第一篇:平面向量中的三角形四心问题(定稿)
平面向量中的三角形四心问题
向量是高中数学中引入的重要概念,是解决几何问题的重要工具。本文就平面向量与三角形四心的联系做一个归纳总结。在给出结论及证明结论的过程中,可以体现数学的对称性与推论的相互关系。
一、重心(barycenter)
三角形重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1。在重心确定上,有著名的帕普斯定理。
结论1:若G为ABC所在平面内一点,则GAGBGC0G是三角形的重心证明:设BC中点为D,则2GDGBGCGAGBGC0GAGBGCGA2GD,这表明,G在中线AD上同理可得G在中线BE,CF上故G为ABC的重心
结论2:
1若P为ABC所在平面内一点,则PG(PAPBPC)3G是ABC的重心1证明:PG(PAPBPC)(PGPA)(PGPB)(PGPC)03GAGBGC0G是ABC的重心
二、垂心(orthocenter)三角形的三条高线的交点叫做三角形的垂心。
结论3:
若H为ABC所在平面内一点,则HAHBHBHCHCHAH是ABC的垂心
证明:HAHBHBHCHB(HAHC)0HBAC0HBAC同理,有HACB,HCAB故H为三角形垂心
结论4:
若H为ABC所在平面内一点,则HABCHBACHCABH是ABC的垂心证明:由HABCHBCA得,HA(HBHC)HB(HCHA)2HBHCHCHA同理可证得,HAHBHBHCHCHA由结论3可知命题成立2222222222222
三、外心(circumcenter)三角形三条边的垂直平分线(中垂线)的相交点。用这个点做圆心可以画三角形的外接圆。
结论5:
若O是ABC所在平面内一点,则OAOBOCO是ABC的外心 证明:由外心定义可知命题成立
结论6:
若O是ABC所在平面内一点,则(OAOB)BA(OBOC)CB(OCOA)AC O是ABC的外心 3
证明:(OAOB)BA(OAOB)(OAOB)OAOB(OBOC)CBOBOC(OCOA)ACOCOA222222222故OAOBOBOCOCOAOAOBOC故O为ABC的外心
222
四、内心(incenter)
三角形三条内角平分线的交点叫三角形的内心。即内切圆的圆心。
结论7:
若P为ABC所在平面内一点,则ABACBABCCACBOPOA1OB2OC3(0)ABACBABCCACBP是ABC的内心
证明:记AB,AC方向上的单位向量分别为e1,e2ABACOPOA1AP1(e1e2)ABAC由平行四边形法则知,(e1e2)在AB,AC边夹角平分线上 即P在A平分线上同理可得,P在B,C的平分线上故P为ABC的内心
结论8:
若P是ABC所在平面内一点,则aPAbPBcPC0P是ABC的内心证明:不妨设PDPC
aPAbPBcPC0a(PDDA)b(PDDB)cPC0(abc)PC(aDAbDB)0由于PC与DA,DB不共线,则abc0,aDAbDB0b即DBa由角平分线定理,CD是ACB的平分线同理可得其他的两条也是平分线故P是ABC的内心DA
第二篇:讲义---平面向量与三角形四心的交汇
讲义---平面向量与三角形四心的交汇 一、四心的概念介绍
(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。二、四心与向量的结合
(1)OAOBOC0O是ABC的重心.证法1:设O(x,y),A(x1,y1),B(x2,y2),C(x3,y3)
x1x2x3x(x1x)(x2x)(x3x)03 OOAOBOC0yyy23(y1y)(y2y)(y3y)0y13是ABC的重心.证法2:如图
AOAOBOC OA2OD0
AO2OD
A、O、D三点共线,且O分AD
为2:1
OEO是ABC的重心
(2)OAOBOBOC证明:如图所示O是三角形
BDCOCOAO为ABC的垂心.ABC的垂心,BE垂直AC,AD垂直BC,D、E是垂足.OAOBOBOCOB(OAOC)OBCA0
AOBAC
E同理OABC,OCAB
