第一篇:14.3全等三角形的概念与性质教案
课题:14.3(1)全等三角形的概念与性质
授课教师:闸北区实验中学 黄圣清
一、教学目标
1、通过观察图形的运动、叠合,经历全等形概念的形成过程;
2、会用符号表示两个全等三角形,理解两个全等三角形以及对应顶点、对应边、对应角的含义,掌握全等三角形的性质;
3、能运用全等三角形的性质找到对应边和对应角,会求对应边和对应角的大小;
4、养成读题做标记的几何题解题习惯;
5、体验独立思考与合作交流的学习过程.二、教学重点、难点
重点:会用符号表示两个全等三角形,熟练掌握全等三角形对应边相等、对应角相等的性质.难点:会求重叠类习题的对应边和对应角的大小.三、教学方法
观察归纳、一题多变、合作探究.四、教具准备
彩色粉笔、三角尺、投影仪.五、教学过程
(一)创设情境,引入新课
在平面图形中,形状和大小完全相同的图形有哪几对?
用什么方法来判断你的结论是否正确?
利用图形的平移、旋转和翻折运动,图形的形状和大小没有发生变化.【说明:联系新旧知识,复习图形的三个基本运动.】
(二)独立思考,探索新知
想一想:
以下四张图中的一个图形经过哪种运动后能与另一个图形重合?
1、能够重合的两个图形叫做全等形.【说明:直观地感受和观察图形经过基本运动后叠合的过程,经历全等形概念的形成过程.】
2、两个三角形是全等形,就说它们是全等三角形.结合图像找出全等三角形的对应顶点、对应边、对应角,认识全等三角形的记法和读法.3、全等三角形的对应边相等,对应角相等.【说明:先找对应点,再讲解记法,借助图像和重点标记强化字母顺序的重要性.】
试一试:
说出下列各图中全等三角形的对应顶点、对应边和对应角,并叙述这两个三角形全等.(1)(2)(3)
【说明:学生尝试,纠正字母的顺序.第(2)题设置有公共顶点的两个全等三角形,第(3)题设置有公共边的两个全等三角形,提高识图能力.】
(三)应用新知,尝试练习
AB2cm,A60,B70,例
1、如图,已知ABC≌DEF,顶点A、B、C分别与顶点D、E、F对应,求DE、D和F的值.【说明:本题是不重叠类型,示范全等三角形性质的逻辑段书写方法.】
练
1、已知ABC≌DEF,顶点A、B、C分别与顶点D、E、F对应,求图中的x、y、z的值.2
【说明:学生尝试寻找对应点、对应边和对应角,书写逻辑段.】
例
2、如图,已知ABC≌ADE,请写出所有的对应边和对应角.变式、若AB5,AC2,求CD的长.此时BE的长是多少呢?
【说明:本题是重叠类型,养成读题做标记和观察字母顺序的解题技巧.同时训练利用全等三角形的性质寻找其它相等线段.】
练
2、(1)如图,ABC≌DEF,则图中相等的线段有()对.A、1对 B、2对 C、3对 D、4对
(2)如图,若OAD≌OBC,且O65,C20,求OAD的度数.(3)如图,若ACF≌DBE,AD11,BC7,求AB的长.(1)(2)(3)
【说明:第(1)题设置选择题铺设台阶,学生尝试利用全等三角形的性质寻找其它相等线段.第(2)、(3)两题逐步提高难度,练习重叠类型的说理过程和提高解题综合能力.】
(四)归纳总结,形成体系
1、全等形的概念;
2、全等三角形的概念;
3、全等三角形的性质;
4、读题划线的技巧.(五)布置作业,巩固提高
动脑筋:
(1)如图,将AOB绕点O顺时针旋转到COD的位置,联结AC、BD,则图中有没有等腰三角形?若有,请说明原因.(2)在ABC中,D、E分别是边AC、BC上的点,若ADB≌EDB≌EDC,求C的度数.(1)(2)
【说明:拓展提培养学生合作交流的能力.第(1)题选取考点题型,通过标注相等线段寻找全等三角形外的特殊图形;第(2)题利用两次全等三角形对应角相等的性质作为解题关键.】
作业:练习册14.3(1)
六、教学后记:
第二篇:全等三角形的概念
全等三角形的概念.全等形:能够完全重合的两个图形叫做全等形.全等三角形:能够完全重合的两个三角形叫做全等三角形.
