A(1,-3),也就是a=i -3j, b=j,c=-3i所以-3a=33b+c|即c=3a-33b
(四)基础练习:
(五)、小结:掌握向量的相关知识。
(六)、作业:
第二章
平面向量复习课
(二)一、教学过程
(一)习题讲解:
(二)典型例题
例1.已知圆C:(x3)(y3)4及点A(1,1),M是圆上任意一点,点N在线
22段MA的延长线上,且MA2AN,求点N的轨迹方程。
练习:1.已知O为坐标原点,OA=(2,1),OB=(1,7),OC=(5,1),OD=xOA,y=DB·DC(x,y∈R)
求点P(x,y)的轨迹方程;
2.已知常数a>0,向量m(0,a),n(1,0),经过定点A(0,-a)以mn为方向向量的直线与经过定点B(0,a)以n2m为方向向量的直线相交于点P,其中R.求点P的轨迹C的方程;
例2.设平面内的向量OA(1,7), OB(5,1), OM(2,1),点P是直线OM上的一个动点,求当PAPB取最小值时,OP的坐标及APB的余弦值.
解
设OP(x,y).∵
点P在直线OM上,∴ OP与OM共线,而OM(2,1),∴
x-2y=0即x=2y,有OP(2y,y).∵ PAOAOP(12y,7y),PBOBOP(52y,1y),∴ PAPB(12y)(52y)(7y)(1y)
= 5y2-20y+12 = 5(y-2)2-8.
从而,当且仅当y=2,x=4时,PAPB取得最小值-8,此时OP(4,2),PA(3,5),PB(1,1).
于是|PA|34,|PB|2,PAPB(3)15(1)8,∴ cosAPBPAPB|PA||PB|8342417 17小结:利用平面向量求点的轨迹及最值。
作业:
第四篇:平面向量中的三角形四心问题(定稿)
平面向量中的三角形四心问题
向量是高中数学中引入的重要概念,是解决几何问题的重要工具。本文就平面向量与三角形四心的联系做一个归纳总结。在给出结论及证明结论的过程中,可以体现数学的对称性与推论的相互关系。
一、重心(barycenter)
三角形重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1。在重心确定上,有著名的帕普斯定理。
结论1:若G为ABC所在平面内一点,则GAGBGC0G是三角形的重心证明:设BC中点为D,则2GDGBGCGAGBGC0GAGBGCGA2GD,这表明,G在中线AD上同理可得G在中线BE,CF上故G为ABC的重心
结论2:
1若P为ABC所在平面内一点,则PG(PAPBPC)3G是ABC的重心1证明:PG(PAPBPC)(PGPA)(PGPB)(PGPC)03GAGBGC0G是ABC的重心
二、垂心(orthocenter)三角形的三条高线的交点叫做三角形的垂心。
结论3:
若H为ABC所在平面内一点,则HAHBHBHCHCHAH是ABC的垂心
证明:HAHBHBHCHB(HAHC)0HBAC0HBAC同理,有HACB,HCAB故H为三角形垂心
结论4:
若H为ABC所在平面内一点,则HABCHBACHCABH是ABC的垂心证明:由HABCHBCA得,HA(HBHC)HB(HCHA)2HBHCHCHA同理可证得,HAHBHBHCHCHA由结论3可知命题成立2222222222222
三、外心(circumcenter)三角形三条边的垂直平分线(中垂线)的相交点。用这个点做圆心可以画三角形的外接圆。
结论5:
若O是ABC所在平面内一点,则OAOBOCO是ABC的外心 证明:由外心定义可知命题成立
结论6:
若O是ABC所在平面内一点,则(OAOB)BA(OBOC)CB(OCOA)AC O是ABC的外心 3
证明:(OAOB)BA(OAOB)(OAOB)OAOB(OBOC)CBOBOC(OCOA)ACOCOA222222222故OAOBOBOCOCOAOAOBOC故O为ABC的外心
222
四、内心(incenter)
三角形三条内角平分线的交点叫三角形的内心。即内切圆的圆心。
结论7:
若P为ABC所在平面内一点,则ABACBABCCACBOPOA1OB2OC3(0)ABACBABCCACBP是ABC的内心
证明:记AB,AC方向上的单位向量分别为e1,e2ABACOPOA1AP1(e1e2)ABAC由平行四边形法则知,(e1e2)在AB,AC边夹角平分线上 即P在A平分线上同理可得,P在B,C的平分线上故P为ABC的内心
结论8:
若P是ABC所在平面内一点,则aPAbPBcPC0P是ABC的内心证明:不妨设PDPC
aPAbPBcPC0a(PDDA)b(PDDB)cPC0(abc)PC(aDAbDB)0由于PC与DA,DB不共线,则abc0,aDAbDB0b即DBa由角平分线定理,CD是ACB的平分线同理可得其他的两条也是平分线故P是ABC的内心DA
第五篇:高中数学必修4平面向量复习5正弦定理余弦定理
5.5正弦定理、余弦定理
要点透视:
1.正弦定理有以下几种变形,解题时要灵活运用其变形公式.
(1)a=2RsinA,b=2RsinB,c=2RsinC;
abc(2)sinA=,sinB=,sinC=: 2R2R2R
(3)sinA:sinB:sinC=a:b:c.
可以用来判断三角形的形状,其主要功能是实现三角形中的边角关系转化,如常把a,b,c换成2Rsin A,2Rsin B,2Rsin C来解题.