BOO为ABC的垂心
(3)设a,b,c是三角形的三条边长,O是ABC的内心
aOAbOBcOC0O为ABC的内心.ABAC、分别为AB、AC方向上的单位向量,cbABAC平分BAC, cbABACbc),令 AO(abccb证明:DCAOABACbc()abccb化简得(abc)OAbABcAC0
aOAbOBcOC0
(4)OAOBOCO为ABC的外心。
三、典型例题:
例1:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足OPOA(ABAC),0,,则点P的轨迹一定通过ABC的()
A.外心 B.内心 C.重心 D.垂心
例2:(03全国理4)O是平面上一定点,A、B、C是平面上不共线的三个点,动点
P满足OPOA(ABABACAC),0,,则点P的轨迹一定通过ABC的()
A.外心 B.内心 C.重心 D.垂心
例3:1)O是平面上一定点,A、B、C是平面上不共线的三个点,动点
P满足OPOA(ABABcoBsACACcoCs),0,,则点P的轨迹一定通过ABC的()
A.外心 B.内心 C.重心 D.垂心
2)已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足ABACOPOA(),[0,), 则动点P的轨迹一定通过△ABC的()|AB|sinB|AC|sinCA.重心 B.垂心 C.外心 D.内心
3)已知O是平面上的一定点,A、B、C是平面上不共线的三个点,动点P满足OBOCABACOP(), [0,), 则动点P的轨迹一定通过△ABC的()2|AB|cosB|AC|cosCA.重心 B.垂心 C.外心 D.内心
例
4、已知向量OP12P31,OP2,OP3满足条件OP1OP2OP30,|OP1||OP2||OP3|1,求证:△PP是正三角形.
ABC例
5、的外接圆的圆心为O,两条边上的高的交点为H,则实数m = OHm(OAOBOC),.
例
6、点). O是三角形ABC
所在平面内的一点,满足OAOBOBOCOCOA,则点
O是ABC的(A.三个内角的角平分线的交点 C.三条中线的交点
B.三条边的垂直平分线的交点 D.三条高的交点
例7
在△ABC内求一点P,使
AP2BP2CP2最小.
222222例8已知O为△ABC所在平面内一点,满足|OA||BC||OB||CA||OC||AB|,则O为△ABC的 心.
例9..已知O是△ABC所在平面上的一点,若OAOBOBOCOCOA,则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
222222例10 已知O为△ABC所在平面内一点,满足|OA||BC||OB||CA|=|OC||AB|,则O点是△ABC的()A.垂心 B.重心 C.内心 D.外心
例11已知O是△ABC所在平面上的一点,若(OAOB)AB=(OBOC)BC=(OCOA)CA= 0,则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
例12:已知O是△ABC所在平面上的一点,若aOAbOBcOC= 0,则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
aPAbPBcPC例13:已知O是△ABC所在平面上的一点,若PO(其中P是△ABC所在平面内任意一点),abc则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
四、配套练习:
1.已知ABC三个顶点A、B、C及平面内一点
P,满足
PAPBPC0,若实数满足:ABACAP,则的值为()
A.2 B.32 C.3 D.6 3
2.若ABC的外接圆的圆心为O,半径为1,OAOBOCA.
0,则OAOB()12 B.0 C.1 D.1 23.点O在ABC内部且满足OA2OB2OC0,则ABC面积与凹四边形A.0 B.
ABOC面积之比是()
C.
D.
