高中数学平面向量的公式知识点

时间:2019-05-14 15:55:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学平面向量的公式知识点》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学平面向量的公式知识点》。

第一篇:高中数学平面向量的公式知识点

【摘要】“高中数学平面向量的公式知识点”数学公式讲解是这门学科的要点,套用公式是最终的题解方法,希望本文可以为大家带来帮助:

定比分点

定比分点公式(向量P1P=λ•向量PP2)设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。

若P1(x1,y1),P2(x2,y2),P(x,y),则有

OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式

三点共线定理

若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线

三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

[编辑本段]向量共线的重要条件

若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

a//b的重要条件是 xy'-x'y=0。

零向量0平行于任何向量。

[编辑本段]向量垂直的充要条件

a⊥b的充要条件是 a•b=0。

a⊥b的充要条件是 xx'+yy'=0。

零向量0垂直于任何向量.设a=(x,y),b=(x',y')。

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减”

a=(x,y)b=(x',y')则 a-b=(x-x',y-y').4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a•b=x•x'+y•y'。

向量的数量积的运算律

a•b=b•a(交换律);(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);向量的数量积的性质

a•a=|a|的平方。

a⊥b 〈=〉a•b=0。

|a•b|≤|a|•|b|。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。

2、向量的数量积不满足消去律,即:由 a•b=a•c(a≠0),推不出 b=c。

3、|a•b|≠|a|•|b|

4、由 |a|=|b|,推不出 a=b或a=-b。

4、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律

a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的。向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;① 当且仅当a、b反向时,左边取等号;② 当且仅当a、b同向时,右边取等号。

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

① 当且仅当a、b同向时,左边取等号;② 当且仅当a、b反向时,右边取等号。

第二篇:高中数学有关平面向量的公式的知识点总结

定比分点

定比分点公式(向量P1P=λ•向量PP2)

设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。

若P1(x1,y1),P2(x2,y2),P(x,y),则有

OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ)。(定比分点坐标公式)

我们把上面的式子叫做有向线段P1P2的定比分点公式

三点共线定理

若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线

三角形重心判断式

在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

向量共线的重要条件

若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

a//b的重要条件是 xy'-x'y=0。

零向量0平行于任何向量。

向量垂直的充要条件

a⊥b的充要条件是 a•b=0。

a⊥b的充要条件是 xx'+yy'=0。

零向量0垂直于任何向量.设a=(x,y),b=(x',y')。

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0

AB-AC=CB.即“共同起点,指向被减”

a=(x,y)b=(x',y')则 a-b=(x-x',y-y').4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a•b=x•x'+y•y'。

向量的数量积的运算律

a•b=b•a(交换律);

(λa)•b=λ(a•b)(关于数乘法的结合律);

(a+b)•c=a•c+b•c(分配律);

向量的数量积的性质

a•a=|a|的平方。

a⊥b 〈=〉a•b=0。

|a•b|≤|a|•|b|。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。

2、向量的数量积不满足消去律,即:由 a•b=a•c(a≠0),推不出 b=c。

3、|a•b|≠|a|•|b|

4、由 |a|=|b|,推不出 a=b或a=-b。

4、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的。

向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

① 当且仅当a、b反向时,左边取等号;

② 当且仅当a、b同向时,右边取等号。

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

① 当且仅当a、b同向时,左边取等号;

② 当且仅当a、b反向时,右边取等号。

第三篇:平面向量、三角公式知识回顾

2013.03.18:知识回顾——平面向量、三角公式

一.平面向量:

1.与的数量积(或内积):

ab|a||b|coscos

2.平面向量的坐标运算:

(1)设A(x),则ABOBOA

1,y1),B(x2,y2(x2x1,y2y1).(2)设a=(x1,y1),b=(x2,y2),则ab=x1x2y1y2.(3)设a=(x,y),则a

x2y2

3.两向量的夹角公式:

设a=(xabx1x2y1y21,y1),b=(x2,y2),且b0,则cosab

x

21y1x2y2

4.向量的平行与垂直:

// x1y2x2y10.()ab0x1x2y1y20.二.三角函数、三角变换、解三角形:

1.同角三角函数的基本关系:

(1)平方关系:sin2+ cos2=1。(2)商数关系:

sincos=tan(

k,kz)(3)asinbcos

a2b2sin()(其中辅助角与点(a,b)在同一象限,且tan

b

a)2.诱导公式:(三角函数符合分配——“一全、二正、三切、四余”)(第一组)——函数名不变,符号看象限

1sin2ksin,cos2kcos,tan2ktank.