二、合作探究活动2△abc与△def重合(多媒体课件演示)这时,点a与点d重合.点b与点e重合.我们把这样互相重合的一对点叫做对应顶点;ab边与de边重合,这样互相重合的边就叫做对应边;∠a与∠d重合,它们就是对应角.△abc与△def全等,我们把它记作:“△abc≌△def”.读作“△abc全等于△def”.注意:记两个三角形全等时,通常把对应顶点的字母写在对应的位置上.问题:你能找出其他的对应点、对应边和对应角吗?点c与点f是对应点,bc边与ef边是对应边,ca边与fd边也是对应边.∠b与∠e是对应角,∠c与∠f也是对应角.活动3问题:用两块全等的三角板重合放在桌面上,让其中一块绕一个顶点旋转,你能画出几种不同的位置关系,画出图形并说出对应元素.学生活动设计:
学生小组合作,动手操作,一块三角板绕一个顶点旋转,画出以下四种位置关系:不论哪种图形,点a与点a是对应顶点,点b与点e是对应顶点,点c与点d是对应顶点;ab边与ae边是对应边,ac边与ad边、de边与cb边也是对应边;∠bac与∠ead是对应角,∠b与∠e,∠c与∠d是对应角.教师活动设计:本活动主要加深学生对全等三角形概念的理解,以及动手操作能力的培养.活动4 拿一张纸对折后,剪成两个全等的三角形,△abc和△ecd,把这两个三角形一起放在下列图中△abc的位置上,试一试,如果其中一个三角形不动,怎样移动另一个三角形,能够得到下列图中的各图形,从中你能得到什么启发?学生活动设计:经过观察、操作可以发现,可以经过平移、翻折、旋转得到,变化前后对应角、对应边不变.
第三篇:全等三角形的性质课件
篇一:全等三角形的性质课件
执教老师:xx
教学内容:湘教版数学八年级上册第三单元“全等三角形的性质”
教学目标:
1、在现实情境中,了解全等形的概念及全等三角形的概念及其性质
2、在具体情境中,会使用全等符号“≌”标注两个全等三角形
3、会找出两个全等三角形的对应边和对应角
教学重点:全等三角形的概念及性质
教学难点:找全等三角形对应边和对应角
教学用具:幻灯、全等三角形、剪刀、学具袋
教学过程:
(一)、教学导入
1、问题:在平面内,我们学过哪几种图形的变换?共同的性质是什么?今天我们在它的基础上学习新的内容。
(二)、新授
1、全等形及全等三角形的概念。
A、(幻灯)引出完全重合。
问题:同学们,你能举出生活中完全重合的两个图形的例子吗?