是ABC的()4.ABC的外接圆的圆心为O,若OHOAOBOC,则HA.外心 B.内心 C.重心 D.垂心
5.O是平面上一定点,A、B、C是平面上不共线的三个点,若OABCOB222
CAOCAB222,则O是ABC的()
A.外心 B.内心 C.重心 D.垂心 6.ABC的外接圆的圆心为O,两条边上的高的交点为H,OH则实数m =
17.(06陕西)已知非零向量与满足(+)〃=0且〃= , 则△ABC为()
2A.三边均不相等的三角形 B.直角三角形 C.等腰非等边三角形 D.等边三角形 8.已知ABC三个顶点
m(OAOBOC),A、B、C,若ABABACABCBBCCA,则ABC为()
2A.等腰三角形 B.等腰直角三角形
C.直角三角形 D.既非等腰又非直角三角形
9.已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足OPOA(ABAC), [0,).则P点的轨迹一定通过△ABC的()A.外心 B.内心 C.重心 D.垂心
10.已知O是△ABC所在平面上的一点,若OAOBOC= 0, 则O点是△ABC的()A.外心 B.内心 C.重心 D.垂心
111.已知O是△ABC所在平面上的一点,若PO(PAPBPC)(其中P为平面上任意一点), 则O点是△ABC
3的()A.外心 B.内心 C.重心 D.垂心
第三篇:平面向量复习题
平面 向 量
向量思想方法和平面向量问题是新考试大纲考查的重要部分,是新高考的热点问题。题型多为选择或填空题,数量为1-2题,均属容易题,但是向量作为中学数学中的一个重要工具在三角、函数、导数、解几、立几等问题解决中处处闪光。最近几年的考试中向量均出现在解析几何题中,在解析几何的框架中考查向量的概念和方法、考查向量的运算性质、考查向量几何意义的应用,并直接与距离问题、角度问题、轨迹问题等相联系。近年考纲又新增“平面向量在几何中的应用”试题进一步要求我们具备多角度、多方向地分析,去探索、去发现、去研究、去创新,而不是去做大量的模仿式的解题。一个问题解决后,不能匆匆而过,回顾与反思是非常有必要的,以充分发挥每一道题目的价值。除了要重视一题多解外,更要重视一题多变,主动探索:条件和结论换一种说法如何?变换一个条件如何?反过来又会怎么样?等等。只有这样才能做到举一反三,以不变应万变。
一、高考考纲要求
1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念.
2.掌握向量的加法与减法.
3.掌握实数与向量的积,理解两个向量共线的充要条件.
4.了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.
5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.
6.掌握平面两点间的距离公式,掌握线段的定比分点和中点公式,并且能熟练运用;掌握平移公式.
二、高考热点分析
在高考试题中,对平面向量的考查主要有三个方面:
其一是主要考查平面向量的概念、性质和运算法则,理解和运用其直观的几何意义,并能正确地进行计算。其二考查向量坐标表示,向量的线性运算。
其三是和其他知识结合在一起,在知识的交汇点设计试题,考查向量与学科知识间综合运用能力。
数学高考命题注重知识的整体性和综合性,重视知识的交互渗透,在知识网络的交汇点设计试题.由于向量具有代数和几何的双重身份,使它成为中学数学知识的一个交汇点,成为联系多项知识的媒介.因此,平面向量与其他知识的结合特别是与解析几何的交汇、融合仍将是高考命题的一大趋势,同时它仍将是近几年高考的热点内容.
附Ⅰ、平面向量知识结构表
1.考查平面向量的基本概念和运算律
1此类题经常出现在选择题与填空题中,主要考查平面向量的有关概念与性质,要求考生深刻理解平面向量的相关概念,能熟练进行向量的各种运算,熟悉常用公式及结论,理解并掌握两向量共线、垂直的充要条件。1.(北京卷)| a |=1,| b |=2,c = a + b,且c⊥a,则向量a与b的夹角为
A.30°
B.60°
C.120°
D.150°
()
2.(江西卷)已知向量
A.30°
(1,2),(2,4),||
B.60°,若()
C.120°,则与的夹角为
2()
D.150°
3.(重庆卷)已知A(3,1),B(6,1),C(4,3),D为线段BC的中点,则
A.
