第一篇:向量证明重心
向量证明重心三角形ABC中,重心为O,AD是BC边上的中线,用向量法证明AO=2OD(1).AB=12b,AC=12c。AD是中线则AB+AC=2AD即12b+12c=2AD,AD=6b+6c;BD=6c-6b。OD=xAD=6xb+6xx。(2).E是AC中点。作DF//BE则EF=EC/2=AC/4=3c。平行线分线段成比OD/AD=EF/AF即(6xb+6xc)/(6b+6c)=3c/9c,x(6b+6c)/(6b+6c)=1/3,3x=1。(3).OD=2b+2c,AO=AD-OD=4b+4c=2(2b+2c)=2OD。2 设BC中点为M∵PA+PB+PC=0∴PA+2PM=0∴PA=2MP∴P为三角形ABC的重心。上来步步可逆、∴P是三角形ABC重心的充要条件是PA+PB+PC=0 3 如何用向量证明三角形的重心将中线分为2:1 设三角形ABC的三条中线分别为AD、BE、CF,求证AD、BE、CF交于一点O,且AO:OD=BO:OE=CO:OF=2:1 证明:用归一法
不妨设AD与BE交于点O,向量BA=a,BC=b,则CA=BA-BC=a-b 因为BE是中线,所以BE=(a+b)/2,向量BO与向量BE共线,故设BO=xBE=(x/2)(a+b)同理设AO=yAD=(y/2)(AB+AC)=y/2(-a+b-a)=-ya+(y/2)b 在三角形ABO中,AO=BO-BA 所以-ya+(y/2)b=(x/2)(a+b)-a=(x/2-1)a+(x/2)b 因为向量a和b线性无关,所以-y=x/2-1 y/2=x/2 解得x=y=2/3 所以A0:AD=BO:BE=2:3 故AO:OD=BO:OE=2:1 设AD与CF交于O',同理有AO’:O'D=CO':O'F=2:1 所以有AO:OD=AO':O'D=2:1,注意到O和O’都在AD上,因此O=O’ 因此有AO:OD=BO:OE=CO:OF=2:1 证毕!4 设三角形ABC的顶点A,B,C的坐标分别为(X1,Y1),(X2,Y2),(X3,Y3)证明:三角形ABC的重心(即三条中线的交点)M的坐标(X,Y)满足:X=X1+X2+X3/3 Y=Y1+Y2+Y3/3 设:AB的中点为D.∴Dx=(x1+x2)/2,又M为三角形的重心,∴CD=3MD,∴x3-(x1+x2)/2=3[x-(x1+x2)/2]===>x=(x1+x2+x3)/3同理: y=(y1+y2+y3)/3 5 如图。
第二篇:向量证明重心
向量证明重心
三角形ABC中,重心为O,AD是BC边上的中线,用向量法证明AO=2OD
(1).AB=12b,AC=12c。AD是中线则AB+AC=2AD即12b+12c=2AD,AD=6b+6c;BD=6c-6b。OD=xAD=6xb+6xx。(2).E是AC中点。作DF//BE则EF=EC/2=AC/4=3c。平行线分线段成比OD/AD=EF/AF即(6xb+6xc)/(6b+6c)=3c/9c,x(6b+6c)/(6b+6c)=1/3,3x=1。(3).OD=2b+2c,AO=AD-OD=4b+4c=2(2b+2c)=2OD。
2设BC中点为M∵pA+pB+pC=0∴pA+2pM=0∴pA=2Mp∴p为三角形ABC的重心。上来步步可逆、∴p是三角形ABC重心的充要条件是pA+pB+pC=0
3如何用向量证明三角形的重心将中线分为2:
1设三角形ABC的三条中线分别为AD、BE、CF,求证AD、BE、CF交于一点O,且AO:OD=BO:OE=CO:OF=2:
1证明:用归一法
不妨设AD与BE交于点O,向量BA=a,BC=b,则CA=BA-BC=a-b
因为BE是中线,所以BE=(a+b)/2,向量BO与向量BE共线,故设BO=xBE=(x/2)(a+b)
同理设AO=yAD=(y/2)(AB+AC)=y/2(-a+b-a)=-ya+(y/2)b
在三角形ABO中,AO=BO-BA
所以-ya+(y/2)b=(x/2)(a+b)-a=(x/2-1)a+(x/2)b
因为向量a和b线性无关,所以
-y=x/2-1
y/2=x/
2解得x=y=2/
3所以A0:AD=BO:BE=2:3
故AO:OD=BO:OE=2:1
设AD与CF交于O',同理有AO’:O'D=CO':O'F=2:1
所以有AO:OD=AO':O'D=2:1,注意到O和O’都在AD上,因此O=O’
因此有AO:OD=BO:OE=CO:OF=2:1
证毕!
