第一篇:职高数列,平面向量练习题[推荐]
职高数列,平面向量练习题
一. 选择题:
(1)已知数列{an}的通项公式为an=2n-5,那么a2n=()。A 2n-5
B 4n-5
C
2n-10
D
4n-10(2)等差数列-7/2,-3,-5/2,-2,··第n+1项为()A 12(n7)
B 1nn2(n4)
C 2D 27(3)在等差数列{ an }中,已知S3=36,则a2=()A
B
C
D 6(4)在等比数列{an}中,已知a2=2,a5=6,则a8=()A
B 12
C
D
24(5)平面向量定义的要素是()
A 大小和起点
B
方向和起点
C 大小和方向
D 向和起点
(6)ABACBC等于()
A
2BC
B 2CB
C 0
D
0(7)下列说法不正确的是().A
零向量和任何向量平行
B
平面上任意三点A、B、C,一定有ABBCAC C 若ABmCD(mR),则AB//CD
D若ax1e1,bx2e2,当x1x2时,ab
(8)设点A(a1,a2)及点B(b1,b2),则AB的坐标是(A(a1b1,a2b2)
B(a1a2,b1b2)
大小、方)
C(b1a1,b2a2)
D(a2a1,b2b1)
(9)若ab=-4,|a|=2,|b|=22,则是()A 0 B
90
C
180
D
270(10)下列各对向量中互相垂直的是()A a(4,2),b(3,5)
B a(3,4),b(4,3)
C a(5,2),b(2,5)
D a(2,3),b(3,2)
(11).等比数列{an}中,a2=9,a5=243,则{an}的前4项和为().A.81
B.120
C.168
D.192(12).已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=().
A.-4 D. -10
B.-6
C.-8
(13)公比为2的等比数列{an}的各项都是正数,且a3a11=16,则a5=(A)1
(B)2
(C)4
(D)8(14).在等差数列{an}中,已知a4+a8=16,则a2+a10=(A)12(B)16(C)20(D)24 二.填空题:
(1)数列0,3,8,15,24,…的一个通项公式为_________________.(2)数列的通项公式为an=(-1)n+12+n,则a10=_________________.(3)等差数列-1,2,5,…的一个通项公式为________________.1(4)等比数列10,1,10,…的一个通项公式为______________(5)ABCDBC=______________.(6)已知2(ax)=3(bx),则x=_____________.(7)向量a,b的坐标分别为(2,-1),(-1,3),则ab的坐标_______,2a3b的坐标为__________.(8)已知A(-3,6),B(3,-6),则AB=__________,|BA|=____________.(9)已知三点A(3+1,1),B(1,1),C(1,2),则
n,41.数列的通项公式为an=sin写出数列的前5项。
2.在等差数列{ an }中,a1=2,a7=20,求S15.315.在等比数列{ an }中,a5=4,q=2,求S7.3.在平行四边形ABCD中,O为对角线交点,试用BA、BC表示BO.4.任意作一个向量a,请画出向量b2a,cab.5.已知点B(3,-2),AB=(-2,4),求点A的坐标.6.已知点A(2,3),AB=(-1,5), 求点B的坐标.7.已知a(2,2),b(3,4),c(1,5),求:(1)2ab3c;
(2)3(ab)c
18.已知点A(1,2),B(5,-2),且 a2AB,坐标.求向量a的
第二篇:职高高二平面向量课件
导语:平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。以下是小编整理职高高二平面向量课件的资料,欢迎阅读参考。
【教学目标】
1.能准确表述向量的加法、减法、实数与向量的积的坐标运算法则,并能进行相关运算,进一步培养学生的运算能力;
2.通过学习向量的坐标表示,使学生进一步了解数形结合思想,认识事物之间的相互联系,培养学生辨证思维能力.【教学重难点】
教学重点:平面向量的坐标运算.教学难点: 对平面向量坐标运算的理解.【教学过程】
一、创设情境
以前,我们所讲的向量都是用有向线段表示,即几何的方法表示。向量是否可以用代数的方法,比如用坐标来表示呢?如果可能的话,向量的运算就可以通过坐标运算来完成,那么问题的解决肯定要方便的多。因此,我们有必要探究一下这个问题:平面向量的坐标运算。
二、新知探究
思考1:设i、j是与x轴、y轴同向的两个单位向量,若设 =(x1, y1)=(x2, y2)则 =x1i+y1j,=x2i+y2j,根据向量的线性运算性质,向量 λ(λ∈R)如何分别用基底i、j表示?