2.判断三角形的形状特征,必须从研究三角形的边与边关系,或角与角的关系入手,充分利用正弦定理与余弦定理进行边角转化,由三角形的边或角的代数运算或三角运算,找出边与边或角与角的关系,从而作出正确判断.
3.要注意利用△ABC中 A+B+C=π,以及由此推得的一些基本关系式
BCAsin(B+C)=sinA,cos(B+C)=-sinA,sin=cos等,进行三角变换的运2
2用.
4.应用解三角形知识解决实际问题时,要分析和研究问题中涉及的三角形,它的哪些元素是已知的,哪些元素是未知的,应选用正弦定理还是余弦定理进行求解.
5.应用解三角形知识解实际问题的解题步骤:
(1)根据题意画出示意图.
(2)确定实际问题所涉及的三角形,并搞清该三角形的已知元和末知元.
(3)选用正、余弦定理进行求解,并注意运算的正确性.
(4)给出答案.
活题精析:
例1.(2001年全国卷)已知圆内接四边形ABCD的边长是AB=2,BC=6,CD=DA=4,求四边形ABCD的面积.
要点精析:本题主要考查三角函数的基础知识,以及应用三角形面积公式和余弦定理解三角形的方法,考查应用数学知识分析、解决实际问题的能力.
解:如图所示,连BD,四边形ABCD的面积
11S=SABDSCDB=AB·AD·sinA+BC·CDsinC,2
21∵ A+C=180°,∴ sin A= sin C,于是 S=(2×4+4×6)·sin A=16sin A. 2
222在△ABD中,BD=AB+AD-2AB·ADcosA=20-16cosA.
在△CBD中,BD2=CD2+BC2-2CD·BCcosC=52-48cosC.
213又cosA=-cosC, cosA=-, ∵ A∈(0, π), ∴ A=π, sinA=.232
3∴ S=16×=8.2
例2.(2004春北京卷)在△ABC中,a,b,c分别是∠A,∠B,∠C的对
边长,已知a,b,c成等比数列,且a2-c2=ac-bc,求∠A的大小及bsinB的c值。
要点精析:(1)∵ a,b,c成等差数列,∴ b2=ac.
又a2-c2=ac-bc,∴ b2+c2-a2=bc,在△ABC中,由余弦定理得
b2c2a21cosA==.∴ A=60°; 22bc
bsinA(2)解法1:在△ABC中,由正弦定理得sinB=,a
bsinBb2sin6032∵ b=ac,∠A=60°,∴ ==sn60=. cca2
11解法2.在△ABC中,由面积公式得bcsinA=acsinB,∵ b2=ac,22
bsinB3∠A=60°,∴ bcsinA=b2 sinB,∴ =sinA=.c2
例3.(2001年上海卷)已知a,b,c是△ABC中∠A,∠B,∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.
13要点精析:∵ S=absinC,∴sinc=,于是∠C=60°或∠C=120°. 22
又∵ c2=a2+b2-2abcosC,当∠C=60°时,c2=a2+b2-ab,c
当∠C=120°时,c2=a2+b2+ab,c,∴ c
.练习题
一、选择题
tanAa
21.在△ABC中,若,则△ABC是()tanBb2
A.等腰(非直角)三角形B.直角(非等腰)三角形
C.等腰三角形或直角三角形D.等腰直角三角形
ABab2.在△ABC中,tan,则三角形中()2ab
A.a=b且c>2aB.c2=a2+b2且a≠b
2cD.a=b或c2=a2+b2
3.为测某塔AB的高度,在一幢与塔AB相距20 m的楼的楼顶处测得塔顶的仰角为30°,测得塔基B的俯角为45°,那么塔AB的高度是()
33A.20(1+)mB.20(1+)m 32
C.20(1+)mD.30m
4.设α,β是钝角三角形的两个锐角,下列四个不等式中不正确的是()
1A.tanαtanβ<1B.sinβ<2C.cosβ>1D.tan(α+β) 5.已知锐角三角形的三边长分别为2,3,x,则x的取值范围是()C.a=b= A.1 C.0 56.△ABC的三边分别为 2m+3,m2+2m,m2+3m+3(m>0),则最大内角的度数为() A.150°B.120°C.90°D.135° 二、填空题: abc7.在△ABC中,已知A=60°,b=1,S△ABC=3,则 sinAsinBsinC 1138.△ABC的三边满足:,则∠B= abbcabc 4129.在△ABC中,已知sinA=,sinB=,则sinC的值是.51 310.在△ABC中,BC边上的中线长是ma,用三边a,b,c表示ma,其公式是.三、解答题 11.设a,b,c是△ABC中A,B,C的对边,当m>0时,关于x的方程b(x2+m)+c(x2-m)- ax=0有两个相等实根,且sinCcosA-cosCsinA=0,试判断△ABC的形状。 12.已知⊙O的半径为R,若它的内接三角形ABC中,等式2R(sin2A-sin2C)=(2a-b)sinB成立,(1)求∠C的大小; (2)求△ABC的面积S的最大值. 13.在△ABC中,∠C=60°,BC=a,AC=b,a+b=16. (1)试写出△ABC的面积S与边长a的函数关系式; (2)当a等于多少时,S有最大值并求出最大值; (3)当a等于多少时,周长l有最小值并未出最小值. 14.在△ABC中,已知面积S=a2-(b-c)2,且b+c=8,求S的最大值. CCCC15.在△ABC中,m(cos,sin),n(cos,sin),且m与n的夹角是. 22222 (1)求C; 73(2)已知c=,三角形面积 S=3,求a+b。22