(第一象限)2sinsin,coscos,tantan.(第三象限)3sinsin,coscos,tantan.(第四象限)4sinsin,coscos,tantan.(第二象限)

(第二组)——函数名改变,符号看象限

5sin

2cos,cos2



sin.(第一象限)6sin

2cos,cos2



sin.(第二象限)(7)sin(32)cos,3

2)sin.(第四象限)(8)sin(32)cos,3

)sin(第三象限)

3.三角函数和差角公式:

sin()sincoscossincos()coscossinsin

tan()

tantan

1tantan

变式:tantantan()(1tantan)

4.二倍角公式:

sin22sincos变式:1sin(sin

cos)22

cos2cos2sin2

变式:升幂公式:1+cos=2cos

2cos212

1-cos=2sin

12sin2

降幂公式:cos21cos22sin2

1cos22

tan 22tan1tan2

注:sin(cos

sin)2cos

222sin2

5.正弦定理:

asinAbsinBc

sinC

2R.变形:a2RsinA,b2RsinB,c2RsinCa:b:csinA:sinB:sinC 6.余弦定理:

b21)求边: a2

b2

c2

2bccosA;(2)求角:cosAc2a2

(2bc

a2bc2a2

2cacosB;cosBc2b222ac

c2a2b2

2abcosC;cosCa2b2c22ab

7.三角形面积定理:

S111

2absinC2bcsinA2

casinB=pr

(其中p1

(abc), r为三角形内切圆半径)

第四篇:高中数学竞赛讲义(八)平面向量

高中数学竞赛讲义

(八)──平面向量

一、基础知识

定义1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a.|a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。

定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。

定理1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。

定理2 非零向量a, b共线的充要条件是存在实数

0,使得a=

f

定理3平面向量的基本定理,若平面内的向量a, b不共线,则对同一平面内任意向是c,存在唯一一对实数x, y,使得c=xa+yb,其中a, b称为一组基底。

定义3 向量的坐标,在直角坐标系中,取与x轴,y轴方向相同的两个单位向量i, j作为基底,任取一个向量c,由定理3可知存在唯一一组实数x, y,使得c=xi+yi,则(x, y)叫做c坐标。

定义4 向量的数量积,若非零向量a, b的夹角为,则a, b的数量积记作a·b=|a|·|b|cos=|a|·|b|cos,也称内积,其中|b|cos叫做b在a上的投影(注:投影可能为负值)。定理4平面向量的坐标运算:若a=(x1, y1), b=(x2, y2),1.a+b=(x1+x2, y1+y2), a-b=(x1-x2, y1-y2),2.λa=(λx1, λy1), a·(b+c)=a·b+a·c,3.a·b=x1x2+y1y2, cos(a, b)=4.a//bx1y2=x2y1, a

b

x1x2+y1y2=0.(a, b0),定义5 若点P是直线P1P2上异于p1,p2的一点,则存在唯一实数λ,使,λ叫P分所成的比,若O为平面内任意一点,则。由此可得若P1,P,P2的坐标分别为(x1, y1),(x, y),(x2, y2),则

讲义八

/ 8

定义6 设F是坐标平面内的一个图形,将F上所有的点按照向量a=(h, k)的方向,平移|a|=个单位得到图形,这一过程叫做平移。设p(x, y)是F上任意一点,平移到上对应的点为,则称为平移公式。

定理5 对于任意向量a=(x1, y1), b=(x2, y2), |a·b|≤|a|·|b|,并且|a+b|≤|a|+|b|.【证明】 因为|a|2·|b|2-|a·b|2=

-(x1x2+y1y2)2=(x1y2-x2y1)2≥0,又|a·b|≥0, |a|·|b|≥0,所以|a|·|b|≥|a·b|.由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.注:本定理的两个结论均可推广。1)对n维向量,a=(x1, x2,…,xn),b=(y1, y2, …, yn),同样有|a·b|≤|a|·|b|,化简即为柯西不等式:

(x1y1+x2y2+…+xnyn)2≥0,又|a·b|≥0, |a|·|b|≥0,所以|a|·|b|≥|a·b|.由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.注:本定理的两个结论均可推广。1)对n维向量,a=(x1, x2,…,xn), b=(y1, y2, …, yn),同样有|a·b|≤|a|·|b|,化简即为柯西不等式:(x1y1+x2y2+…+xnyn)2。

2)对于任意n个向量,a1, a2, …,an,有| a1, a2, …,an|≤| a1|+|a2|+…+|an|。

二、方向与例题

1.向量定义和运算法则的运用。

例1 设O是正n边形A1A2…An的中心,求证:

【证明】 记后与原正n边形重合,所以,若

不变,这不可能,所以,则将正n边形绕中心O旋转

例2 给定△ABC,求证:G是△ABC重心的充要条件是【证明】必要性。如图所示,设各边中点分别为D,E,F,延长AD至P,使DP=GD,则

又因为BC与GP互相平分,所以BPCG为平行四边形,所以BG所以

PC,所以

讲义八

/ 8

充分性。若因为,延长AG交BC于D,使GP=AG,连结CP,则,则,所以GB

CP,所以AG平分BC。

同理BG平分CA。

所以G为重心。

例3 在凸四边形ABCD中,P和Q分别为对角线BD和AC的中点,求证:AB2+BC2+CD2+DA2=AC2+BD2+4PQ2。

【证明】 如图所示,结结BQ,QD。

因为所以==又因为同理,②,③

由①,②,③可得

。得证。

2.证利用定理2证明共线。

例4 △ABC外心为O,垂心为H,重心为G。求证:O,G,H为共线,且OG:GH=1:2。,·

【证明】 首先

=

其次设BO交外接圆于另一点E,则连结CE后得CE又AH又EABC,所以AH//CE。AB,CH

AB,所以AHCE为平行四边形。

讲义八

/ 8

所以所以所以所以与,共线,所以O,G,H共线。

所以OG:GH=1:2。

3.利用数量积证明垂直。

例5 给定非零向量a, b.求证:|a+b|=|a-b|的充要条件是a【证明】|a+b|=|a-b|

(a+b)2=(a-b)

2b.a·b=0

a

b.a2+2a·b+b2=a2-2a·b+b2例6 已知△ABC内接于⊙O,AB=AC,D为AB中点,E为△ACD重心。求证:OECD。

【证明】 设,则,又,所以

a·(b-c).(因为|a|2=|b|2=|c|2=|OH|2)

又因为AB=AC,OB=OC,所以OA为BC的中垂线。所以a·(b-c)=0.所以OE

CD。

4.向量的坐标运算。

例7 已知四边形ABCD是正方形,BE//AC,AC=CE,EC的延长线交BA的延长线于点F,求证:AF=AE。

讲义八/ 8

【证明】 如图所示,以CD所在的直线为x轴,以C为原点建立直角坐标系,设正方形边长为1,则A,B坐标分别为(-1,1)和(0,1),设E点的坐标为(x, y),则y-1), 又因为,因为,所以-x-(y-1)=0.=(x,,所以x2+y2=2.由①,②解得

所以

设所以所以,则,即F=4+

。由和,共线得,所以AF=AE。

三、基础训练题

1.以下命题中正确的是__________.①a=b的充要条件是|a|=|b|,且a//b;②(a·b)·c=(a·c)·b;③若a·b=a·c,则b=c;④若a, b不共线,则xa+yb=ma+nb的充要条件是x=m, y=n;⑤若在b=(-3, 4)上的投影为-4。

2.已知正六边形ABCDEF,在下列表达式中:①③ ;④

与,相等的有__________.;②;,且a, b共线,则A,B,C,D共线;⑥a=(8, 1)3.已知a=y-x, b=2x-y, |a|=|b|=1, a·b=0,则|x|+|y|=__________.4.设s, t为非零实数,a, b为单位向量,若|sa+tb|=|ta-sb|,则a和b的夹角为__________.5.已知a, b不共线,条件.6.在△ABC中,M是AC中点,N是AB的三等分点,且于D,若7.已知__________.8.已知