思考2:根据向量的坐标表示,向量 +,3 +4 的坐标.解: + =(2,1)+(-3,4)=(-1,5),-=(2,1)-(-3,4)=(5,-3),+4 =3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:利用平面向量的坐标运算法则直接求解。
例
2、已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)(3,4),求顶点D的坐标。
解:设点D的坐标为(x,y),即 3-x=1,4-y=
2解得 x=2,y=2
所以顶点D的坐标为(2,2).另解:由平行四边形法则可得
所以顶点D的坐标为(2,2)
点评:考查了向量的坐标与点的坐标之间的联系.变式训练2:已知平面上三点的坐标分别为A(-2, 1), B(-1, 3), C(3, 4),求点D的坐标使这四点构成平行四边形四个顶点。
四、课堂小结
本节课主要学习了平面向量的坐标运算法则:
(1)两向量和的坐标等于各向量对应坐标的和;
(2)两向量差的坐标等于各向量对应坐标的差;
(3)实数与向量积的坐标等于原向量的对应坐标乘以该实数;
五、反馈测评
1.下列说法正确的有()个
(1)向量的坐标即此向量终点的坐标
(2)位置不同的向量其坐标可能相同
(3)一个向量的坐标等于它的始点坐标减去它的终点坐标
(4)相等的向量坐标一定相同
A.1 B.2 C.3 D.42.已知A(-1,5)和向量 =(2,3),若 =3,则点B的坐标为__________。
A.(7,4)B.(5,4)C.(7,14)D.(5,14)
3.已知点,及,求点、、的坐标。
板书设计
略
第三篇:平面向量复习题
平面 向 量
向量思想方法和平面向量问题是新考试大纲考查的重要部分,是新高考的热点问题。题型多为选择或填空题,数量为1-2题,均属容易题,但是向量作为中学数学中的一个重要工具在三角、函数、导数、解几、立几等问题解决中处处闪光。最近几年的考试中向量均出现在解析几何题中,在解析几何的框架中考查向量的概念和方法、考查向量的运算性质、考查向量几何意义的应用,并直接与距离问题、角度问题、轨迹问题等相联系。近年考纲又新增“平面向量在几何中的应用”试题进一步要求我们具备多角度、多方向地分析,去探索、去发现、去研究、去创新,而不是去做大量的模仿式的解题。一个问题解决后,不能匆匆而过,回顾与反思是非常有必要的,以充分发挥每一道题目的价值。除了要重视一题多解外,更要重视一题多变,主动探索:条件和结论换一种说法如何?变换一个条件如何?反过来又会怎么样?等等。只有这样才能做到举一反三,以不变应万变。
一、高考考纲要求
1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念.
2.掌握向量的加法与减法.
3.掌握实数与向量的积,理解两个向量共线的充要条件.
4.了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.
5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.
6.掌握平面两点间的距离公式,掌握线段的定比分点和中点公式,并且能熟练运用;掌握平移公式.
二、高考热点分析
在高考试题中,对平面向量的考查主要有三个方面:
其一是主要考查平面向量的概念、性质和运算法则,理解和运用其直观的几何意义,并能正确地进行计算。其二考查向量坐标表示,向量的线性运算。
其三是和其他知识结合在一起,在知识的交汇点设计试题,考查向量与学科知识间综合运用能力。
数学高考命题注重知识的整体性和综合性,重视知识的交互渗透,在知识网络的交汇点设计试题.由于向量具有代数和几何的双重身份,使它成为中学数学知识的一个交汇点,成为联系多项知识的媒介.因此,平面向量与其他知识的结合特别是与解析几何的交汇、融合仍将是高考命题的一大趋势,同时它仍将是近几年高考的热点内容.
附Ⅰ、平面向量知识结构表
1.考查平面向量的基本概念和运算律
1此类题经常出现在选择题与填空题中,主要考查平面向量的有关概念与性质,要求考生深刻理解平面向量的相关概念,能熟练进行向量的各种运算,熟悉常用公式及结论,理解并掌握两向量共线、垂直的充要条件。1.(北京卷)| a |=1,| b |=2,c = a + b,且c⊥a,则向量a与b的夹角为
A.30°
B.60°
C.120°
D.150°
()
2.(江西卷)已知向量
A.30°
(1,2),(2,4),||
B.60°,若()
C.120°,则与的夹角为
2()
D.150°
3.(重庆卷)已知A(3,1),B(6,1),C(4,3),D为线段BC的中点,则
A.
