第一篇:向量与三角形四心的一些结论
【一些结论】:以下皆是向量 若P是△ABC的重心 PA+PB+PC=0 2 若P是△ABC的垂心 PA•PB=PB•PC=PA•PC(内积)3 若P是△ABC的内心 aPA+bPB+cPC=0(abc是三边)若P是△ABC的外心 |PA|²=|PB|²=|PC|²(AP就表示AP向量 |AP|就是它的模)AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞)则直线AP经过△ABC内心6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞)经过垂心 7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或 AP=λ(AB+AC),λ∈[0,+ ∞)经过重心
8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点
【以下是一些结论的有关证明】
1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB)+cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c)OC+(aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。必要性:已知O是三角形内心,设BO与AC相交于E,CO与AB相交于F,∵O是内心∴b/a=AF/BF,c/a=AE/CE过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,所以四边形OMAN是平行四边形根据平行四边形法则,得向量OA=向量OM+向量ON=(OM/CO)*向量CO+(ON/BO)*向量BO=(AE/CE)*向量CO+(AF/BF)*向量BO=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO∴a*向量OA+b*向量OB+c*向量OC=向量02.已知△ABC 为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},求P点轨迹过三角形的垂心OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP=入{(AB /|AB|^2*sin2B)+AC /(|AC|^2*sin2C)},AP•BC=入{(AB•BC /|AB|^2*sin2B)+AC•BC /(|AC|^2*sin2C)},AP•BC=入{|AB|•|BC|cos(180°-B)/(|AB|^2*sin2B)+|AC|•|BC| cosC/(|AC|^2*sin2C)},AP•BC=入{-|AB|•|BC| cos B/(|AB|^2*2sinB cos B)+|AC|•|BC| cosC/(|AC|^2*2sinC cosC)},AP•BC=入{-|BC|/(|AB|*2sinB)+|BC|/(|AC|*2sinC)},根据正弦定理得:|AB|/sinC=|AC|/ sinB,所以|AB|*sinB=|AC|*sinC∴-|BC|/(|AB|*2sinB)+|BC|/(|AC|*2sinC)=0,即AP•BC=0,P点轨迹过三角形的垂心3.OP=OA+λ
(AB/(|AB|sinB)+AC/(|AC|sinC))
OP-OA=
λλ(AB/(|AB|sinB)+AC/(|AC|sinC))AP=(AB/(|AB|sinB)+AC/(|AC|sinC))AP与AB/|AB|sinB+AC/|AC|sinC共线根据正弦定理:|AB|/sinC=|AC|/sinB,所以|AB|sinB=|AC|sinC,所以AP与AB+AC共线AB+AC过BC中点D,所以P点的轨迹也过中点D,∴点P过
三
角
形
重
心。
4.OP=OA+
λλ(ABcosC/|AB|+ACcosB/|AC|)OP=OA+(ABcosC/|AB|+ACcosB/|AC|)AP=λ(ABcosC/|AB|+ACcosB/|AC|)AP•BC=λ(AB•BC cosC/|AB|+AC•BC cosB/|AC|)=λ([|AB|•|BC|cos(180°-B)cosC/|AB|+|AC|•|BC| cosC cosB/|AC|]=λ[-|BC|cosBcosC+|BC| cosC cosB]=0,所以向量AP与向量BC垂直,P点的轨迹过垂心。5.OP=OA+λ(AB/|AB|+AC/|AC|)OP=OA+λ(AB/|AB|+AC/|AC|)OP-OA =λ(AB/|AB|+AC/|AC|)AP=λ(AB/|AB|+AC/|AC|)AB/|AB|、AC/|AC|各为AB、AC方向上的单位长度向量,向量AB与AC的单位向量的和向量,因为是单位向量,模长都相等,构成菱形,向量AB与AC的单位向量的和向量为菱形对角线,易知是角平分线,所以P点的轨迹经过内心