4设三角形ABC的顶点A,B,C的坐标分别为(X1,Y1),(X2,Y2),(X3,Y3)证明:三角形ABC的重心(即三条中线的交点)M的坐标(X,Y)满足:X=X1+X2+X3/3Y=Y1+Y2+Y3/3
设:AB的中点为D.∴Dx=(x1+x2)/2,又M为三角形的重心,∴CD=3MD,∴x3-(x1+x2)/2=3===>x=(x1+x2+x3)/3同理:y=(y1+y2+y3)/3
5如图。设AB=a(向量),AC=b,AD=(a+b)/2,AO=tAB=ta/2+tb/2.BE=b/2-a.AO=a+sBE=(1-s)a+sb/2.t/2=1-s,t/2=s/2.消去s.t=2/3.AO=(2/3)AB.OD=(1/3)AB,AO=2OD.如何用向量证明三角形的重心将中线分为2:1
设三角形ABC的三条中线分别为AD、BE、CF,求证AD、BE、CF交于一点O,且AO:OD=BO:OE=CO:OF=2:1
证明:用归一法
不妨设AD与BE交于点O,向量BA=a,BC=b,则CA=BA-BC=a-b
因为BE是中线,所以BE=(a+b)/2,向量BO与向量BE共线,故设BO=xBE=(x/2)(a+b)
同理设AO=yAD=(y/2)(AB+AC)=y/2(-a+b-a)=-ya+(y/2)b
在三角形ABO中,AO=BO-BA
所以-ya+(y/2)b=(x/2)(a+b)-a=(x/2-1)a+(x/2)b
因为向量a和b线性无关,所以
-y=x/2-1
y/2=x/2
解得x=y=2/3
所以A0:AD=BO:BE=2:3
故AO:OD=BO:OE=2:1
设AD与CF交于O',同理有AO’:O'D=CO':O'F=2:1
所以有AO:OD=AO':O'D=2:1,注意到O和O’都在AD上,因此O=O’
因此有AO:OD=BO:OE=CO:OF=2:1
证毕!
第三篇:向量与三角形的重心
向量与三角形的重心
例1 已知A,B,C是不共线的三点,G是△ABC内一点,若GAGBGC0.求
证:G是△ABC的重心.
证明:如图1所示,因为GAGBGC0,所以GA(GBGC).
以GB,GC为邻边作平行四边形BGCD,则有GDGBGC,所以GDGA.
又因为在平行四边形BGCD中,BC交GD于点E,所以BEEC,GEED.所以AE是△ABC的边BC的中线,且GA2GE.
故G是△ABC的重心.
点评:①解此题要联系重心的性质和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法.
变式引申:已知D,E,F分别为△ABC的边BC,AC,AB的中点.求证: ADBECF0.
证明:如图2的所示,ADACCD2ADACABCDBD,即2ADACAB. ADABBD
同理2BEBABC,2CFCACB.
2A(DBEC)FAC
0CFADBE. .ABBAB0C CACB
点评:该例考查了三角形法则和向量的加法.
例2 如图3所示,△ABC的重心为G,O为坐标原点,OAa,OBb,OCc,试用a,b,c表示OG.
解:设AG交BC于点M,则M是BC的中点,baABACBCcb.则,ca,111AMABbCa(cb)(cb2a). 22
221AGA(cb2a.)3
311故OGOAAGa(cb2a)(abc). 33
点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键.