与的夹角为()
444
4B.arccos C.arccos()D.-arccos()
2555
5
4.(浙江卷)已知向量a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则
arccos
()
A.a⊥e B.a⊥(a-e)
C.e⊥(a-e)D.(a+e)⊥(a-e)
.(上海卷)在△ABC中,若C90,ACBC4,则BABC 2.考查向量的坐标运算
1.(湖北卷)已知向量a=(-2,2),b=(5,k).若|a+b|不超过5,则k的取值范围是
A.[-4,6]
2.(重庆卷)设向量a=(-1,2),b=(2,-1),则(a·b)(a+b)等于
A.(1,1)
B.(-4,-4)
C.-4
D.(-2,-2)
()
()
B.[-6,4]
C.[-6,2]
D.[-2,6]
()
3.(浙江卷)已知向量a=(x-5,3),b=(2,x),且a⊥b,则由x的值构成的集合是
A.{2,3}
B.{-1,6}
C.{2}
D.{6}
例4.(2005年高考·天津卷·理14)在直角坐标系xOy中,已知点A(0,1)和点B(-3,4),若点C在∠AOB的平分线上且||=2,则OC=。
5.(全国卷)已知向量OA(k,12),OB(4,5),OC(k,10),且A、B、C三点共线,则k=.6.(湖北卷)已知向量a7.(广东卷)已知向量a
(2,2),b(5,k).若|ab|不超过5,则k的取值范围是
(2,3),b(x,6),且a//b,则x.3.平面向量在平面几何中的应用
ABAC
),[0,),则1.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OPOA(|AB||AC|
P的轨迹一定通过△ABC
A.外心的()B.内心
C.重心
D.垂心
2.(辽宁卷)已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A,C),则AP等于()
A.(ABAD),(0,1)
B.(ABBC),(0,C.(ABAD),(0,1)
D.(ABBC),(0,
3.已知有公共端点的向量a,b不共线,|a|=1,|b|=2,则与向量a,b的夹角平分线平行的单位向量是.
4.已知直角坐标系内有三个定点A(2,1)、B(0,10)、C(8,0),若动点P满足:OPOAt(ABAC),tR,则点P的轨迹方程。
4.平面向量与三角函数、函数等知识的结合当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式。在此基础上,可以设计出有关函数、不等式、三角函数、数列的综合问题。此类题的解题思路是转化为代数运算,其转化途径主要有两种:
①利用向量平行或垂直的充要条件,②利用向量数量积的公式和性质.1.(江西卷)已知向量(2cos
xxxx,tan()),(2sin(),tan()),令f(x).224242
4求函数f(x)的最大值,最小正周期,并写出f(x)在[0,π]上的单调区间.2.(山东卷)已知向量
m(cos,sin)
和
n
sin,cos,,2
,且
mn求
cos的值.28
3.(上海卷)已知函数
f(x)kxb的图象与x,y轴分别相交于点
A、B,22(,分别是与x,y轴正半
轴同方向的单位向量),函数g(x)
x2x6.f(x)g(x)时,求函数
(1)求k,b的值;(2)当x满足
g(x)
1的最小值.f(x)
【反思】这类问题主要是以平面向量的模、数量积、夹角等公式和相互知识为纽带,促成与不等式知识的相互迁移,有效地考查平面向量有关知识、不等式的性质、不等式的解法、不等式的应用及综合解题能力。
5.平面向量与解析几何的交汇与融合由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合与转换的桥梁和纽带。而解析几何也具有数形结合与转换的特征,所以在向量与解析几何知识的交汇处设计试题,已逐渐成为高考命题的一个新的亮点。