第二篇:三角形四心的向量表示
从动和静两个角度看三角形中四“心”的向量表示
平面几何中中三角形的四“心”,即三角形的内心、外心、重心、垂心。在引入向量这个工具后,我们可以从动和静两个角度看三角形中的四“心”的向量表示,其一可以使我们对三角形中的四“心”有全新的认识;其二使我们对向量形式的多样性和向量运算的灵活性有更清楚的认识。
一.从静止的角度看向量的四“心”
1.已知点O是三角形ABC所在平面上一点,若OAOBOC0,则O是三角形ABC的()
(A)内心
(B)外心
(C)重心
(D)垂心
分析:若OAOBOC0,则OAOBOC,设以OA、OB为邻边的平行四边形为OACB,OC与AB交于点D,则D为AB的中点,由OAOBOC得,OCOC,即C、O、D、C四点共线,故CD为ABC的中线,所以O在边AB的中线上,同理可证, O在边AC的中线上, O在边BC的中线上所以O是三角形ABC的重心. 2.已知点O是三角形所在平面上一点,若OAOBOBOCOCOA,则O是三角形ABC的()
(A)内心
(B)外心
(C)重心
(D)垂心
分析:由OAOBOBOC得,OB(OAOC)0,即OBCA0,所以OBC,A同理可证:OCAB,OABC,所以O是ABC的垂心.3.已知点O是三角形所在平面上一点,若aOAbOBcOC0,则O是三角形ABC的()
(A)内心
(B)外心
(C)重心
(D)垂心
分析::若aOAbOBcOC0,又因为OBOAAB,OCOAAC,则(abc)OAbABcAC0.所以AObcABACABAC,因为与分别表示AB和AC方向上的单位向量,设abc|AB||AC||AB||AC|ABAC+,则AP平分BAC.又AO、APAP共线,BO平分BAC,知AO平分BAC。同理可证,|AB||AC|CO平分BAC。从而O是ABC的内心。
2224.已知点O是三角形所在平面上一点,若OAOBOC,则O是三角形ABC的()
(A)内心
(B)外心
(C)重心
(D)垂心
222222分析:因为OAOBOC,所以OAOBOC,即OAOBOC,所以O是ABC的外心。
二.从运动的角度看三角形的四“心”
1.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足OPOA(ABAC),R,则动点P一定通过ABC的()
(A)内心
(B)外心
(C)重心
(D)垂心 解:OPOA(ABAC),可得AP(ABAC),由于ABAC表示以AB,AC为邻边的平行四边形的对角线,所以点P在边BC的中线所在直线上,故动点P的轨迹一定通过ABC的重心.2.已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+ OPOA,R,则动点P一定通过ABC的()|AB||AC|(A)内心
(B)外心
(C)重心
(D)垂心
ABABACACABAC+ 得,AP+ 。由于+ 表分析:由OPOA|AB||AC||AB||AC||AB||AC|示BAC的平分线所在的方向向量。故当R时,动点则动点P一定通过ABC的内心。
3已知点O是平面上一个定点,A、B、C是平面内不共线三点,动点P满足ABAC+ ,R,则动点P一定通过ABC的()OPOA|AB|cosB|AC|coCs(A)内心
(B)外心
(C)重心
(D)垂心
ABACABAC+ 得,AP+ 。分析: 由OPOA|AB|cosB|AC|cosC|AB|cosB|AC|cosCABACABBCACBC+ B CBCB,C0由于所以cosAB|B|coAsC|C|cos|AB|coBsA|C|C。即点P的轨迹是过点A且垂直于BC的直线,故动点P的轨迹一定通过ABC的垂心。APB0C4.已知O平面上一个定点,A、B、C是平面内不共线三点,动点P满足OBOCOP2ABAC+ ,R,则动点P一定通过ABC的()sA|C|coC|AB|coBs(A)内心
(B)外心
(C)重心
(D)垂心
ABAC+ |AB|cosB|AC|cosCABACABAC+ ,当R时, + 表示垂直于可得DP|AB|cosB|AC|cosC|AB|cosB|AC|cosCOBOCOBOC分析:设BC的中点为为D,则OD,所以由OP22BC的向量,所以DP为线段BC的垂直平分线,故动点P的轨迹一定通过ABC的外心.上面通过动和静两个角度看三角形的四”心”的向量表示,得出了椒优美的结论,使我们对向量的四心有了新的认识,更好的体会到辩证的和谐的统一.