=b, a·b=|a-b|=2,当△AOB面积最大时,a与b的夹角为__________.讲义八

/ 8

=a+kb, =la+b,则“kl-1=0”是“M,N,P共线”的__________,BM与CN交,则λ=__________.不共线,点C分

所成的比为2,则9.把函数y=2x2-4x+5的图象按向量a平移后得到y=2x2的图象,c=(1,-1), 若c·b=4,则b的坐标为__________.,10.将向量a=(2, 1)绕原点按逆时针方向旋转得到向量b,则b的坐标为__________.与11.在Rt△BAC中,已知BC=a,若长为2a的线段PQ以点A为中点,试问的夹角取何值时的值最大?并求出这个最大值。

12.在四边形ABCD中,如果a·b=b·c=c·d=d·a,试判断四边形ABCD的形状。

四、高考水平训练题

1.点O是平面上一定点,A,B,C是此平面上不共线的三个点,动点P满足

则点P的轨迹一定通过△ABC的________心。

2.在△ABC中,3.非零向量=__________.4.若O为△ABC 的内心,且为__________.5.设O点在△ABC 内部,且__________.6.P是△ABC所在平面上一点,若__________心.7.已知,则|

|的取值范,则P是△ABC 的,则△AOB与△AOC的面积比为,则△ABC 的形状,且a·b<0,则△ABC的形状是__________.,若点B关于

所在直线对称的点为B1,则围是__________.8.已知a=(2, 1), b=(λ, 1),若a与b的夹角为锐角,则λ的取值范围是__________.9.在△ABC中,O为中线AM上的一个动点,若AM=2,则值为__________.10.已知集合M={a|a=(1, 2)+ λ(3, 4), λ∈R},集合N={a|a=(-2,-2)+ λ(4, 5), λ∈R},mj MN=__________.讲义八

/ 8 的最小11.设G为△ABO的重心,过G的直线与边OA和OB分别交于P和Q,已知,△OAB与△OPQ的面积分别为S和T,(1)求y=f(x)的解析式及定义域;(2)求的取值范围。

12.已知两点M(-1,0),N(1,0),有一点P使得成公差小于零的等差数列。

(1)试问点P的轨迹是什么?(2)若点P坐标为(x0, y0), 求tan.五、联赛一试水平训练题

1.在直角坐标系内,O为原点,点A,B坐标分别为(1,0),(0,2),当实数p, q

与的夹角,满足时,若点C,D分别在x轴,y轴上,且,则直线CD恒过一个定点,这个定点的坐标为___________.2.p为△ABC内心,角A,B,C所对边长分别为a, b, c.O为平面内任意一点,则

=___________(用a, b, c, x, y, z表示).3.已知平面上三个向量a, b, c均为单位向量,且两两的夹角均为1200,若|ka+b+c|>1(k∈R),则k的取值范围是___________.4.平面内四点A,B,C,D满足,则的取值有___________个.5.已知A1A2A3A4A5是半径为r的⊙O内接正五边形,P为⊙O上任意一点,则

取值的集合是___________.6.O为△ABC所在平面内一点,A,B,C为△ABC 的角,若sinA·+sinC·,则点O为△ABC 的___________心.(a-b)”的___________条件.,又(c·b):(b·a):(a·c)=1:2:3,则△ABC

+sinB·7.对于非零向量a, b, “|a|=|b|”是“(a+b)8.在△ABC 中,三边长之比|a|:|b|:|c|=____________.9.已知P为△ABC内一点,且,CP交AB于D,求证:

讲义八

/ 8

10.已知△ABC的垂心为H,△HBC,△HCA,△HAB的外心分别为O1,O2,O3,令,求证:(1)2p=b+c-a;(2)H为△O1O2O3的外心。

11.设坐标平面上全部向量的集合为V,a=(a1, a2)为V中的一个单位向量,已知从V到的变换T,由T(x)=-x+2(x·a)a(x∈V)确定,(1)对于V的任意两个向量x, y, 求证:T(x)·T(y)=x·y;

