向量与三角形的重心

时间:2019-05-13 06:37:32下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《向量与三角形的重心》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《向量与三角形的重心》。

第一篇:向量与三角形的重心

向量与三角形的重心

例1 已知A,B,C是不共线的三点,G是△ABC内一点,若GAGBGC0.求

证:G是△ABC的重心.

证明:如图1所示,因为GAGBGC0,所以GA(GBGC).

以GB,GC为邻边作平行四边形BGCD,则有GDGBGC,所以GDGA.

又因为在平行四边形BGCD中,BC交GD于点E,所以BEEC,GEED.所以AE是△ABC的边BC的中线,且GA2GE.

故G是△ABC的重心.

点评:①解此题要联系重心的性质和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法.

变式引申:已知D,E,F分别为△ABC的边BC,AC,AB的中点.求证: ADBECF0.

证明:如图2的所示,ADACCD2ADACABCDBD,即2ADACAB. ADABBD

同理2BEBABC,2CFCACB.

2A(DBEC)FAC

0CFADBE. .ABBAB0C CACB

点评:该例考查了三角形法则和向量的加法.

例2 如图3所示,△ABC的重心为G,O为坐标原点,OAa,OBb,OCc,试用a,b,c表示OG.

解:设AG交BC于点M,则M是BC的中点,baABACBCcb.则,ca,111AMABbCa(cb)(cb2a). 22

221AGA(cb2a.)3

311故OGOAAGa(cb2a)(abc). 33

点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键.

变式引申:如图4,平行四边形ABCD的中心为O,1P为该平面上任意一点,则PO(PAPBPCPD). 4

POPAAO,POPBBO,POPCCO,证法1:

POPDDO,PBPC PD4POPA, 1即PO(PAPBPCPD). 4

11证法2:PO(PAPC),PO(PBPD),22

1PO(PAPBPCPD). 4

点评:(1)证法1运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.

(2)若P与O重合,则上式变为OAOBOCOD0.

第二篇:向量与三角形内心、外心、重心、垂心知识

向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍

(1)重心——中线的交点:重心将中线长度分成2:1;

(2)垂心——高线的交点:高线与对应边垂直;

(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;

(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四心与向量的结合(1)O是ABC的重心.证法1:设O(x,y),A(x1,y1),B(x2,y2),C(x3,y3)

x1x2x3x(x1x)(x2x)(x3x)03 O是ABC(yy)(yy)(yy)0yyy23123y13的重心.证法2:如图 OAOBOC

OA2OD0

AO2OD

A、O、D三点共线,且O分AD为2:

1O是ABC的重心(2)O为ABC的垂心.()0 BDC证明:如图所示O是三角形ABC的垂心,BE垂直AC,AD垂直BC,D、E是垂足. 同理, O为ABC的垂心

(3)设a,b,c是三角形的三条边长,O是ABC的内

aOAbOBcOC0O为ABC的内心.证明:BD

C心 AC方向上的单位向量,分别为AB、cbABAC平分BAC, cb

AO(bc),令 cbabc

ABACbc()cbabc化简得(abc)OAbABcAC0

(4)O为ABC的外心。aOAbOBcOC

典型例题:

例1:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足(),0,,则点P的轨迹一定通过ABC的()

A.外心B.内心C.重心D.垂心

分析:如图所示ABC,D、E分别为边BC、AC的中点.2 2



BD

C

AP2AD

//

点P的轨迹一定通过ABC的重心,即选C.例2:(03全国理4)O是平面上一定点,A、B、C是平面上不共线的三个点,动点P

满足,0,,则点P的轨迹一定通过ABC的(B)

A.外心B.内心C.重心D.垂心

分析:方向上的单位向量,分别为平分BAC, 点P的轨迹一定通过ABC的内心,即选B.例3:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满

足,0,,则点P的轨迹一定通过ABC的()

A.外心B.内心C.重心D.垂心

分析:如图所示AD垂直BC,BE垂直AC,D、E是垂足

.

C

=

=0

点P的轨迹一定通过ABC的垂心,即选D.练习:

1.已知ABC三个顶点A、B、C及平面内一点P,满足,若实数满足:ABACAP,则的值为()

A.2B.

32C.3D.6

2.若ABC的外接圆的圆心为O,半径为1,,则OAOB()

A.

12B.0C.1D.1

3.点O在ABC内部且满足OA2OB2OC0,则ABC面积与凹四边形ABOC面积之比是(A.0B.3

2C.

544D.3

4.ABC的外接圆的圆心为O,若,则H是ABC的()

A.外心B.内心C.重心D.垂心

5.O是平面上一定点,A、B、C是平面上不共线的三个点,若22

2CA2OC2AB2,则O是ABC的()

A.外心B.内心C.重心D.垂心

6.ABC的外接圆的圆心为O,两条边上的高的交点为H,m(),则实数m =

7.(06陕西)已知非零向量AB→与AC→满足(AB→

|AB→|+AC→

|AC→|)·BC→=0且AB→

|AB→|·AC→

|AC→|=12 , 则△ABC为()

A.三边均不相等的三角形B.直角三角形

C.等腰非等边三角形D.等边三角形

8.已知ABC三个顶点A、B、C,若AB2ABACABCBBCCA,则ABC为()

A.等腰三角形B.等腰直角三角形

C.直角三角形D.既非等腰又非直角三角形

练习答案:C、D、C、D、D、1、D、C

3)