第三篇:三角形的四心的向量表示
222(1)O为ABC的外心OAOBOC.外心(三条边垂直平分线交点)(2)O为ABC的重心OAOBOC0.重心(三条边中线交点)(3)O为ABC的垂心OAOBOBOCOCOA.垂心(高线交点)(4)O为ABC的内心aOAbOBcOC0.内心(角平分线交点)
方向上的单位分别为证明:前三个心的性质都好证明,下面给出问题(4)的证明:cb
向量,平分BAC, cb
),(cbBCBA同理:BOu()acuABACBCBA11ABAOOB()u()[()u]AB()AC cbaccacab
11()u1a11bccacu()u1得代入解得,bcacabcu0ab三角形的四心的向量表示 设O为ABC所在平面上一点,角A,B,C所对边长分别为a,b,c,则
bc()abccb
化简得(abc)bc,abc
第四篇:讲义---平面向量与三角形四心的交汇
讲义---平面向量与三角形四心的交汇 一、四心的概念介绍
(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。二、四心与向量的结合
(1)OAOBOC0O是ABC的重心.证法1:设O(x,y),A(x1,y1),B(x2,y2),C(x3,y3)
x1x2x3x(x1x)(x2x)(x3x)03 OOAOBOC0yyy23(y1y)(y2y)(y3y)0y13是ABC的重心.证法2:如图
AOAOBOC OA2OD0
AO2OD
A、O、D三点共线,且O分AD
为2:1
OEO是ABC的重心
(2)OAOBOBOC证明:如图所示O是三角形
BDCOCOAO为ABC的垂心.ABC的垂心,BE垂直AC,AD垂直BC,D、E是垂足.OAOBOBOCOB(OAOC)OBCA0
AOBAC
E同理OABC,OCAB
BOO为ABC的垂心
(3)设a,b,c是三角形的三条边长,O是ABC的内心
aOAbOBcOC0O为ABC的内心.ABAC、分别为AB、AC方向上的单位向量,cbABAC平分BAC, cbABACbc),令 AO(abccb证明:DCAOABACbc()abccb化简得(abc)OAbABcAC0
aOAbOBcOC0
(4)OAOBOCO为ABC的外心。
三、典型例题:
例1:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足OPOA(ABAC),0,,则点P的轨迹一定通过ABC的()
A.外心 B.内心 C.重心 D.垂心
例2:(03全国理4)O是平面上一定点,A、B、C是平面上不共线的三个点,动点
P满足OPOA(ABABACAC),0,,则点P的轨迹一定通过ABC的()
A.外心 B.内心 C.重心 D.垂心
例3:1)O是平面上一定点,A、B、C是平面上不共线的三个点,动点
P满足OPOA(ABABcoBsACACcoCs),0,,则点P的轨迹一定通过ABC的()
A.外心 B.内心 C.重心 D.垂心
2)已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足ABACOPOA(),[0,), 则动点P的轨迹一定通过△ABC的()|AB|sinB|AC|sinCA.重心 B.垂心 C.外心 D.内心
3)已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足OBOCABACOP(), [0,), 则动点P的轨迹一定通过△ABC的()2|AB|cosB|AC|cosCA.重心 B.垂心 C.外心 D.内心
例
4、已知向量OP12P31,OP2,OP3满足条件OP1OP2OP30,|OP1||OP2||OP3|1,求证:△PP是正三角形.
ABC例
5、的外接圆的圆心为O,两条边上的高的交点为H,则实数m = OHm(OAOBOC),.
例
6、点). O是三角形ABC
所在平面内的一点,满足OAOBOBOCOCOA,则点
O是ABC的(A.三个内角的角平分线的交点 C.三条中线的交点
B.三条边的垂直平分线的交点 D.三条高的交点
例7
在△ABC内求一点P,使
AP2BP2CP2最小.
222222例8已知O为△ABC所在平面内一点,满足|OA||BC||OB||CA||OC||AB|,则O为△ABC的 心.
例9..已知O是△ABC所在平面上的一点,若OAOBOBOCOCOA,则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
222222例10 已知O为△ABC所在平面内一点,满足|OA||BC||OB||CA|=|OC||AB|,则O点是△ABC的()A.垂心 B.重心 C.内心 D.外心
例11已知O是△ABC所在平面上的一点,若(OAOB)AB=(OBOC)BC=(OCOA)CA= 0,则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
例12:已知O是△ABC所在平面上的一点,若aOAbOBcOC= 0,则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
aPAbPBcPC例13:已知O是△ABC所在平面上的一点,若PO(其中P是△ABC所在平面内任意一点),abc则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
四、配套练习:
1.已知ABC三个顶点A、B、C及平面内一点
P,满足
PAPBPC0,若实数满足:ABACAP,则的值为()
A.2 B.32 C.3 D.6 3
2.若ABC的外接圆的圆心为O,半径为1,OAOBOCA.
0,则OAOB()12 B.0 C.1 D.1 23.点O在ABC内部且满足OA2OB2OC0,则ABC面积与凹四边形A.0 B.
