向量与三角形内心、外心、重心、垂心知识(★)

时间:2019-05-15 07:58:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《向量与三角形内心、外心、重心、垂心知识》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《向量与三角形内心、外心、重心、垂心知识》。

第一篇:向量与三角形内心、外心、重心、垂心知识

向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍

(1)重心——中线的交点:重心将中线长度分成2:1;

(2)垂心——高线的交点:高线与对应边垂直;

(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;

(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四心与向量的结合(1)O是ABC的重心.证法1:设O(x,y),A(x1,y1),B(x2,y2),C(x3,y3)

x1x2x3x(x1x)(x2x)(x3x)03 O是ABC(yy)(yy)(yy)0yyy23123y13的重心.证法2:如图 OAOBOC

OA2OD0

AO2OD

A、O、D三点共线,且O分AD为2:

1O是ABC的重心(2)O为ABC的垂心.()0 BDC证明:如图所示O是三角形ABC的垂心,BE垂直AC,AD垂直BC,D、E是垂足. 同理, O为ABC的垂心

(3)设a,b,c是三角形的三条边长,O是ABC的内

aOAbOBcOC0O为ABC的内心.证明:BD

C心 AC方向上的单位向量,分别为AB、cbABAC平分BAC, cb

AO(bc),令 cbabc

ABACbc()cbabc化简得(abc)OAbABcAC0

(4)O为ABC的外心。aOAbOBcOC

典型例题:

例1:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足(),0,,则点P的轨迹一定通过ABC的()

A.外心B.内心C.重心D.垂心

分析:如图所示ABC,D、E分别为边BC、AC的中点.2 2



BD

C

AP2AD

//

点P的轨迹一定通过ABC的重心,即选C.例2:(03全国理4)O是平面上一定点,A、B、C是平面上不共线的三个点,动点P

满足,0,,则点P的轨迹一定通过ABC的(B)

A.外心B.内心C.重心D.垂心

分析:方向上的单位向量,分别为平分BAC, 点P的轨迹一定通过ABC的内心,即选B.例3:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满

足,0,,则点P的轨迹一定通过ABC的()

A.外心B.内心C.重心D.垂心

分析:如图所示AD垂直BC,BE垂直AC,D、E是垂足

.

C

=

=0

点P的轨迹一定通过ABC的垂心,即选D.练习:

1.已知ABC三个顶点A、B、C及平面内一点P,满足,若实数满足:ABACAP,则的值为()

A.2B.

32C.3D.6

2.若ABC的外接圆的圆心为O,半径为1,,则OAOB()

A.

12B.0C.1D.1

3.点O在ABC内部且满足OA2OB2OC0,则ABC面积与凹四边形ABOC面积之比是(A.0B.3

2C.

544D.3

4.ABC的外接圆的圆心为O,若,则H是ABC的()

A.外心B.内心C.重心D.垂心

5.O是平面上一定点,A、B、C是平面上不共线的三个点,若22

2CA2OC2AB2,则O是ABC的()

A.外心B.内心C.重心D.垂心

6.ABC的外接圆的圆心为O,两条边上的高的交点为H,m(),则实数m =

7.(06陕西)已知非零向量AB→与AC→满足(AB→

|AB→|+AC→

|AC→|)·BC→=0且AB→

|AB→|·AC→

|AC→|=12 , 则△ABC为()

A.三边均不相等的三角形B.直角三角形

C.等腰非等边三角形D.等边三角形

8.已知ABC三个顶点A、B、C,若AB2ABACABCBBCCA,则ABC为()

A.等腰三角形B.等腰直角三角形

C.直角三角形D.既非等腰又非直角三角形

练习答案:C、D、C、D、D、1、D、C

3)

第二篇:三角形外心内心重心垂心与向量性质

三 角 形 的“四 心”

所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。当三角形是正三角形时,四心重合为一点,统称为三角形的中心。一、三角形的外心

义:三角形三条中垂线的交点叫外心,即外接圆圆心。ABC的重心一般用字母O表示。性

质:

1.外心到三顶点等距,即OAOBOC。

2.外心与三角形边的中点的连线垂直于三角形的这一边,即ODBC,OEAC,OFAB.3.向量性质:若点O为ABC所在的平面内一点,满足(OAOB)BA(OBOC)CB(OCOA)AC,则点O为ABC的外心。二、三角形的内心

义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。ABC的内心一般用字母I表示,它具有如下性质: 性

质:

1.内心到三角形三边等距,且顶点与内心的连线平分顶角。2.三角形的面积=1三角形的周长内切圆的半径. 23.向量性质:设0,,则向量AP(点P的轨迹过ABC的内心。