与的夹角为()
444
4B.arccos C.arccos()D.-arccos()
2555
5
4.(浙江卷)已知向量a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则
arccos
()
A.a⊥e B.a⊥(a-e)
C.e⊥(a-e)D.(a+e)⊥(a-e)
.(上海卷)在△ABC中,若C90,ACBC4,则BABC 2.考查向量的坐标运算
1.(湖北卷)已知向量a=(-2,2),b=(5,k).若|a+b|不超过5,则k的取值范围是
A.[-4,6]
2.(重庆卷)设向量a=(-1,2),b=(2,-1),则(a·b)(a+b)等于
A.(1,1)
B.(-4,-4)
C.-4
D.(-2,-2)
()
()
B.[-6,4]
C.[-6,2]
D.[-2,6]
()
3.(浙江卷)已知向量a=(x-5,3),b=(2,x),且a⊥b,则由x的值构成的集合是
A.{2,3}
B.{-1,6}
C.{2}
D.{6}
例4.(2005年高考·天津卷·理14)在直角坐标系xOy中,已知点A(0,1)和点B(-3,4),若点C在∠AOB的平分线上且||=2,则OC=。
5.(全国卷)已知向量OA(k,12),OB(4,5),OC(k,10),且A、B、C三点共线,则k=.6.(湖北卷)已知向量a7.(广东卷)已知向量a
(2,2),b(5,k).若|ab|不超过5,则k的取值范围是
(2,3),b(x,6),且a//b,则x.3.平面向量在平面几何中的应用
ABAC
),[0,),则1.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OPOA(|AB||AC|
P的轨迹一定通过△ABC
A.外心的()B.内心
C.重心
D.垂心
2.(辽宁卷)已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A,C),则AP等于()
A.(ABAD),(0,1)
B.(ABBC),(0,C.(ABAD),(0,1)
D.(ABBC),(0,
3.已知有公共端点的向量a,b不共线,|a|=1,|b|=2,则与向量a,b的夹角平分线平行的单位向量是.
4.已知直角坐标系内有三个定点A(2,1)、B(0,10)、C(8,0),若动点P满足:OPOAt(ABAC),tR,则点P的轨迹方程。
4.平面向量与三角函数、函数等知识的结合当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式。在此基础上,可以设计出有关函数、不等式、三角函数、数列的综合问题。此类题的解题思路是转化为代数运算,其转化途径主要有两种:
①利用向量平行或垂直的充要条件,②利用向量数量积的公式和性质.1.(江西卷)已知向量(2cos
xxxx,tan()),(2sin(),tan()),令f(x).224242
4求函数f(x)的最大值,最小正周期,并写出f(x)在[0,π]上的单调区间.2.(山东卷)已知向量
m(cos,sin)
和
n
sin,cos,,2
,且
mn求
cos的值.28
3.(上海卷)已知函数
f(x)kxb的图象与x,y轴分别相交于点
A、B,22(,分别是与x,y轴正半
轴同方向的单位向量),函数g(x)
x2x6.f(x)g(x)时,求函数
(1)求k,b的值;(2)当x满足
g(x)
1的最小值.f(x)
【反思】这类问题主要是以平面向量的模、数量积、夹角等公式和相互知识为纽带,促成与不等式知识的相互迁移,有效地考查平面向量有关知识、不等式的性质、不等式的解法、不等式的应用及综合解题能力。
5.平面向量与解析几何的交汇与融合由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合与转换的桥梁和纽带。而解析几何也具有数形结合与转换的特征,所以在向量与解析几何知识的交汇处设计试题,已逐渐成为高考命题的一个新的亮点。
平面几何与解析几何的结合通常涉及到夹角、平行、垂直、共线、轨迹等问题的处理,解决此类问题基本思路是将几何问题坐标化、符号化、数量化,从而将推理转化为运算;或者考虑向量运算的几何意义,利用其几何意义解决有关问题。主要包括以下三种题型:
1、运用向量共线的充要条件处理解几中有关平行、共线等问题
运用向量共线的充要条件来处理解几中有关平行、共线等问题思路清晰,易于操作,比用斜率或定比分点公式研究这类问
题要简捷的多。
2、运用向量的数量积处理解几中有关长度、角度、垂直等问题
运用向量的数量积,可以把有关的长度、角度、垂直等几何关系迅速转化为数量关系,从而“计算”出所要求的结果。
3、运用平面向量综合知识,探求动点轨迹方程,还可再进一步探求曲线的性质。
1.(江西卷)以下同个关于圆锥曲线的命题中 ①设A、B为两个定点,k为非零常数,|
PA||PB|k,则动点P的轨迹为双曲线;
(),则动点P的轨迹为椭圆; 2
②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若③方程2x
5x20的两根可分别作为椭圆和双曲线的离心率;
x2y2x2
1与椭圆y21有相同的焦点.④双曲线
25935
其中真命题的序号为(写出所有真命题的序号)
2.平面直角坐标系中,O为坐标原点,已知A(3,1),B(1,3),若点C满足OC0AOB,其中,R,且
1,则点C的轨迹方程为()
A.C.3x2y110B.(x1)2(y2)25 2xy0D.x2y50
2.已知平面上一个定点C(-1,0)和一条定直线l:x=-4,P为该平面上一动点,作PQ⊥l,垂足为Q,
(PQ+2PC)(PQ-2PC)=0.(1)求点P的轨迹方程;
PC的取值范围.(2)求PQ·
第四篇:平面向量共线问题的深入研究
库尔勒市实验中学高一数学组编写人:史蕾
平面向量共线问题的深入研究
【学习目标】
1、掌握三点共线的证明方法。
2、两向量共线时,能根据题意选择合适的方法解决问题。
【前置研究】
1探究
一、假设A(1,5),B(,4),C(0,3),你能想出几种方法能证明它们三2
点共线?哪种方法最简便?
