第一篇:三角形外心内心重心垂心与向量性质
三 角 形 的“四 心”
所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。当三角形是正三角形时,四心重合为一点,统称为三角形的中心。一、三角形的外心
定
义:三角形三条中垂线的交点叫外心,即外接圆圆心。ABC的重心一般用字母O表示。性
质:
1.外心到三顶点等距,即OAOBOC。
2.外心与三角形边的中点的连线垂直于三角形的这一边,即ODBC,OEAC,OFAB.3.向量性质:若点O为ABC所在的平面内一点,满足(OAOB)BA(OBOC)CB(OCOA)AC,则点O为ABC的外心。二、三角形的内心
定
义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。ABC的内心一般用字母I表示,它具有如下性质: 性
质:
1.内心到三角形三边等距,且顶点与内心的连线平分顶角。2.三角形的面积=1三角形的周长内切圆的半径. 23.向量性质:设0,,则向量AP(点P的轨迹过ABC的内心。
AB|AB||AC|AC),则动 三、三角形的垂心
定
义:三角形三条高的交点叫重心。ABC的重心一般用字母H表示。性
质:
1.顶点与垂心连线必垂直对边,即AHBC,BHAC,CHAB。2.向量性质:
结论1:若点O为ABC所在的平面内一点,满足OAOBOBOCOCOA,则点O为ABC的垂心。
结论2:若点O为△ABC所在的平面内一点,满足OABCOBCAOCAB,则点O为ABC的垂心。
22222
2四、三角形的“重心”:
定
义:三角形三条中线的交点叫重心。ABC的重心一般用字母G表示。
性
质:
1.顶点与重心G的连线必平分对边。
2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。
即GA2GD,GB2GE,GC2GF 3.重心的坐标是三顶点坐标的平均值. 即xGxAxBxCyyByC,yGA.334.向量性质:(1)GAGBGC0;(2)PG
1(PAPBPC)。3 2
第二篇:向量与三角形内心、外心、重心、垂心知识
向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍
(1)重心——中线的交点:重心将中线长度分成2:1;
(2)垂心——高线的交点:高线与对应边垂直;
(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;
(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。
二、四心与向量的结合(1)O是ABC的重心.证法1:设O(x,y),A(x1,y1),B(x2,y2),C(x3,y3)
x1x2x3x(x1x)(x2x)(x3x)03 O是ABC(yy)(yy)(yy)0yyy23123y13的重心.证法2:如图 OAOBOC
OA2OD0
AO2OD
A、O、D三点共线,且O分AD为2:
1O是ABC的重心(2)O为ABC的垂心.()0 BDC证明:如图所示O是三角形ABC的垂心,BE垂直AC,AD垂直BC,D、E是垂足. 同理, O为ABC的垂心
(3)设a,b,c是三角形的三条边长,O是ABC的内
aOAbOBcOC0O为ABC的内心.证明:BD
C心 AC方向上的单位向量,分别为AB、cbABAC平分BAC, cb
AO(bc),令 cbabc
ABACbc()cbabc化简得(abc)OAbABcAC0
(4)O为ABC的外心。aOAbOBcOC
典型例题:
例1:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足(),0,,则点P的轨迹一定通过ABC的()
A.外心B.内心C.重心D.垂心
分析:如图所示ABC,D、E分别为边BC、AC的中点.2 2
BD
C
AP2AD
//
点P的轨迹一定通过ABC的重心,即选C.例2:(03全国理4)O是平面上一定点,A、B、C是平面上不共线的三个点,动点P
满足,0,,则点P的轨迹一定通过ABC的(B)
A.外心B.内心C.重心D.垂心
分析:方向上的单位向量,分别为平分BAC, 点P的轨迹一定通过ABC的内心,即选B.例3:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满
足,0,,则点P的轨迹一定通过ABC的()
A.外心B.内心C.重心D.垂心
分析:如图所示AD垂直BC,BE垂直AC,D、E是垂足
.
C
=
=0
点P的轨迹一定通过ABC的垂心,即选D.练习:
1.已知ABC三个顶点A、B、C及平面内一点P,满足,若实数满足:ABACAP,则的值为()
A.2B.
32C.3D.6
2.若ABC的外接圆的圆心为O,半径为1,,则OAOB()
A.
12B.0C.1D.1
3.点O在ABC内部且满足OA2OB2OC0,则ABC面积与凹四边形ABOC面积之比是(A.0B.3
2C.