AB|AB||AC|AC),则动 三、三角形的垂心

义:三角形三条高的交点叫重心。ABC的重心一般用字母H表示。性

质:

1.顶点与垂心连线必垂直对边,即AHBC,BHAC,CHAB。2.向量性质:

结论1:若点O为ABC所在的平面内一点,满足OAOBOBOCOCOA,则点O为ABC的垂心。

结论2:若点O为△ABC所在的平面内一点,满足OABCOBCAOCAB,则点O为ABC的垂心。

22222

2四、三角形的“重心”:

义:三角形三条中线的交点叫重心。ABC的重心一般用字母G表示。

质:

1.顶点与重心G的连线必平分对边。

2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。

即GA2GD,GB2GE,GC2GF 3.重心的坐标是三顶点坐标的平均值. 即xGxAxBxCyyByC,yGA.334.向量性质:(1)GAGBGC0;(2)PG

1(PAPBPC)。3 2

第三篇:向量与三角形内心、外心、重心、垂心知识的交汇

向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍

(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。二、四心与向量的结合(1)OAOBOC0O是ABC的重心.证法1:设O(x,y),A(x1,y1),B(x2,y2),C(x3,y3)

(x1x)(x2x)(x3x)0

(y1y)(y2y)(y3y)0

OAOBOC0

x1x

yy1

x2x33y2y3

3O是ABC的重心.证法2:如图

OAOBOC OA2OD0

AO2OD

A、O、D三点共线,且O分AD

为2:

1O是ABC的重心

BDC

(2)OAOBOBOCOCOAO为ABC的垂心.证明:如图所示O是三角形ABC的垂心,BE垂直AC,AD垂直BC,D、E是垂足.OAOBOBOCOB(OAOC)OBCA0 OBAC

同理OABC,OCAB

O为ABC的垂心

(3)设a,b,c是三角形的三条边长,O是ABC的内心

aOAbOBcOC0O为ABC的内心.证明:

ABc

AB

ACAC方向上的单位向量,分别为AB、cb

ACb

平分BAC,ABcACb

AO(),令

bcabc

AO

bcabc

(ABc

ACb)

化简得(abc)OAbABcAC0

aOAbOBcOC0

(4O为ABC的外心。

典型例题:

例1:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足

OPOA(ABAC),0,,则点P的轨迹一定通过ABC的()

A.外心B.内心C.重心D.垂心 分析:如图所示ABC,D、E分别为边BC、AC的中点.ABAC2AD

OPOA2AD OPOAAP AP2AD

BDC

AP//AD

点P的轨迹一定通过ABC的重心,即选C.例2:(03全国理4)O是平面上一定点,A、B、C是平面上不共线的三个点,动点P

满足OPOA,0,,则点P的轨迹一定通过ABC的(B)

A.外心B.内心C.重心D.垂心

分析:

AC方向上的单位向量,分别为AB、

AB

AC平分BAC,点P的轨迹一定通过ABC的内心,即选B.例3:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P

满足

OPOAAB

AC,0,,则点P的轨迹一定通过ABC的()

A.外心B.内心C.重心D.垂心

分析:如图所示AD垂直BC,BE垂直AC,D、E是垂足

.

BC

=

=0

点P的轨迹一定通过ABC的垂心,即选D.练习:

1.已知ABC三个顶点A、B、C及平面内一点P,满足PAPBPC0,若实数满足:ABACAP,则的值为()

A.2B.

32C.3D.6

2.若ABC的外接圆的圆心为O,半径为1,OAOBOC0,则OAOB()A.

B.0C.1D.

3.点O在ABC内部且满足OA2OB2OC0,则ABC面积与凹四边形

ABOC

面积之比是()A.0B.

C.

54D.

4.ABC的外接圆的圆心为O,若OHOAOBOC,则H是ABC的()

A.外心B.内心C.重心D.垂心

5.O是平面上一定点,A、B、C是平面上不共线的三个点,若OA

BCOB

CAOCAB,则O是ABC的()

A.外心B.内心C.重心D.垂心

OHm(OAOBOC),ABC的外接圆的圆心为O,6.两条边上的高的交点为H,则实数m =

→→→→1ABACABAC→→→

7.(06陕西)已知非零向量AB与AC满足(+)·BC=0 · = , 则

2→→→→|AB||AC||AB||AC|△ABC为()

A.三边均不相等的三角形B.直角三角形 C.等腰非等边三角形D.等边三角形

8.已知ABC三个顶点A、B、C,若AB

ABC为()

ABACABCBBCCA,则

A.等腰三角形B.等腰直角三角形

C.直角三角形D.既非等腰又非直角三角形 练习答案:C、D、C、D、D、1、D、C

第四篇:三角形外心、重心、垂心的向量形式

三角形外心、重心、垂心的向量形式

已知△ABC,P为平面上的点,则

(1)P为外心

(2)P为重心

(3)P为垂心

证明(1)如P为△ABC的外心(图1),则 PA=PB=PC,(2)如P为△ABC的重心,如图2,延长AP至D,使PD=PA,设AD与BC相交于E点.