让学生讨论,交流结果,充分肯定学生的思考与发现,教师可列举一些例子。
B、教师归纳
(1)、全等形:能够完全重合的图形。
(2)、全等三角形:能够完全重合的两个三角形。
2、会使用全等符号“≌”标注两个全等三角形和找两全等三角形的对应边和对应角。
A、学生活动:每位同学用剪刀把准备好的全等三角形剪下来,意见和建议
进一步加深概念的理解。
B、教师活动:将剪好的两个全等三角形贴在黑板上,标上顶点字母。
引出:(1)、△ABC全等于△A′B ′C ′,全等于用“≌”表示,读作“全等于”,记作:△ABC△≌△A′B ′C ′。
(2)、对应顶点:互相重合的顶点。
对应边:互相重合的边。
对应角:互相重合的角。
学生试结合图,在ABC△≌△A′B ′C ′中找出对应顶点、对应边和对应角。
C、师生活动:将叠合的两个三角形其中一块沿任意直线作轴反射,摆出这两个全等三角形不同位置的组合图形,并指出对应元素。
D、(幻灯2)出示习题,学生在练习本上完成,做完后与同学交流,教师查巡学生练习的情况,最后师生归纳找对应角,找对应边的方法。
E、(幻灯3)归纳找对应角、找对应边的方法。
3、全等三角形的性质
A、在各种不同的变换下得到图形中,引导学生发现两个全等三角形的位置发生了变化,但他们的对应边、对应角不变,得出下面两条性质:
性质1:全等三角形对应边相等
性质2:全等三角形对应角相等
B、(幻灯4)找出全等三角形中相等的边与相等的角。
三、巩固练习
教材第71页“练习”
四、总结归纳
1、全等形及全等三角形的基本概念
2、会找全等三角形的对应边与对应角
3、全等三角形的性质
篇二:全等三角形的性质课件
一、教学分析学习方式分析:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
二、教学目标
1、知识与能力:
(1)知道什么是全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应顶点、对应角、对应边、2、过程与方法:
(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力、(3)通过小组讨论、交流的活动,发展学生合作交流的意识和能力
3、情感态度价值观:
(1)通过感受全等三角形的对应美,培养学生热爱科学、勇于创新的精神,和多方位审视问题的能力与技巧。
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。
三、教学重、难点:
1、重点:
(1)能准确地在图形中识别出对应边,对应角;
(2)全等三角形的性质和利用其基本性质进行一些简单的推理和计算、2、难点:
能在全等变换中准确找到对应边,对应角、四、教学的方法、学法:
教法:问题教学法。
学法:在教师的组织引导下,采用自主、合作、探究的学习方式。
五、课前准备:
1、教师:
准备彩色图片,三角形教具,学习卡。
2、学生:
直尺、三角板、香糊。
六、教学过程:
1、概念教学
(1)提出问题
(组织学生进行小组交流)
(2)动手操作演示
(3)引导学生得出全等形的概念与全等三角形的概念
2、指导预习
(1)组织学生动手操作。
(2)个别指导
3、问题教学
(1)提问交流收获。(2)组织小组交流。
教师提问,启发学生想一想它们如何重合。
↓
演示全等变换。
↓
指导学生用手中的模型做一做。
教师要求各小组分别进行讨论。然后到各小组分别加以指导。
4、设问练习
5、简结转新
6、布置作业
七、教学反思
第四篇:全等三角形教案
教学目标 :
1、知识目标:
(1)熟记边角边公理的内容;
(2)能应用边角边公理证明两个三角形全等.2、能力目标:
(1)通过“边角边”公理的运用,提高学生的逻辑思维能力;
(2)通过观察几何图形,培养学生的识图能力.3、情感目标:
(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.教学重点:学会运用公理证明两个三角形全等.教学难点 :在较复杂的图形中,找出证明两个三角形全等的条件.教学用具:直尺、微机
教学方法:自学辅导式
教学过程 :
1、公理的发现
(1)画图:(投影显示)
教师点拨,学生边学边画图.(2)实验
让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)
这里一定要让学生动手操作.(3)公理
启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)
作用:是证明两个三角形全等的依据之一.应用格式:
强调:
1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.3、平面几何中常要证明角相等和线段相等,其证明常用方法:
证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.2、公理的应用
(1)讲解例1.学生分析完成,教师注重完成后的总结.分析:(设问程序)
“SAS”的三个条件是什么?
已知条件给出了几个?
由图形可以得到几个条件?
解:(略)
(2)讲解例2
投影例2:
例2如图2,AE=CF,AD∥BC,AD=CB,求证:
学生思考、分析,适当点拨,找学生代表口述证明思路
让学生在练习本上定出证明,一名学生板书.教师强调
证明格式:用大括号写出公理的三个条件,最后写出
结论.(3)讲解例3(投影)
证明:(略)
学生分析思路,写出证明过程.(投影展示学生的作业,教师点评)
(4)讲解例4(投影)
证明:(略)
学生口述过程.投影展示证明过程.教师强调证明线段相等的几种常见方法.(5)讲解例5(投影)
证明:(略)
学生思考、分析、讨论,教师巡视,适当参与讨论.师生共同讨论后,让学生口述证明思路.教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明.3、课堂小结:
(1)判定三角形全等的方法:SAS
(2)公理应用的书写格式
(3)证明线段、角相等常见的方法有哪些?