平面几何与解析几何的结合通常涉及到夹角、平行、垂直、共线、轨迹等问题的处理,解决此类问题基本思路是将几何问题坐标化、符号化、数量化,从而将推理转化为运算;或者考虑向量运算的几何意义,利用其几何意义解决有关问题。主要包括以下三种题型:
1、运用向量共线的充要条件处理解几中有关平行、共线等问题
运用向量共线的充要条件来处理解几中有关平行、共线等问题思路清晰,易于操作,比用斜率或定比分点公式研究这类问
题要简捷的多。
2、运用向量的数量积处理解几中有关长度、角度、垂直等问题
运用向量的数量积,可以把有关的长度、角度、垂直等几何关系迅速转化为数量关系,从而“计算”出所要求的结果。
3、运用平面向量综合知识,探求动点轨迹方程,还可再进一步探求曲线的性质。
1.(江西卷)以下同个关于圆锥曲线的命题中 ①设A、B为两个定点,k为非零常数,|
PA||PB|k,则动点P的轨迹为双曲线;
(),则动点P的轨迹为椭圆; 2
②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若③方程2x
5x20的两根可分别作为椭圆和双曲线的离心率;
x2y2x2
1与椭圆y21有相同的焦点.④双曲线
25935
其中真命题的序号为(写出所有真命题的序号)
2.平面直角坐标系中,O为坐标原点,已知A(3,1),B(1,3),若点C满足OC0AOB,其中,R,且
1,则点C的轨迹方程为()
A.C.3x2y110B.(x1)2(y2)25 2xy0D.x2y50
2.已知平面上一个定点C(-1,0)和一条定直线l:x=-4,P为该平面上一动点,作PQ⊥l,垂足为Q,
(PQ+2PC)(PQ-2PC)=0.(1)求点P的轨迹方程;
PC的取值范围.(2)求PQ·
第四篇:第二单元 数列、三角函数、平面向量教学设计2
沧源民族中学高三年级数学复习教学设计第六周2011年3月19日星期六
第二单元数列、三角函数、平面向量
第一讲三角函数(6课时)
主备教师肖平聪
一、教学内容及其解析
1、三角函数式的化简与求值:两角和的正弦、余弦、正切;二倍角的正弦、余弦、正切;诱导公式的运用。
2、三角函数的图象与性质:正弦函数、余弦函数、正切函数图象及其性质。
3、三角形中的三角函数问题:正弦定理、余弦定理以及三角形面积公式的运用。
二、目标及其解析
1、能灵活运用三角函数的有关公式,对三角函数进行变形与化简。
2、理解和掌握三角函数的图像及性质。
3、能用正弦定理、余弦定理解三角形问题。
三、问题诊断分析:
高考中,三角函数主要考查学生的运算能力、灵活运用能力,在客观题中,突出考察基本公式所涉及的运算、三角函数的图像基本性质,尤其是对角的范围及角之间的特殊联系较为注重。解答题中以中等难度题为主,涉及解三角形、向量及简单运算。三角函数部分,公式较多,易混淆,在运用过程中,要观察三角函数中函数名称的差异、角的差异、关系式的差异,确定三角函数变形化简方向。
四 教学过程设计
1、三角函数式的化简与求值
问题1两角和的正弦、余弦、正切的公式?
问题2二倍角的正弦、余弦、正切的公式呢?
问题3三角函数的诱导公式呢?
例题(见高考调研二轮重点讲练p30)
变式训练(见高考调研二轮重点讲练p30)
2、三角函数的图象与性质
问题1三角函数的正弦函数、余弦函数、正切函数图象怎么画?
问题2三角函数的正弦函数、余弦函数、正切函数的性质有哪些?
例题(见高考调研二轮重点讲练p31-33)
变式训练(见高考调研二轮重点讲练p31-33)
3、三角形中的三角函数问题
问题1正弦定理、余弦定理是什么?
问题2三角形面积公式怎么用?
例题(见高考调研二轮重点讲练p33)
变式训练(见高考调研二轮重点讲练p33)
五、目标检测:(见二轮复习用书p34)
六、配餐作业:(见二轮复习用书p34-36)热点集训作业和2011届先知专题卷专题.