(2)对于V的任意向量x,计算T[T(x)]-x;(3)设u=(1, 0);,若,求a.六、联赛二试水平训练题

1.已知A,B为两条定直线AX,BY上的定点,P和R为射线AX上两点,Q和S为射线BY上的两点,为定比,M,N,T分别为线段AB,PQ,RS上的点,为另一定比,试问M,N,T三点的位置关系如何?证明你的结论。

2.已知AC,CE是正六边形ABCDEF的两条对角线,点M,N分别内分AC,CE,使得AM:AC=CN:CE=r,如果B,M,N三点共线,求r.3.在矩形ABCD的外接圆的弧AB上取一个不同于顶点A,B的点M,点P,Q,R,S是M分别在直线AD,AB,BC,CD上的射影,求证:直线PQ与RS互相垂直。

4.在△ABC内,设D及E是BC的三等分点,D在B和F之间,F是AC的中点,G是AB的中点,又设H是线段EG和DF的交点,求比值EH:HG。

5.是否存在四个平面向量,两两不共线,其中任何两个向量之和均与其余两个向量之和垂直?

6.已知点O在凸多边形A1A2…An内,考虑所有的AiOAj,这里的i, j为1至n中不同的自然数,求证:其中至少有n-1个不是锐角。

7.如图,在△ABC中,O为外心,三条高AD,BE,CF交于点H,直线ED和AB交于点M,FD和AC交于点N,求证:(1)OB

DF,OC

DE,(2)OH

MN。

8.平面上两个正三角形△A1B1C1和△A2B2C2,字母排列顺序一致,过平面上一点O作,求证△ABC为正三角形。

9.在平面上给出和为 的向量a, b, c, d,任何两个不共线,求证:

|a|+|b|+|c|+|d|≥|a+d|+|b+d|+|c+d|.讲义八/ 8

第五篇:高中数学必考公式及知识点速记

高中数学必考公式及知识点速记

一、函数、导数

1、函数的单调性

(1)设x1、x2[a,b],x1x2那么

f(x1)f(x2)0f(x)在[a,b]上是增函数;

f(x1)f(x2)0f(x)在[a,b]上是减函数.(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.2、函数的奇偶性

对于定义域内任意的x,都有f(x)f(x),则f(x)是偶函数;

对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

3、函数yf(x)在点x0处的导数的几何意义

函数yf(x)在点x0处的导数是曲线yf(x)在P(x0,f(x0))处的切线的斜率f(x0),相应的切线方程是yy0f(x0)(xx0).4、几种常见函数的导数

'①C0;②(xn)'nxn1;③(sinx)'cosx;④(cosx)'sinx;

x'xx'x⑤(a)alna;⑥(e)e;⑦(logax)'11';⑧(lnx) xlnax5、导数的运算法则

u'u'vuv'

(v0).(1)(uv)uv.(2)(uv)uvuv.(3)()vv2''''''

6、会用导数求单调区间、极值、最值

7、求函数yfx的极值的方法是:解方程fx0.当fx00时:

(1)如果在x0附近的左侧fx0,右侧fx0,那么fx0是极大值;

(2)如果在x0附近的左侧fx0,右侧fx0,那么fx0是极小值。

二、三角函数、三角变换、解三角形、平面向量

8、同角三角函数的基本关系式

sin2cos21,tan=sin.cos

9、正弦、余弦的诱导公式

k的正弦、余弦,等于的同名函数,前面加上把看成锐角时该函数的符号;

k

2的正弦、余弦,等于的余名函数,前面加上把看成锐角时该函数的符号。

10、和角与差角公式

sin()sincoscossin;cos()coscos

11、二倍角公式sinsin;tan()tantan.1tantan

2tan.1tan2sin2sincos.cos2cos2sin22cos2112sin2.tan2

1cos2;2公式变形:1cos22sin21cos2,sin2;22cos21cos2,cos2

12、三角函数的周期

函数ysin(x),x∈R及函数ycos(x),x∈R(A,ω,为常数,且A≠0,ω>0)的周期T2

;函数

ytan(x),xk

2,kZ(A,ω,为常数,且A≠0,ω>0)的周期T.