变式引申:如图4,平行四边形ABCD的中心为O,1P为该平面上任意一点,则PO(PAPBPCPD). 4
POPAAO,POPBBO,POPCCO,证法1:
POPDDO,PBPC PD4POPA, 1即PO(PAPBPCPD). 4
11证法2:PO(PAPC),PO(PBPD),22
1PO(PAPBPCPD). 4
点评:(1)证法1运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.
(2)若P与O重合,则上式变为OAOBOCOD0.
第四篇:证明向量共面
证明向量共面
已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线,但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=?
写详细点怎么做谢谢了~明白后加分!!
我假定你的O-A表示向量OA。
由O的任意性,取一个不在ABCD所在平面的O,这时若OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。
(证明:设O在该平面上的投影为p,那么对平面上任何一点X,OX=Op+pX,然后取X=A、B、C、D代你给的关系式并比较Op分量即可。)
你给的右端向量都反向,所以2x+3y+4z=-1。
2充分不必要条件。
如果有三点共线,则第四点一定与这三点共面,因为线和直线外一点可以确定一个平面,如果第四点在这条线上,则四点共线,也一定是共面的。
而有四点共面,不一定就其中三点共线,比如四边形的四个顶点共面,但这四个顶点中没有三个是共线的。
“三点共线”可以推出“四点共面”,但“四点共面”不能推出“三点共线”。因此是充分不必要条件
任取3个点,如果这三点共线,那么四点共面;如果这三点不共线,那么它们确定一个平面,考虑第四点到这个平面的距离。方法二A、B、C、D四点共面的充要条件为向量AB、AC、AD的混合积(AB,AC,AD)=0。方法三A、B、C、D四点不共面的充要条件为向量AB、AC、AD线性无关。
3已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线,但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=?
写详细点怎么做谢谢了我假定你的O-A表示向量OA。
由O的任意性,取一个不在ABCD所在平面的O,这时若OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。
(证明:设O在该平面上的投影为p,那么对平面上任何一点X,OX=Op+pX,然后取X=A、B、C、D代你给的关系式并比较Op分量即可。)
你给的右端向量都反向,所以2x+3y+4z=-1。
4Xa-Yb+Yb-Zc+Zc-Xa=0
∴Xa-Yb=-(Yb-Zc)-(Zc-Xa)
由共面判定定理知它们共面。
简单的说一个向量能够用另外两个向量表示,它们就共面。详细的看高中课本
41.若向量e1、e2、e3共面,(i)其中至少有两个不共线,不妨设e1,e2不共线,则e1,e2线性无关,e3可用e1,e2线性表示,即存在实数λ,μ,使得e3=λe1+μe2,于是
λe1+μe2-e3=0.即存在三个不全为零的实数λ,μ,υ=-1,使得
λe1+μe2+υe3=0”。
(ii)若e1,e2,e3都共线,则其中至少有一个不为0,不妨设e1≠0,则存在实数λ,使得e2=λe1.于是λe1-e2=0,即存在三个不全为零的实数λ,μ=-1,υ=0,使得λe1+μe2+υe3=0”.2.存在三个不全为零的实数λ,μ,υ,使得λe1+μe2+υe3=0”,不妨设λ≠0,就有e1=(-μ/λ)e2+(-υ/λ)e3,于是e1,e2,e3共面。
第五篇:向量空间证明
向量空间证明解题的基本方法:
1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系 中 2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位;3)计算有关点的坐标值,求出相关向量的坐标;4)求解给定问题
证明直线与平面垂直的方法是在平面中选择二个向量,分别与已知直线向量求数积,只要分别为零,即可说明结论。
证明直线与平面平行的关键是在平面中寻找一个与直线向量平行的向量。这样就转化为证明二个向量平行的问题,只要说明一个向量是另一向量的m(实数)倍,即可 只要多做些这方面的题,或看些这方面的例题,也会从中悟出经验和方法 2 解:
因为x+y+z=0 x=-y-z y=y+0*z z=0*y+z(x,y,z)=(-1,1,0)*y+(-1,0,1)*z y,z为任意实数
则:(-1,1,0);(-1,0,1)是它的一组基,维数为2(不用写为什么是2)步骤1 记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0 则i(a+b+c)=i·a+i·b+i·c =a·cos(180-(C-90))+b·0+c·cos(90-A)=-asinC+csinA=0 接着得到正弦定理 其他 步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。