探究
二、只读题,不做题。看看下面两题三问各有几种方法解答。
1、已知a=(1,2),b=(-3,2),① 当k为何值时,ka+b与a-3b平行?
②平行时它们是同向还是反向?
2、已知a=(3,2-m)与b=(m,-m)平行,求m的值。
【我的例题】请根据以上两个探究的发现,自拟一道类似的题目并解答。
第五篇:平面向量图形结合问题
高中复习-平面向量
1.(2016•潍坊一模)在△ABC中,PQ分别是AB,BC的三等分点,且AP=AB,BQ=BC,若则A.
2.(2016•朔州模拟)点O为△ABC内一点,且满足则=(),设△OBC与△ABC的面积分别为S1、S2,=()+ B.﹣+ C.
﹣
D.﹣
﹣
=,=,A. B. C. D.
按向量=(2009,4,27)平移,3.(2009春•成都期中)已知点A(2008,5,12),B(14,2,8),将向量所得到的向量坐标是()A.(1994,3,4)B.(﹣1994,﹣3,﹣4)C.(15,1,23)D.(4003,7,31)
4.(2013秋•和平区期末)已知向量则向量为()A.(﹣3,2)B.(4,3)C.(3,﹣2)
D.(2,﹣5)
(1<x<4)的图象如图所示,A为图象与x轴的交点,过点A+)•
=(),若存在向量,使得,5.(2016•吉林三模)函数的直线l与函数的图象交于B,C两点,则(A.﹣8 B.﹣4 C.4 D.8 6.(2016•商洛模拟)在等腰△ABC中,BC=4,AB=AC,则A.﹣4 B.4 C.﹣8 D.8
=()
7.(2015•房山区一模)向量=(2,0),=(x,y),若与﹣的夹角等于,则||的最大值为()
A.4 B.2 C.2 D.
8.(2016•合肥二模)点G为△ABC的重心,设A.
9.(2016•眉山模拟)如图,在△OAB中,点P在边AB上,且AP:PB=3:2.则
=()﹣B.C.﹣2D.=,=,则
=()
A. B.C.
D.
10.(2016春•东营校级期中)点O是△ABC所在平面上一点,且满足A.外心 B.内心 C.重心 D.垂心
11.(2016•河南模拟)如图,在△ABC中,已知,则
++=,则点O为△ABC的()
=()
A. B.C.
D.,P是BN上的一点,若,则实数m的值12.(2016•衡水模拟)如图,在△ABC中,为()
A.B.C.1 D.3
13.(2016•焦作二模)在平面直角坐标系中,已知向量=(1,2),﹣∥,则x=()
=(3,1),=(x,3),若(2+)
A.﹣2 B.﹣4 C.﹣3 D.﹣1
14.(2016•嘉峪关校级模拟)已知向量A.
15.(2016•南昌校级模拟)△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上的一点(包括端点),则•B.C.D.