13、函数ysin(x)的周期、最值、单调区间、图象变换

14、辅助角公式yasinxbcosx

15、正弦定理

16、余弦定理 a2b2sin(x)其中tanb aabc2R.sinAsinBsinC

a2b2c22bccosA;

b2c2a22cacosB;

c2a2b22abcosC.11117、三角形面积公式SabsinCbcsinAcasinB.22218、三角形内角和定理:在△ABC中,有ABCC(AB)

19、a与b的数量积(或内积)ab|a||b|cos

20、平面向量的坐标运算

(1)设A(x1,y1),B(x2,y2),则ABOBOA(x2x1,y2y1).(2)设a=(x1,y1),b=(x2,y2),则ab=x1x2y1y2.(3)设a=(x,y),则a

21、两向量的夹角公式 设=(x1,y1),=(x2,y2),且,则cos

22、向量的平行与垂直x2y2 ababx1x2y1y2x1y1x2y2222

2a//bba x1y2x2y10.()0x1x2y1y20.三、数列

23、数列的通项公式与前n项的和的关系

n1s1,an(数列{an}的前n项的和为sna1a2ss,n2nn1an).24、等差数列的通项公式 ana1(n1)ddna1d(nN*);

n(a1an)n(n1)d1na1dn2(a1d)n.222

2ann1*26、等比数列的通项公式 ana1q1q(nN); q25、等差数列其前n项和公式为 sn

a1(1qn)a1anq,q1,q1

27、等比数列前n项的和公式为sn1q 或 sn1q.na,q1na,q11

1四、不等式

xyxy,当xy时等号成立。

28、已知x,y都是正数,则有

2(1)若积xy是定值p,则当xy时和xy有最小值2p;

12(2)若和xy是定值s,则当xy时积xy有最大值s.4五、解析几何

29、直线的五种方程

(1)点斜式 yy1k(xx1)(直线l过点P1(x1,y1),且斜率为k).

(2)斜截式 ykxb(b为直线l在y轴上的截距).yy1xx1(y1y2)(P1(x1,y1)、P2(x2,y2)(x1x2)).y2y1x2x

1xy(4)截距式1(a、b分别为直线的横、纵截距,a、b0)ab

(5)一般式 AxByC0(其中A、B不同时为0).(3)两点式

30、两条直线的平行和垂直

若l1:yk1xb1,l2:yk2xb2①l1||l2k1k2,b1b2;②l1l2k1k21.31、平面两点间的距离公式dA,B

32、点到直线的距离

d

33、圆的三种方程

(1)圆的标准方程(xa)2(yb)2r2.(2)圆的一般方程 x2y2DxEyF0(DE4F>0).(3)圆的参数方程 22A(x1,y1),B(x2,y2)).(点P(x0,y0),直线l:AxByC0).xarcos.ybrsin

34、直线与圆的位置关系

222直线AxByC0与圆(xa)(yb)r的位置关系有三种:

dr相离0;dr相切0;dr相交0.弦长=r2d2 AaBbCd其中.22AB35、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质 xacoscx2y

2222椭圆:221(ab0),acb,离心率e1,参数方程是.aabybsin

cx2y2b222双曲线:221(a>0,b>0),cab,离心率e1,渐近线方程是yx.aaab

pp抛物线:y22px,焦点(,0),准线x。抛物线上的点到焦点距离等于它到准线的距离.2236、双曲线的方程与渐近线方程的关系

x2y2x2y2b(1)若双曲线方程为221渐近线方程:220yx.aabab

xyx2y2b(2)若渐近线方程为yx0双曲线可设为22.abaab

x2y2x2y

2(3)若双曲线与221有公共渐近线,可设为22(0,焦点在x轴上,0,焦点在y轴上).abab237、抛物线y2px的焦半径公式

p2抛物线y2px(p0)焦半径|PF|x0.(抛物线上的点到焦点距离等于它到准线的距离。)

2pp38、过抛物线焦点的弦长ABx1x2x1x2p.2

2六、立体几何

39、证明直线与直线平行的方法(1)三角形中位线(2)平行四边形(一组对边平行且相等)

40、证明直线与平面平行的方法

(1)直线与平面平行的判定定理(证平面外一条直线与平面内的一条直线平行)(2)先证面面平行

41、证明平面与平面平行的方法

平面与平面平行的判定定理(一个平面内的两条相交直线分别与另一平面平行)....