第五篇:数列简单练习题
等差数列
一、填空题
1.等差数列2,5,8,…的第20项为___________.2.在等差数列中已知a1=12, a6=27,则d=___________ 3.在等差数列中已知d,a7=8,则a1=_______________ 4.(ab)2与(ab)2的等差中项是_______________ 5.等差数列-10,-6,-2,2,…前___项的和是54 6.正整数前n个数的和是___________ 7.数列an的前n项和Sn=3nn2,则an=___________ 8.已知数列an的通项公式an=3n-50,则当n=___时,Sn的值最小,Sn的最小值是_______。1
3二、选择题
1.在等差数列an中a3a1140,则a4a5a6a7a8a9a10的值为()
A.84
B.72
C.60
D.48 2.在等差数列an中,前15项的和S1590,a8为()
A.6
B.3
C.12
D.4
3.等差数列an中, a1a2a324,a18a19a2078,则此数列前20项的和等于()
A.160
B.180
C.200
D.220 4.在等差数列an中,若a3a4a5a6a7450,则a2a8的值等于()
A.45
B.75
C.180
D.300 5.若lg2,lg(2x1),lg(2x3)成等差数列,则x的值等于()
A.0
B.log2C.32
D.0或32
6.数列3,7,13,21,31,…的通项公式是()
A.an4nB.ann3n2n
2C.ann2n1
D.不存在 7.等差数列中连续四项为a,x,b,2x,那么 a :b 等于()
A、B、C、或 1
D、8.等差数列{an}中,a15=33,a45=153,则217是这个数列的()
A、第60项
B、第61项
C、第62项
D、不在这个数列中
三、计算题
1.根据下列各题中的条件,求相应的等差数列an的有关未知数:
51a1,d,Sn5,求n 及an;(2)d2,n15,an10,求a1及Sn(1)66
2.设等差数列an的前n项和公式是Sn5n23n,求它的前3项,并求它的通项公式
3.如果等差数列an的前4项的和gg是2,前9项的和是-6,求其前n项和的公式。
4. 在等差数列{an}中,a1=25,S17=S9
(1)求{an}的通项公式
(2)这个数列的前多少项的和最大?并求出这个最大值。
5. 已知等差数列{an}的首项为a,记(1)求证:{bn}是等差数列
(2)已知{an}的前13项的和与{bn}的前13的和之比为 3 :2,求{bn}的公差。
等比数列
一、填空题
1.若等比数列的首项为4,公比为2,则其第3项和第5项的等比中项是______. 2.在等比数列{an}中,(2)若S3=7a3,则q=______;
(3)若a1+a2+a3=-3,a1a2a3=8,则S4=____.
3.在等比数列{an}中,(1)若a7·a12=5,则a8·a9·a10·a11=____;(2)若a1+a2=324,a3+a4=36,则a5+a6=______;
4.一个数列的前n项和Sn=8n-3,则它的通项公式an=____.
5.数列{an}满足a1=3,an+1=-,则an = ______,Sn= ______。
二、选择题
1、已知等比数列的公比为2,前4项的和为1,则前8项的和等于()A、15 B、17 C、19 D、21
2、设A、G分别是正数a、b的等差中项和等比中项,则有()
A、ab≥AG B、ab 3、已知{an}是等比数列,且an>0,a2a4+2a3a5+a4a6=25,那么a3+a5的值等于 A.5 B.10 C.15 D.20 4、.等差数列{an}的首项a1=1,公差d≠0,如果a1,a2,a5成等比数列,那么d等于A.3 B.2 C.-2 D.2或-2 5、.等比数列{an}中,a5+a6=a7-a5=48,那么这个数列的前10项和等于 [ [ ] ] ] [ A.1511 B.512 C.1023 D.1024 6、.等比数列{an}中,a2=6,且a5-2a4-a3=-12,则an等于 [ ] A.6 B.6·(-1)n-2 C.6· 2n-2 D.6或6·(-1) n-2 或6·2 n-2 2227.等比数列{an}中,若a1+a2+…+an=2n-1,则a1+…+an=()a2(A)4n-1 1(B)(4n1) 3(C)2n-1 1(D)(2n1) 38.设Sn为等比数列an的前n项和,8a2a50,则 三、解答题 S5()S2A.11 B.5 C.8 D.11 1.已知等比数列{an}的公比大于1,Sn为其前n项和.S3=7,且a1+3、3a2、a3+4构成等差数列.求数列{an}的通项公式. 2.递增等比数列{an}满足a2+a3+a4=28,且a3+2是a2、a4的等差中项.求{an}的通项公式an. 3.在等比数列{an}中,a1=2,前n项和为Sn,数列{an+1}也是等比数列,求:数列{an}的通项公式an及前n项和Sn. 4.已知等差数列{an}的公差为d(d≠0),等比数列{bn}的公比为q,若a1=b1=1,a2=b2,a8=b3,求数列{an}、{bn}的通项公式an及前n项和公式Sn.