第三篇:三角形外心内心重心垂心与向量性质

三 角 形 的“四 心”

所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。当三角形是正三角形时,四心重合为一点,统称为三角形的中心。一、三角形的外心

义:三角形三条中垂线的交点叫外心,即外接圆圆心。ABC的重心一般用字母O表示。性

质:

1.外心到三顶点等距,即OAOBOC。

2.外心与三角形边的中点的连线垂直于三角形的这一边,即ODBC,OEAC,OFAB.3.向量性质:若点O为ABC所在的平面内一点,满足(OAOB)BA(OBOC)CB(OCOA)AC,则点O为ABC的外心。二、三角形的内心

义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。ABC的内心一般用字母I表示,它具有如下性质: 性

质:

1.内心到三角形三边等距,且顶点与内心的连线平分顶角。2.三角形的面积=1三角形的周长内切圆的半径. 23.向量性质:设0,,则向量AP(点P的轨迹过ABC的内心。

AB|AB||AC|AC),则动 三、三角形的垂心

义:三角形三条高的交点叫重心。ABC的重心一般用字母H表示。性

质:

1.顶点与垂心连线必垂直对边,即AHBC,BHAC,CHAB。2.向量性质:

结论1:若点O为ABC所在的平面内一点,满足OAOBOBOCOCOA,则点O为ABC的垂心。

结论2:若点O为△ABC所在的平面内一点,满足OABCOBCAOCAB,则点O为ABC的垂心。

22222

2四、三角形的“重心”:

义:三角形三条中线的交点叫重心。ABC的重心一般用字母G表示。

质:

1.顶点与重心G的连线必平分对边。

2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。

即GA2GD,GB2GE,GC2GF 3.重心的坐标是三顶点坐标的平均值. 即xGxAxBxCyyByC,yGA.334.向量性质:(1)GAGBGC0;(2)PG

1(PAPBPC)。3 2

第四篇:三角形外心、重心、垂心的向量形式

三角形外心、重心、垂心的向量形式

已知△ABC,P为平面上的点,则

(1)P为外心

(2)P为重心

(3)P为垂心

证明(1)如P为△ABC的外心(图1),则 PA=PB=PC,(2)如P为△ABC的重心,如图2,延长AP至D,使PD=PA,设AD与BC相交于E点.

由重心性质

∴ 四边形PBDC为平行四边形.

BC和PD之中点.

心.

(3)如图3,P为△ABC的垂心

同理PA⊥AC,故P为△ABC之垂心.

由上不难得出这三个结论之间的相互关系:

∴ △ABC为正三角形.

∴ △ABC为正三角形,且O为其中心.

第五篇:三角形重心

重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。

已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。

证明:根据燕尾定理,S△AOB=S△AOC,又S△AOB=S△BOC,∴S△AOC=S△BOC,再应用燕尾定理即得AF=BF,命题得证。

重心的几条性质:

1、重心到顶点的距离与重心到对边中点的距离之比为2:1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为

((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/35、三角形内到三边距离之积最大的点。

指三角形三条边的垂直平分线的相交点。用这个点做圆心可以画三角形的外接圆。指三角形外接圆的圆心,一般叫三角形的外心。

三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等。

外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。

外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。

注意到外心到三角形的三个顶点距离相等,结合垂直平分线定义,外心定理其实极好证。计算外心的重心坐标是一件麻烦的事。先计算下列临时变量:

d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:((c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c)。

下载向量与三角形的重心word格式文档
下载向量与三角形的重心.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    向量证明重心

    向量证明重心三角形ABC中,重心为O,AD是BC边上的中线,用向量法证明AO=2OD (1).AB=12b,AC=12c。AD是中线则AB+AC=2AD即12b+12c=2AD,AD=6b+6c;BD=6c-6b。OD=xAD=6xb+6xx。(2).E是AC......

    向量与三角形内心、外心、重心、垂心知识的交汇(最终定稿)

    向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交......

    向量证明重心(5篇模版)

    向量证明重心三角形ABC中,重心为O,AD是BC边上的中线,用向量法证明AO=2OD.AB=12b,AC=12c。AD是中线则AB+AC=2AD即12b+12c=2AD,AD=6b+6c;BD=6c-6b。OD=xAD=6xb+6xx。.E是AC中......

    三角形重心向量性质的引申及应用(优秀范文五篇)

    三角形重心向量性质的引申及应用新化县第三中学肖雪晖平面向量是高中数学实验教材中新增的一章内容.加入向量,一些传统的中学数学内容和问题就有了新的内涵.在数学教学中引导学......

    三角形的重心定理及其证明

    三角形的重心定理及其证明积石中学王有华同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好.......

    向量与三角形四心的一些结论

    【一些结论】:以下皆是向量 1 若P是△ABC的重心 PA+PB+PC=0 2 若P是△ABC的垂心 PA•PB=PB•PC=PA•PC(内积) 3 若P是△ABC的内心 aPA+bPB+cPC=0(abc是三边) 4 若P是△ABC的外......

    三角形四心的向量表示

    从动和静两个角度看三角形中四“心”的向量表示平面几何中中三角形的四“心”,即三角形的内心、外心、重心、垂心。在引入向量这个工具后,我们可以从动和静两个角度看三角形......

    向量中的三角形心的问题

    向量中的三角形“四心”问题 学习向量的加减法离不开三角形,三角形的重心、垂心、内心、外心是三角形性质的重要组成部分,你知道它们的向量表示吗?你能证明吗?下面的几个结论也......