42、证明直线与直线垂直的方法:转化为证明直线与平面垂直

43、证明直线与平面垂直的方法

(1)直线与平面垂直的判定定理(直线与平面内两条相交直线垂直)....

(2)平面与平面垂直的性质定理(两个平面垂直,一个平面内垂直交线的直线垂直另一个平面)

44、证明平面与平面垂直的方法:平面与平面垂直的判定定理(一个平面内有一条直线与另一个平面垂直)

45、柱体、椎体、球体的侧面积、表面积、体积计算公式

圆柱侧面积=2rl,表面积=2rl2r

圆椎侧面积=rl,表面积=rlr 2

21V柱体Sh(S是柱体的底面积、h是柱体的高).31V锥体Sh(S是锥体的底面积、h是锥体的高).3432球的半径是R,则其体积VR,其表面积S4R. 346、异面直线所成角、直线与平面所成角、二面角的平面角的定义及计算

47、点到平面距离的计算(定义法、等体积法)

48、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直。

正棱锥的性质:侧棱相等,顶点在底面的射影是底面正多边形的中心。

七、概率统计

49、平均数、方差、标准差的计算

x1x2xn12222方差:s[(x1x)(x2x)(xnx)] nn

1标准差:s[(x1x)2(x2x)2(xnx)2] n平均数:x

50、回归直线方程

nnxiyixiyinxybi

1ni1n2.yabx,其中xixi22i1i1an(acbd)

2251、独立性检验 K(ab)(cd)(ac)(bd)

52、古典概型的计算(必须要用列举法、列表法、树状图的方法把所有基本事件表示出来,不重复、不遗漏 .........

八、复数

53、复数的除法运算

abi(abi)(cdi)(acbd)(bcad)i.22cdi(cdi)(cdi)cd54、复数zabi的模|z|=|a

bi|=

九、参数方程、极坐标化成直角坐标

2x2y

2cosx

55、 ysinytan(x0)x

下载高中数学平面向量的公式知识点word格式文档
下载高中数学平面向量的公式知识点.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学必修4平面向量知识点与典型例题总结(理).

    平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度,记作:||AB 或||a 。 3.单位向......

    平面向量复习题

    平面 向 量向量思想方法和平面向量问题是新考试大纲考查的重要部分,是新高考的热点问题。题型多为选择或填空题,数量为1-2题,均属容易题,但是向量作为中学数学中的一个重要工具......

    上海八年级下平面向量知识点总结

    平面向量 ●重难点突破 1.向量加法的运算及其几何意义。 2.对向量加法定义的理解。 3.向量的减法运算及其几何意义。 4.对向量减法定义的理解。 5.实数与向量积的意义。 6.......

    长春宽城区2018-2019学年高中数学平面向量单元测试题

    长春宽城区2018-2019学年高中数学平面向量单元测试题 数学(理) 2018.7 本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试......

    高中数学平面向量教学研究作业(江惠玲) (

    高中数学“平面向量”教学研究作业(江惠玲) 请给出平面向量知识结构示意图答: 向量是近代数学中重要和基本的数学概念之一。在高中教材中,平面向量章节内容主要有几个方面:⑴向......

    平面向量在高中数学教学中的作用

    平面向量在高中数学教学中的作用 平面向量是高中数学引入的一个新概念.利用平面向量的定义、定理、性质及有关公式,可以简化解题过程,便于学生的理解和掌握. 向量运算主要作......

    高中数学必修4人教A教案第二章平面向量复习

    第二章平面向量复习课(一) 一、教学目标 1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。 2. 了解平面向量基本定理. 3. 向量的加法的......

    平面向量说课稿(精选5篇)

    平面向量说课稿 我说课的内容是《平面向量的实际背景及基本概念》的教学,所用的教材是人民教育出版社出版的普通高中课程标准实验教科书数学必修四,教学内容为第74页至76页.......