由重心性质

∴ 四边形PBDC为平行四边形.

BC和PD之中点.

心.

(3)如图3,P为△ABC的垂心

同理PA⊥AC,故P为△ABC之垂心.

由上不难得出这三个结论之间的相互关系:

∴ △ABC为正三角形.

∴ △ABC为正三角形,且O为其中心.

第五篇:三角形五心:重心 垂心 内心 外心 旁心

三角形只有五种心

一、重心: 三中线的交点,三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍;重心分中线比为1:2;

1、重心到顶点的距离与重心到对边中点的距离之比为2:1。

证明一

三角形ABC,E、F是AB,AC的中点。EC、FB交于G。

过E作EH平行BF。

AE=BE推出AH=HF=1/2AF

AF=CF

推出HF=1/2CF 推出EG=1/2CG

2、重心和三角形3个顶点组成的3个三角形面积相等。

证明二

证明方法:

在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA1、BOB1、COC1分别为a、b、c边上的中线根据重心性质知,OA1=1/3AA1,OB1=1/3BB1,OC1=1/3CC1过O,A分别作a边上高h1,h可知Oh1=1/3Ah 则,S(△BOC)=1/2×h1a=1/2×1/3ha=1/3S(△ABC);同理可证S(△AOC)=1/3S(△ABC),S(△AOB)=1/3S(△ABC)所以,S(△BOC)=S(△AOC)=S(△AOB)

3、重心到三角形3个顶点距离平方的和最小。(等边三角形)

证明方法:

设三角形三个顶点为(x1,y1),(x2,y2),(x3,y3)平面上任意一点为(x,y)则该点到三顶点距离平方和为:

(x1-x)^2+(y1-y)^2+(x2-x)^2+(y2-y)^2+(x3-x)^2+(y3-y)^2

=3x^2-2x(x1+x2+x3)+3y^2-2y(y1+y2+y3)+x1^2+x2^2+x3^2+y1^2+y2^2+y3^2

=3(x-1/3*(x1+x2+x3))^2+3(y-1/3(y1+y2+y3))^2+x1^2+x2^2+x3^2+y1^2+y2^2+y3^2-1/3(x1+x2+x3)^2-1/3(y1+y2+y3)^2

显然当x=(x1+x2+x3)/3,y=(y1+y2+y3)/3(重心坐标)时

上式取得最小值x1^2+x2^2+x3^2+y1^2+y2^2+y3^2-1/3(x1+x2+x3)^2-1/3(y1+y2+y3)^2

最终得出结论。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);

空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3

5、三角形内到三边距离之积最大的点。

6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC的重心,反之也成立。

7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+向量OC)

二、垂心: 三角形三条高的交点;设⊿ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.

1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外.2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;

3、垂心H关于三边的对称点,均在△ABC的外接圆上。

4、△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH·HD=BH·HE=CH·HF。

5、H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。

6、△ABC,△ABH,△BCH,△ACH的外接圆是等圆。

7、在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则 AB/AP·tanB+

三角形的垂心与外心的位置关系

AC/AQ·tanC=tanA+tanB+tanC。

8、三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。

9、设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。

10、锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。

11、锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。

12、西姆松(Simson)定理(西姆松线)

从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。

13、设锐角⊿ABC内有一点T,那么T是垂心的充分必要条件是PB*PC*BC+PB*PA*AB+PA*PC*AC=AB*BC*CA。

三、内心: 三内角平分线的交点,是三角形的内切圆的圆心的简称;到三边距离相等。

设△ABC的内切圆为☉I(r),I为圆心,角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.

1、三角形的内心到三边的距离相等,都等于内切圆半径r.

2、∠BIC=90°+A/2.

3、如图 在RT△ABC中,∠A=90°△内切圆切BC于D则S△ABC=BD*CD

4、点O是平面ABC上任意一点,点I是△ABC内心的充要条件是:

向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c).

5、△ABC中,A(x1,y1),B(x2,y2),C(x3,y3),那么△ABC内心I的坐标是:

(ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c)).

6、(欧拉定理)⊿ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI^2=R^2-2Rr.