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.6、布置作业
a书面作业 P56#
6、7
b上交作业 P57B组1
思考题:
板书设计 :
第五篇:全等三角形教案
11.1全等三角形
教学目标:1了解全等形及全等三角形的的概念; 2 理解全等三角形的性质
在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣
重点:探究全等三角形的性质
难点:掌握两个全等三角形的对应边,对应角 教学过程:
观察下列图案,指出这些图案中中形状与大小相同的图形
问题:你还能举出生活中一些实际例子吗?
这些形状、大小相同的图形放在一起能够完全重合。能够完全重合的两个图形叫做全等形 能够完全重合的两个三角形叫做全等三角形 思考:
一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
“全等”用表示,读作“全等于”
两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如ABC和DEF全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作ABCDEF
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合 的角叫做对应角
思考:如上图,11-1ABCDEF,对应边有什么关系?对应角呢? 全等三角形性质:
全等三角形的对应边相等; 全等三角形的对应角相等。
思考:(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角
BCAoOADBDCACDBCDAB
(2)将ABC沿直线BC平移,得到DEF,说出你得到的结论,说明理由?
AADDEBECFBC
DC(3)如图,ABEACD,AB与AC,AD与AE是对应边,已知:A43,B30,求A的大小。
小结:
作业:P4—1,2,3
课题:11.2 三角形全等的条件(1)
教学目标
①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程. ②掌握三角形全等的“边边边”条件,了解三角形的稳定性. ③通过对问题的共同探讨,培养学生的协作精神. 教学难点
3
三角形全等条件的探索过程.
一、复习过程,引入新知
多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.
二、创设情境,提出问题
根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢? 组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.
三、建立模型,探索发现
出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗? 让学生按照下面给出的条件作出三角形.(1)三角形的两个角分别是30°、50°.(2)三角形的两条边分别是4cm,6cm.(3)三角形的一个角为30°,—条边为3cm.
再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.
出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗? 让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:三边对应相等的两个三角形全等.
四、应用新知,体验成功
实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的. 鼓励学生举出生活中的实例.
给出例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.
AB
让学生独立思考后口头表达理由,由教师板演推理过程. 例2 如图是用圆规和直尺画已知角的平分线的示意图,作法如下: DC
①以A为圆心画弧,分别交角的两边于点B和点C;
②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D; ③画射线AD.
AD就是∠BAC的平分线.你能说明该画法正确的理由吗? 例3 如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.
ABDC
五、巩固练习
教科书第6页的思考及练习.
六、反思小结
回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.
七、布置作业
1.必做题:教科书第15页习题11.2中的第1、2题. 2.选做题:教科书第16页第9题.
课题:11.2 三角形全等的条件(2)教学目标
①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.
②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理. ③通过对问题的共同探讨,培养学生的协作精神. 教学难点
指导学生分析问题,寻找判定三角形全等的条件. 知识重点
应用“边角边”证明两个三角形全等,进而得出线段或角相等. 教学过程(师生活动)
一、创设情境,引入课题
多媒体出示探究3:已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.
教帅点拨,学生边学边画图,再让学生把画好的△A'B'C',剪下放在△ABC上,观察这两个三角形是否全等.
二、交流对话,探求新知
根据前面的操作,鼓励学生用自己的语言来总结规律:
两边和它们的夹角对应相等的两个三角形全等.(SAS)补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.
三、应用新知,体验成功
出示例2,如图,有—池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?