为非零向量,则
夹角为()的取值范围是()
A.[1,2]B.[0,1]C.[0,2]D.[﹣5,2]
16.(2016•潮南区模拟)已知平面向量与的夹角为,且||=1,|+2|=2,则||=(A.1 B.C.3 D.2
17.(2016•西宁校级模拟)已知||=1,||=,且⊥(﹣),则向量与向量的夹角为(A.B.C.D.
巩固与练习:
1.(2011•丰台区一模)已知平面向量,的夹角为60°,||=4,||=3,则|+|等于()A.37 B. C.13 D.
2.(2016•河南模拟)如图,在△ABC中,已知,则
=()))
A. B. C.
D.
3.(2016春•成都校级月考)如图,在△ABC中,线段BE,CF交于点P,设向量,则向量可以表示为()
A. B. C.
D.
4.(2016•抚顺一模)已知向量||=4,||=3,且(+2)(﹣)=4,则向量与向量的夹角θ的值为(A. B. C. D.
5.(2015春•临沂期末)如图,在△ABC中,D为边BC的中点,则下列结论正确的是()
A.+=B.﹣=C.
+
=
D.
﹣
=
6.(2015•娄星区模拟)如图,正方形中,点E是DC的中点,点F是BC的一个三等分点.那么
=(A.B.
C.
D.,))
7.(2016•湖南模拟)已知,,点C在AB上,∠AOC=30°.则向量
等于()
A.B.C.
D.
8.(2016•重庆校级模拟)若||=2,||=4且(+)⊥,则与的夹角是()A.
9.(2015春•昆明校级期中)如图,点M是△ABC的重心,则
为()B.C.D.﹣
A.B.4B.
10.(2015秋•厦门校级期中)已知平行四边形ABCD的对角线分别为AC,BD,且D的四等分点,则()
=2,点F是BD上靠近C.4D.4
A.C.
11.(2015•厦门校级模拟)如图,,,若m=,那么n=()=﹣=﹣﹣B.D.==﹣
﹣﹣
A. B.C.D.
12.(2016•嘉兴一模)如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则
=()
A.1 B.2 C.t D.2t
答案:
1.(2016•潍坊一模)在△ABC中,PQ分别是AB,BC的三等分点,且AP=AB,BQ=BC,若则A.=()+ B.﹣+ =C..
﹣
D.﹣
﹣
=,=,【解答】解:
∵AP=AB,BQ=BC,∴∴故选:A.
2.(2016•朔州模拟)点O为△ABC内一点,且满足则=(),设△OBC与△ABC的面积分别为S1、S2,=. =
=,=
=
.
A. B. C. D.
【解答】解:延长OC到D,使OD=4OC,延长CO交AB与E,∵O为△ABC内一点,且满足∴=,∴O为△DABC重心,E为AB中点,∴OD:OE=2:1,∴OC:OE=1:2,∴CE:OE=3:2,∴S△AEC=S△BEC,S△BOE=2S△BOC,∵△OBC与△ABC的面积分别为S1、S2,∴=.
故选:B.
3.(2009春•成都期中)已知点A(2008,5,12),B(14,2,8),将向量
按向量=(2009,4,27)平移,所得到的向量坐标是()A.(1994,3,4)B.(﹣1994,﹣3,﹣4)C.(15,1,23)D.(4003,7,31)【解答】解:∵A(2008,5,12),B(14,2,8),∴又∵=(﹣1994,﹣3,﹣4),按向量平移后不发生变化
=(﹣1994,﹣3,﹣4),∴平移后故选B
4.(2013秋•和平区期末)已知向量则向量为()A.(﹣3,2)【解答】解:设∵B.(4,3)C.(3,﹣2),,D.(2,﹣5),若存在向量,使得,∴,解得x=3,y=﹣2,∴=(3,﹣2). 故选:C.