7、点O是平面ABC上任意一点,点O是△ABC内心的充要条件是:

a(向量OA)+b(向量OB)+c(向量OC)=向量0.

8、双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。

9、△ABC中,内切圆分别与AB,BC,CA相切于P,Q,R,则AP=AR=(b+c-a)/2,BP =BQ =(a

+c-b)/2,CR =CQ =(b+a-c)/2,r=[(b+c-a)tan(A/2)]/2。

10、(内角平分线定理)

△ABC中,0为内心,∠A、∠B、∠C的内角平分线分别交BC、AC、AB于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.四、外心:

三中垂线的交点,是三角形的外接圆的圆心的简称;到三顶点距离相等

设⊿ABC的外接圆为☉G(R),G是圆心,角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.

性质1:(1)锐角三角形的外心在三角形内;

(2)直角三角形的外心在斜边上,与斜边中点重合;

(3)钝角三角形的外心在三角形外.性质2:∠BGC=2∠A,(或∠BGC=2(180°-∠A).性质3:∠GAC+∠B=90°

证明:如图所示延长AG与圆交与P

∵A、C、B、P四点共圆

∴∠P=∠B

∵∠P+∠GAC=90°

∴∠GAC+∠B=90°

性质4:点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是⊿ABC外心的充要条件是:

(1)向量PG=(tanB+tanC)向量PA+(tanC+tanA)向量PB+(tanA+tanB)向量PC)/2(tanA+tanB+tanC).或(2)向量PG=(cosA/2sinBsinC)向量PA+(cosB/2sinCsinA)向量PB+(cosC/2sinAsinB)向量PC.性质5:三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心.外心到三顶点的距离相等。

性质6:点G是平面ABC上一点,那么点G是⊿ABC外心的充要条件(向量GA+向量GB)·向量AB=(向量GB+向量GC)·向量BC=(向量GC+向量GA)·向量CA=0.五、旁心:(不用看,以后了解了解就好,现在一定不会考)

一条内角平分线与其它二外角平分线的交点.(共有三个.)是三角形的旁切圆的圆心的简称.当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心.。

下载向量与三角形内心、外心、重心、垂心知识(★)word格式文档
下载向量与三角形内心、外心、重心、垂心知识(★).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    内心、外心、重心、垂心定义及性质总结

    内心、外心、重心、垂心定义及性质总结 1.内心: (1)三条角平分线的交点,也是三角形内切圆的圆心。 (2)性质:到三边距离相等。 2外心: (1)三条中垂线的交点,也是三角形外接圆的圆心。 (2)......

    向量与三角形的重心

    向量与三角形的重心例1 已知A,B,C是不共线的三点,G是△ABC内一点,若GAGBGC0.求证:G是△ABC的重心.证明:如图1所示,因为GAGBGC0,所以GA(GBGC).以GB,GC为邻边作平行四边形BGCD,则有GDGBGC,所......

    三角形内心的向量表示形式

    三角形内心的向量表示形式 有这样一个高考题: 已知O,N,P在ABC所在平面内,且OAOBOC,NANBNC0,且PAPBPBPC,则点PCPAO,N,P依次是ABC的( ) (A)重心 外心 垂心 (B)重心 外心 内心 (C)外心 重心 垂......

    三角形重心向量性质的引申及应用(优秀范文五篇)

    三角形重心向量性质的引申及应用新化县第三中学肖雪晖平面向量是高中数学实验教材中新增的一章内容.加入向量,一些传统的中学数学内容和问题就有了新的内涵.在数学教学中引导学......

    向量与三角形四心的一些结论

    【一些结论】:以下皆是向量 1 若P是△ABC的重心 PA+PB+PC=0 2 若P是△ABC的垂心 PA•PB=PB•PC=PA•PC(内积) 3 若P是△ABC的内心 aPA+bPB+cPC=0(abc是三边) 4 若P是△ABC的外......

    讲义---平面向量与三角形四心的交汇

    讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的......

    高中数学:关于三角形的“四心”与平面向量的结合教案 苏教版必修5

    关于三角形的“四心”与平面向量的结合 [关键字]高中|数学|平面向量|内心|外心|重心|垂心 [内容摘要]每年全国各地高考试卷中,都有不少习题与三角形的“四心”有关,学生在解......

    人教B版选修2-1空间向量与立体几何知识小结(模版)

    选修2-1 第三章:空间向量与立体几何1、空间向量及其运算: (1)空间中的平行(共线)条件:a//bb0xR,axb (2)空间中的共面条件:a,b,c共面(b,c不共线)x,yR,axbyc推论:对于空间任一点O和不共线三......