ABOC面积之比是()
C.
D.
是ABC的()4.ABC的外接圆的圆心为O,若OHOAOBOC,则HA.外心 B.内心 C.重心 D.垂心
5.O是平面上一定点,A、B、C是平面上不共线的三个点,若OABCOB222
CAOCAB222,则O是ABC的()
A.外心 B.内心 C.重心 D.垂心 6.ABC的外接圆的圆心为O,两条边上的高的交点为H,OH则实数m =
17.(06陕西)已知非零向量与满足(+)〃=0且〃= , 则△ABC为()
2A.三边均不相等的三角形 B.直角三角形 C.等腰非等边三角形 D.等边三角形 8.已知ABC三个顶点
m(OAOBOC),A、B、C,若ABABACABCBBCCA,则ABC为()
2A.等腰三角形 B.等腰直角三角形
C.直角三角形 D.既非等腰又非直角三角形
9.已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足OPOA(ABAC), [0,).则P点的轨迹一定通过△ABC的()A.外心 B.内心 C.重心 D.垂心
10.已知O是△ABC所在平面上的一点,若OAOBOC= 0, 则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
111.已知O是△ABC所在平面上的一点,若PO(PAPBPC)(其中P为平面上任意一点), 则O点是△ABC
3的()A.外心 B.内心 C.重心 D.垂心
第五篇:平面向量中的三角形四心问题(定稿)
平面向量中的三角形四心问题
向量是高中数学中引入的重要概念,是解决几何问题的重要工具。本文就平面向量与三角形四心的联系做一个归纳总结。在给出结论及证明结论的过程中,可以体现数学的对称性与推论的相互关系。
一、重心(barycenter)
三角形重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1。在重心确定上,有著名的帕普斯定理。
结论1:若G为ABC所在平面内一点,则GAGBGC0G是三角形的重心证明:设BC中点为D,则2GDGBGCGAGBGC0GAGBGCGA2GD,这表明,G在中线AD上同理可得G在中线BE,CF上故G为ABC的重心
结论2:
1若P为ABC所在平面内一点,则PG(PAPBPC)3G是ABC的重心1证明:PG(PAPBPC)(PGPA)(PGPB)(PGPC)03GAGBGC0G是ABC的重心
二、垂心(orthocenter)三角形的三条高线的交点叫做三角形的垂心。
结论3:
若H为ABC所在平面内一点,则HAHBHBHCHCHAH是ABC的垂心
证明:HAHBHBHCHB(HAHC)0HBAC0HBAC同理,有HACB,HCAB故H为三角形垂心
结论4:
若H为ABC所在平面内一点,则HABCHBACHCABH是ABC的垂心证明:由HABCHBCA得,HA(HBHC)HB(HCHA)2HBHCHCHA同理可证得,HAHBHBHCHCHA由结论3可知命题成立2222222222222
三、外心(circumcenter)三角形三条边的垂直平分线(中垂线)的相交点。用这个点做圆心可以画三角形的外接圆。
结论5:
若O是ABC所在平面内一点,则OAOBOCO是ABC的外心 证明:由外心定义可知命题成立
结论6:
若O是ABC所在平面内一点,则(OAOB)BA(OBOC)CB(OCOA)AC O是ABC的外心 3
证明:(OAOB)BA(OAOB)(OAOB)OAOB(OBOC)CBOBOC(OCOA)ACOCOA222222222故OAOBOBOCOCOAOAOBOC故O为ABC的外心
222
四、内心(incenter)
三角形三条内角平分线的交点叫三角形的内心。即内切圆的圆心。
结论7:
若P为ABC所在平面内一点,则ABACBABCCACBOPOA1OB2OC3(0)ABACBABCCACBP是ABC的内心
证明:记AB,AC方向上的单位向量分别为e1,e2ABACOPOA1AP1(e1e2)ABAC由平行四边形法则知,(e1e2)在AB,AC边夹角平分线上 即P在A平分线上同理可得,P在B,C的平分线上故P为ABC的内心
结论8:
若P是ABC所在平面内一点,则aPAbPBcPC0P是ABC的内心证明:不妨设PDPC
aPAbPBcPC0a(PDDA)b(PDDB)cPC0(abc)PC(aDAbDB)0由于PC与DA,DB不共线,则abc0,aDAbDB0b即DBa由角平分线定理,CD是ACB的平分线同理可得其他的两条也是平分线故P是ABC的内心DA