5.(2016•吉林三模)函数的直线l与函数的图象交于B,C两点,则((1<x<4)的图象如图所示,A为图象与x轴的交点,过点A+)•
=()
A.﹣8 B.﹣4 C.4 D.8 【解答】解:由题意可知 B、C两点的中点为点A(2,0),设B(x1,y1),C(x2,y2),则x1+x2=4,y1+y2=0 ∴(+)•=((x1,y1)+(x2,y2))•(2,0)=(x1+x2,y1+y2)•(2,0)=(4,0)•(2,0)=8 故选D.
6.(2016•商洛模拟)在等腰△ABC中,BC=4,AB=AC,则A.﹣4 B.4 C.﹣8 D.8
=
cosB=|BC|=8.
2=()
【解答】解:在等腰△ABC中,BC=4,AB=AC,则故选:D.
7.(2015•房山区一模)向量=(2,0),=(x,y),若与﹣的夹角等于A.4 B.2 C.2 D.,则||的最大值为()
【解答】解:由向量加减法的几何意义可得,(如图),=,=∠OBA 故点B始终在以OA为弦,∠OBA=为圆周角的圆弧上运动,且等于弦OB的长,由于在圆中弦长的最大值为该圆的直径2R,在三角形AOB中,OA==2,∠OBA=
由正弦定理得,解得2R=4,即||的最大值为4 故选A
8.(2016•合肥二模)点G为△ABC的重心,设=,=,则
=(A.﹣B.C.﹣2D.【解答】解:由题意知,+=,即+=,故=﹣2=﹣2,故选C.)
9.(2016•眉山模拟)如图,在△OAB中,点P在边AB上,且AP:PB=3:2.则
=()
A.B.C.,D.
【解答】解:∵AP:PB=3:2,∴又∴===+,=,+
故选:B.
10.(2016春•东营校级期中)点O是△ABC所在平面上一点,且满足
+
+
=,则点O为△ABC的()
A.外心 B.内心 C.重心 D.垂心
【解答】解:作BD∥OC,CD∥OB,连结OD,OD与BC相交于G,则BG=CG,(平行四边形对角线互相平分),∴又∵∴++=﹣=+,=,可得:+
=﹣,∴A,O,G在一条直线上,可得AG是BC边上的中线,同理:BO,CO的延长线也为△ABC的中线. ∴O为三角形ABC的重心.
故选:C.
11.(2016•河南模拟)如图,在△ABC中,已知,则
=()
A.B.=,得+,=3(C.)D.
【解答】解:∵∴由已知化简=故选:C
12.(2016•衡水模拟)如图,在△ABC中,为(),P是BN上的一点,若,则实数m的值
A.B.C.1 D.3 【解答】解:∵∴设=λ,(λ>0)得且==
+
,∴m=故选:A,解之得λ=8,m=
13.(2016•焦作二模)在平面直角坐标系中,已知向量=(1,2),﹣∥,则x=()
A.﹣2 B.﹣4 C.﹣3 D.﹣1 【解答】解:由=(1,2),﹣
=(3,1),得
=(3,1),=(x,3),若(2+)=(1,2)﹣(3,1)=(﹣2,1),则,∴2+=(2,4)+(﹣4,2)=(﹣2,6),又(2+)∥,∴6x+6=0,得x=﹣1. 故选:D.
14.(2016•嘉峪关校级模拟)已知向量A.B.C.D.
;,;
; ;
=
;
;
为非零向量,则
夹角为()
【解答】解:∴∴∴∴∴∴夹角为.
故选:B.
15.(2016•南昌校级模拟)△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上的一点(包括端点),则的取值范围是()
A.[1,2]B.[0,1]C.[0,2]D.[﹣5,2]
【解答】解:∵D是边BC上的一点(包括端点),∴可设∵∠BAC=120°,AB=2,AC=1,∴∴=•=[+﹣+]•
=
+
(0≤λ≤1).
=2×1×cos120°=﹣1.
=﹣(2λ﹣1)﹣4λ+1﹣λ =﹣7λ+2. ∵0≤λ≤1,∴(﹣7λ+2)∈[﹣5,2]. ∴•的取值范围是[﹣5,2].
故选:D.
16.(2016•潮南区模拟)已知平面向量与的夹角为A.1 B.C.3 D.2 2,且||=1,|+2|=2,则||=()
【解答】解:由已知,|+2|=12,即故选D.