544D.3
4.ABC的外接圆的圆心为O,若,则H是ABC的()
A.外心B.内心C.重心D.垂心
5.O是平面上一定点,A、B、C是平面上不共线的三个点,若22
2CA2OC2AB2,则O是ABC的()
A.外心B.内心C.重心D.垂心
6.ABC的外接圆的圆心为O,两条边上的高的交点为H,m(),则实数m =
7.(06陕西)已知非零向量AB→与AC→满足(AB→
|AB→|+AC→
|AC→|)·BC→=0且AB→
|AB→|·AC→
|AC→|=12 , 则△ABC为()
A.三边均不相等的三角形B.直角三角形
C.等腰非等边三角形D.等边三角形
8.已知ABC三个顶点A、B、C,若AB2ABACABCBBCCA,则ABC为()
A.等腰三角形B.等腰直角三角形
C.直角三角形D.既非等腰又非直角三角形
练习答案:C、D、C、D、D、1、D、C
3)
第三篇:向量与三角形内心、外心、重心、垂心知识的交汇
向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍
(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。二、四心与向量的结合(1)OAOBOC0O是ABC的重心.证法1:设O(x,y),A(x1,y1),B(x2,y2),C(x3,y3)
(x1x)(x2x)(x3x)0
(y1y)(y2y)(y3y)0
OAOBOC0
x1x
yy1
x2x33y2y3
3O是ABC的重心.证法2:如图
OAOBOC OA2OD0
AO2OD
A、O、D三点共线,且O分AD
为2:
1O是ABC的重心
BDC
(2)OAOBOBOCOCOAO为ABC的垂心.证明:如图所示O是三角形ABC的垂心,BE垂直AC,AD垂直BC,D、E是垂足.OAOBOBOCOB(OAOC)OBCA0 OBAC
同理OABC,OCAB
O为ABC的垂心
(3)设a,b,c是三角形的三条边长,O是ABC的内心
aOAbOBcOC0O为ABC的内心.证明:
ABc
AB
ACAC方向上的单位向量,分别为AB、cb
ACb
平分BAC,ABcACb
AO(),令
bcabc
AO
bcabc
(ABc
ACb)
化简得(abc)OAbABcAC0
aOAbOBcOC0
(4O为ABC的外心。
典型例题:
例1:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足
OPOA(ABAC),0,,则点P的轨迹一定通过ABC的()
A.外心B.内心C.重心D.垂心 分析:如图所示ABC,D、E分别为边BC、AC的中点.ABAC2AD
OPOA2AD OPOAAP AP2AD
BDC
AP//AD
点P的轨迹一定通过ABC的重心,即选C.例2:(03全国理4)O是平面上一定点,A、B、C是平面上不共线的三个点,动点P
满足OPOA,0,,则点P的轨迹一定通过ABC的(B)
A.外心B.内心C.重心D.垂心
分析:
AC方向上的单位向量,分别为AB、
AB
AC平分BAC,点P的轨迹一定通过ABC的内心,即选B.例3:O是平面上一定点,A、B、C是平面上不共线的三个点,动点P
满足
OPOAAB
AC,0,,则点P的轨迹一定通过ABC的()
A.外心B.内心C.重心D.垂心
分析:如图所示AD垂直BC,BE垂直AC,D、E是垂足
.
BC
=
=0
点P的轨迹一定通过ABC的垂心,即选D.练习:
1.已知ABC三个顶点A、B、C及平面内一点P,满足PAPBPC0,若实数满足:ABACAP,则的值为()
A.2B.
32C.3D.6
2.若ABC的外接圆的圆心为O,半径为1,OAOBOC0,则OAOB()A.
B.0C.1D.
3.点O在ABC内部且满足OA2OB2OC0,则ABC面积与凹四边形
ABOC
面积之比是()A.0B.
C.
54D.
4.ABC的外接圆的圆心为O,若OHOAOBOC,则H是ABC的()
A.外心B.内心C.重心D.垂心
5.O是平面上一定点,A、B、C是平面上不共线的三个点,若OA
BCOB
CAOCAB,则O是ABC的()
A.外心B.内心C.重心D.垂心
OHm(OAOBOC),ABC的外接圆的圆心为O,6.两条边上的高的交点为H,则实数m =
→→→→1ABACABAC→→→
7.(06陕西)已知非零向量AB与AC满足(+)·BC=0 · = , 则
2→→→→|AB||AC||AB||AC|△ABC为()
A.三边均不相等的三角形B.直角三角形 C.等腰非等边三角形D.等边三角形
8.已知ABC三个顶点A、B、C,若AB
ABC为()
ABACABCBBCCA,则
A.等腰三角形B.等腰直角三角形
C.直角三角形D.既非等腰又非直角三角形 练习答案:C、D、C、D、D、1、D、C
第四篇:三角形外心、重心、垂心的向量形式
三角形外心、重心、垂心的向量形式
已知△ABC,P为平面上的点,则
(1)P为外心
(2)P为重心
(3)P为垂心
证明(1)如P为△ABC的外心(图1),则 PA=PB=PC,(2)如P为△ABC的重心,如图2,延长AP至D,使PD=PA,设AD与BC相交于E点.
由重心性质
∴ 四边形PBDC为平行四边形.
BC和PD之中点.
心.
(3)如图3,P为△ABC的垂心
同理PA⊥AC,故P为△ABC之垂心.
由上不难得出这三个结论之间的相互关系:
∴ △ABC为正三角形.
∴ △ABC为正三角形,且O为其中心.
第五篇:内心、外心、重心、垂心定义及性质总结
内心、外心、重心、垂心定义及性质总结
1.内心:
(1)三条角平分线的交点,也是三角形内切圆的圆心。
(2)性质:到三边距离相等。
2外心:
(1)三条中垂线的交点,也是三角形外接圆的圆心。
(2)性质:到三个顶点距离相等。重心:
(1)三条中线的交点。
(2)性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍。垂心:三条高所在直线的交点。重 心 :三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段,数段之比听分晓;
长短之比二比一,灵活运用掌握好.垂 心 :三角形上作三高,三高必于垂心交.
高线分割三角形,出现直角三对整,直角三角形有十二,构成六对相似形,四点共圆图中有,细心分析可找清.7内 心 :三角对应三顶点,角角都有平分线,三线相交定共点,叫做“内心”有根源;
点至三边均等距,可作三角形内切圆,此圆圆心称“内心”如此定义理当然.
8外 心 :三角形有六元素,三个内角有三边.
作三边的中垂线,三线相交共一点.
此点定义为“外心”,用它可作外接圆.
“内心”“外心”莫记混,“内切”“外接”是关键.