让学生充分思考后,书写推理过程,并说明每一步的依据.(若学生不能顺利得到证明思路,教师也可作如下分析:
要想证AB=DE,只需证△ABC≌△DEC △ABC与△DEC全等的条件现有„„还需要„„)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决. 补充例题:
1、已知:如图AB=AC,AD=AE,∠BAC=∠DAE
ABCDE5
求证: △ABD≌△ACE 证明:∵∠BAC=∠DAE(已知)
∠ BAC+ ∠ CAD= ∠DAE+ ∠ CAD ∴∠BAD=∠CAE 在△ABD与△ACE AB=AC(已知)
∠BAD= ∠CAE(已证)AD=AE(已知)
∴△ABD≌△ACE(SAS)思考: 求证:1.BD=CE 2.∠B= ∠C 3.∠ADB= ∠AEC 变式1:已知:如图,AB⊥AC,AD⊥AE,AB=AC,AD=AE.求证: ⑴ △DAC≌△EAB 1.BE=DC 2.∠B= ∠ C 3.∠ D= ∠ E 4.BE⊥CD
四、再次探究,释解疑惑
出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么? 让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.
教师演示:方法(一)教科书98页图13.2-7.
方法(二)通过画图,让学生更直观地获得结论.
五、巩固练习
教科书第9页,练习(1)(2).
六、小结提高
1.判定三角形全等的方法;
2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.
七、布置作业
1.必做题:教科书第15页,习题13.2第3、4题. 2.选做题:教科书第16页第10题. 3.备选题:
(1)小明做了一个如图所示的风筝,测得DE=DF,EH=FH,你能发现哪些结沦?并说明理由.(2)如图,∠1=∠2,AB=AD,AE=AC,求证BC=DE.
B
AMDFCE
课题: 11.2 三角形全等的条件(3)
教学目标
①探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判别两个三角形是否全等.
②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.
③敢于面对教学活动中的困难,能通过合作交流解决遇到的困难. 教学重点
理解,掌握三角形全等的条件:“ASA”“AAS”. 教学难点
探究出“ASA”“AAS”以及它们的应用. 教学过程(师生活动)创设情境 复习:
师:我们已经知道,三角形全等的判定条件有哪些? 生:“SSS”“SAS”
师:那除了这两个条件,满足另一些条件的两个三角形是否 也可能全等呢?今天我们就来探究三角形全等的另一些条件。探究新知:
一张教学用的三角形硬纸板不小心 被撕坏了,如图,你能制作一张与原来 同样大小的新教具?能恢复原来三角形 的原貌吗?
1.师:我们先来探究第一种情况.(课件出示“探究5„„”)(1)探究5 先任意画出一个△ABC,再画一个△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B(即使两角和它们的夹边对应相等).把画好的△A'B'C'剪下,放到△ABC上,它们全等吗? 师:怎样画出△A'B'C'?先自己独立思考,动手画一画。
在画的过程中若遇到不能解决的问题.可小组合作交流解决.
生:独立探究,试着画△A'B'C',(有问题的,可以小组内交流解决„„)„„(2)全班讨论交流
师:画好之后,我们看这儿有一种画法:(课件出示画法,出现一步,画一步)你是这样画的吗? 师:把画好的△A'B'C'剪下,放到△ABC上,看看它们是否全等. 生:(剪△A'B'C',与△ABC作比较„„)师:全等吗? 生:全等.
师:这个探究结果反映了什么规律?试着说说你的发现. 生1:我发现„„ 生2:„„
生3:两角和它们的夹边对应相等的两个三角形全等. 师:这条件可以简写成“角边角”或“ASA”.至此,我们又增加了—种判别三角形全等的方法.特别应
AA'
EBDC7
注意,“边”必须是“两角的夹边”.
练习:已知:如图,AB=A’C,∠A=∠A’,∠B=∠C 求证:△ABE≌ △A’CD
例1.已知:点D在AB上,点E在AC上,BE和CD
ADOBCE相交于点O,AB=AC,∠B=∠C。求证:BD=CE
2.探究6 师:我们再看看下面的条件:
在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗? ABCEDF
师:看已知条什,能否用“角边角”条件证明. 生独立思考,探究„„再小组合作完成. 师:你是怎么证明的?(让小组派代表上台汇报)小组1:„.
小组2:„„投影仪展示学生证明过程(根据学生的不同探究结果,进行不同的引导)师:从这可以看出,从这些已知条件中能得出两个三角形全等.这又反映了一个什么规律? 生l:两个角和其中一条边对应相等的两个三角形全等.