17.(2016•西宁校级模拟)已知||=1,||=A.B.C.D. ;,所以||+4||||×+4=12,所以||=2;
2,且⊥(﹣),则向量与向量的夹角为()
【解答】解:∵;
∴∴∴向量与的夹角为故选B. ; . ;
巩固与练习:
1.(2011•丰台区一模)已知平面向量,的夹角为60°,||=4,||=3,则|+|等于()A.37 B. C.13 D.
【解答】解:由题意得 •=||•||cos60°=4×3×=6,∴||==
=
=,故选B.
2.(2016•河南模拟)如图,在△ABC中,已知,则
=()
A. B.=,得+,=3(C.)
D.
【解答】解:∵∴由已知化简=故选:C
3.(2016春•成都校级月考)如图,在△ABC中,线段BE,CF交于点P,设向量,则向量可以表示为(),A. B. C.
D.
【解答】解:因为F,P,C三点共线,∴存在实数λ,使由已知同理,=,所以=,,∴解得
所以故选C.
;
4.(2016•抚顺一模)已知向量||=4,||=3,且(+2)(﹣)=4,则向量与向量的夹角θ的值为()A. B. C. D.
【解答】解:向量||=4,||=3,且(+2)(﹣)=4,∴﹣2+•=4,即16﹣2×9+4×3×cosθ=4,解得cosθ=; 又θ∈[0,π],∴θ=;
即向量与向量的夹角θ的值为.
故选:B.
5.(2015春•临沂期末)如图,在△ABC中,D为边BC的中点,则下列结论正确的是()
A.+=B.﹣=C.
+
=
D.
﹣
=
【解答】解:由已知及图形得到,故A错误;
;故B错误;
;故C 正确;
故D 错误;
故选C.
6.(2015•娄星区模拟)如图,正方形中,点E是DC的中点,点F是BC的一个三等分点.那么=()
A.B.
C.
D.
【解答】解:∵,∴,∵,∴,∵,∴==,∵=,∵,∴=
. 故选D.
7.(2016•湖南模拟)已知,,点C在AB上,∠AOC=30°.则向量
等于(A.B.C.
D.
【解答】解:过点c做CE∥OA CF∥OB 设OC长度为a 有△CEB∽△AFC ∴(1)
∵∠AOC=30° 则CF==OE OF=CE=)
∴BE=2﹣AF=2﹣
=OB,代入(1)中化简整理可解:a=OF=∴故选B.
==OA
OE=8.(2016•重庆校级模拟)若||=2,||=4且(+)⊥,则与的夹角是()A.B.C.D.﹣
【解答】解:设与的夹角是θ. ∵||=2,||=4且(+)⊥,∴(+)•=∴cosθ=.
. =2+2×4cosθ=0,2∵θ∈[0,π],∴故选:A.
9.(2015春•昆明校级期中)如图,点M是△ABC的重心,则为()
A.B.4C.4D.4
【解答】解:设AB的中点为F ∵点M是△ABC的重心 ∴故为C
10.(2015秋•厦门校级期中)已知平行四边形ABCD的对角线分别为AC,BD,且D的四等分点,则()
=2,点F是BD上靠近
.
A.=﹣﹣B.=﹣ C.=﹣D.=﹣
﹣
【解答】解:∵=2,点F是BD上靠近D的四等分点,∴=,=,∴==+,∵,∴=+
=﹣.
故选:C.
11.(2015•厦门校级模拟)如图,,,若m=,那么n=(A.B.C.D. 【解答】解:∵,故C为线段AB的中点,故==2,∴=,由,∴,∴=,∵M,P,N三点共线,故=1,当m=时,n=,故选:C)
12.(2016•嘉兴一模)如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则
=()
A.1 B.2 C.t D.2t 【解答】解:连结BC,CD.则AD⊥CD,AB⊥BC. ∴=AB×AC×cos∠BAC=AB=t+1. =AD×AC×cos∠CAD=AD=t+2.
∵∴•=,=
=1. 22故选:A.