生2:在"ASA”中,“边”必须是“两角的夹边”,而这里,“边”可以是“其中一个角的对边”.
师:非常好,这里的“边”是“其中一个角的对边”.那怎样更完整的表述这一规律? 生1:两个角和其中一个角的对边对应相等的两个三角形全等.
师:生1很好,这条件我们可以简写成“角角边”或“AAS”,又增加了判定两个三角形全等的一个条件.
强调“AAS”中的边是“其中一个角的对边”.
多让几个学生描述,进一步培养归纳、表达的能力.
例2.教材11页1题。
师:从这道例题中,我们又得出了证明线段相等的又一方法,先证两线段所在的三角形全等,这样,对应边也就相等了. 探究7:
(1)三角对应相等的两个三角形全等吗?(课件出示题目)师:想想,怎样来探究这个问题? 生1:„„
生2:„.
引导学生通过“画两个三角对应相等的三角形”,看是否一定全等,或“用两个同一形状但大小不同的三角板”等等方法来探究说明.
师:这一规律我们可以怎样表达? 生1:„.
生2:三个角对应相等的两个三角形不一定全等.
(2)师:说得非常好.现在我们来小结一下;判定两个三角形全等我们已有了哪些方法?
生:SSS SAS ASA AAS 小结提高
师:这节课通过对两个三角形全等条件的进一步探究,你有什么收获? 巩固练习
教科书第11页,练习2. 布置作业
1。必做题:教科书第13页习题11.2第6、11题
2.如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?为什么? ⑵⑴
课题: 11.2 三角形全等的条件(4)
教学目标
①探索并掌握两个直角三角形全等的条件:HL,并能应用它判别两个直角三角形是否全等.
②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维. ③提高应用数学的意识. 教学重点
理解,掌握三角形全等的条件:HL. 教学过程: 提问:
1、判定两个三角形全等方法有:,。创设情境:
(显示图片),舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?
方法一:测量斜边和一个对应的锐角.(AAS)方法二:测量没遮住的一条直角边和一个对应的锐角.(ASA)或(AAS)⑵ 如果他只带了一个卷尺,能完成这个任务吗?
工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗? 下面让我们一起来验证这个结论。新课:
已知线段a、c(a﹤c)和一个直角α,利用尺规作一个Rt△ABC,使∠C= ∠ α,CB=a,AB=c.想一想,怎样画呢? 按照下面的步骤做一做: ⑴ 作∠MCN=∠α=90°;⑵ 在射线CM上截取线段CB=a ⑶ 以B为圆心,C为半径画弧,交射线CN于点A;⑷ 连接AB.⑴ △ABC就是所求作的三角形吗?
⑵ 剪下这个三角形,和其他同学所作的三角形进行比较,它们能重合吗?
直角三角形全等的条件
斜边和一条直角边对应相等的两个直角三角形全等.简写成“斜边、直角边”或“HL”.想一想
你能够用几种方法说明两个直角三角形全等? 直角三角形是特殊的三角形,所以不仅有一般 三角形判定全等的方法:SAS、ASA、AAS、SSS,还有直角三角形特殊的判定方法——“HL”.练一练:
1.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗 杆底部的距离相等吗?请说明你的理由。
2.如图,有两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF相等,两个滑梯的倾 斜角∠ABC和∠DFE的大小有什么关系? 解:∠ABC+∠DFE=90°.理由如下: 在Rt△ABC和Rt△DEF中, 则 BC=EF, AC=DF.∴ Rt△ABC≌Rt△DEF(HL).∴∠ABC=∠DEF(全等三角形对应角相等).又 ∠DEF+∠DFE=90°, ∴∠ABC+∠DFE=90°.小结:这节课你有什么收获呢?与你的同伴进行交流 作业:14页7、8。
§11.3.1 角的平分线的性质
(一)教学目标
(一)教学知识点
角平分线的画法.
(二)能力训练要求
1.应用三角形全等的知识,解释角平分线的原理. 2.会用尺规作一个已知角的平分线.
(三)情感与价值观要求
在利用尺规作图的过程中,培养学生动手操作能力与探索精神. 例如图,ACBC,BDAD,ACBD求证:BCAD.10
教学重点
利用尺规作已知角的平分线.
教学难点
角的平分线的作图方法的提炼.
教学方法
讲练结合法.
教具准备
多媒体课件(或投影).
教学过程
Ⅰ.提出问题,创设情境
问题1:三角形中有哪些重要线段.
问题2:你能作出这些线段吗?
[生甲]三角形中有三条重要线段,它们分别是:三角形的高,三角形的中线,三角形的角的平分线.
过三角形的顶点作这个顶点的对边的垂线,交对边于一点,顶点与垂足的连线就是这个三角形的高.
取三角形一边的中点,此中点与这个边对应顶点的连线就是这条边的中线.
用量角器量出三角形的角的大小,量角器零度线与这个角的一边重合,这个角一半所对应的线就是这个角的角平分线.
[生乙]我不同意你对角平分线的描述,三角形的角平分线是一条线段,而一个已知角的平分线是一条射线,这两个概念是有区别的.
[师]你补充得很好.数学是一门严密性很强的学科,你的这种精神值得我们学习.
如果老师手里只有直尺和圆规,你能帮我设计一个作角的平分线的操作方案吗?
Ⅱ.导入新课
[生]我记得在学直角三角形全等的条件时做过这样一个题:
在∠AOB的两边OA和OB上分别取OM=ON,MC⊥OA,NC⊥OB.MC与NC交于C点.
求证:∠MOC=∠NOC.
通过证明Rt△MOC≌Rt△NOC,即可证明∠MOC=∠NOC,所以射线OC就是∠AOB的平分线.
受这个题的启示,我们能不能这样做:
在已知∠AOB的两边上分别截取OM=ON,再分别过M、N作MC⊥OA,NC⊥OB,MC•与NC交于C点,连接OC,那么OC就是∠AOB的平分线了. [师]他这个方案可行吗?
(学生思考、讨论后,统一思想,认为可行)
[师]这位同学不仅给了操作方法,而且还讲明了操作原理.这种学以致用,•联想迁移的学习方法值得大家借鉴.
议一议:下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?
教师活动:
播放多媒体课件,演示角平分仪器的操作过程,使学生直观了解得到射线AC的方法.
学生活动:
观看多媒体课件,讨论操作原理.
[生1]要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB. [生2]∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形
全等就可以了.
[生3]我们看看条件够不够.
ABAD BCDC
ACAC 所以△ABC≌△ADC(SSS).
所以∠CAD=∠CAB.
即射线AC就是∠DAB的平分线.
[生4]原来用三角形全等,就可以解决角相等.线段相等的一些问题.看来温故是可以知新的.
老师再提出问题:
通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.
(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)
讨论结果展示:
作已知角的平分线的方法:
已知:∠AOB.
求作:∠AOB的平分线.
作法:
(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.
(2)分别以M、N为圆心,大于
12MN的长为半径作弧.两弧在∠AOB内部交于点C.
(3)作射线OC,射线OC即为所求.
(教师根据学生的叙述,作多媒体课件演示,使学生能更直观地理解画法,提高学习数学的兴趣).
议一议:
1.在上面作法的第二步中,去掉“大于
12MN的长”这个条件行吗?
2.第二步中所作的两弧交点一定在∠AOB的内部吗?
(设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯)
学生讨论结果总结: 1.去掉“大于12MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.
2.若分别以M、N为圆心,大于
12MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.
3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.
4.这种作法的可行性可以通过全等三角形来证明.
练一练:
任意画一角∠AOB,作它的平分线.
Ⅲ.随堂练习
课本P16练习.
练后总结:
平角∠AOB的平分线OC与直线AB垂直.将OC反向延长得到直线CD,直线CD与AB•也垂直.
Ⅳ.课时小结
本节课中我们利用已学过的三角形全等的知识,•探究得到了角平分线仪器的操作原理,由此归纳出角的平分线的尺规画法,进一步体会温故而知新是一种很好的学习方法.
Ⅴ.课后作业
1.课本P18习题11.2─1、2. 2.预习课本P16~18内容.