第一篇:上海八年级下平面向量知识点总结
平面向量
●重难点突破
1.向量加法的运算及其几何意义。2.对向量加法定义的理解。3.向量的减法运算及其几何意义。4.对向量减法定义的理解。5.实数与向量积的意义。6.实数与向量积的运算律。
7.两个向量共线的等价条件及其运用。8.对向量共线的等价条件的理解运用。
●每课一记
一、求若干个向量的和的模(或最值)的问题通常按下列步骤进行:(1)寻找或构造平行四边形,找出所求向量的关系式;
(2)用已知长度的向量表示待求向量的模,有时还要利用模的重要性质。
二、1.向量的加法定义
向量加法的定义:如图3,已知非零向量A.b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a+b,即a+b=AB+BC=AC。
求两个向量和的运算,叫做向量的加法。2.向量加法的法则:(1)向量加法的三角形法则 在定义中所给出的求象量和的方法就是向量加法的三角形法则。运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量。零位移的合成可以看作向量加法三角形法则的物理模型。(2)平行四边形法则 向量加法的平行四边形法则
如图4,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线OC就是a与b的和。我们把这种作两个向量和的方法叫做向量加法的平行四边形法则。
3.向量a,b的加法也满足交换律和结合律: ①对于零向量与任一向量,我们规定a+0=0+a=a。
②两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段。
③当a,b不共线时,|a+b|<|a|+|b|(即三角形两边之和大于第三边); 当a,b共线且方向相同时,|a+b|=|a|+|b|;
当a,b共线且方向相反时,|a+b|=|a|-|b|(或|b|-|a|)。其中当向量a的长度大于向量b的长度时,|a+b|=|a|-|b|;当向量a的长度小于向量b的长度时,|a+b|=|b|-|a|。
一般地,我们有|a+b|≤|a|+|b|。
④如图5,作AB=a,AD=b,以AB.AD为邻边作ABCD,则BC=b,DC=a。因为AC=AB+AD=a+b,AC=AD+DC=b+a,所以a+b=b+a。如图6,因为AD=AC+CD=(AB+BC)+CD=(a+b)+c,AD=AB+BD=AB+(BC+CD)=a+(b+c),所以(a+b)+c=a+(b+c)。
综上所述,向量的加法满足交换律和结合律。
特殊与一般,归纳与类比,数形结合,分类讨论,特别是通过知识迁移类比获得新知识的过程与方法。
三、用向量法解决物理问题的步骤为:先用向量表示物理量,再进行向量运算,最后回扣物理问题,解决问题。
四、向量也有减法运算。
由于方向反转两次仍回到原来的方向,因此a和-a互为相反向量。于是-(-a)=a。
我们规定,零向量的相反向量仍是零向量.任一向量与其相反向量的和是零向量,即a+(-a)=(-a)+a=0。所以,如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0。1.平行四边形法则
图1
AC=a,如图1,设向量AB=b,则AD=-b,由向量减法的定义,知AE=a+(-b)=a-b。
又b+BC=a,所以BC=a-b。由此,我们得到a-b的作图方法。
图2 2.三角形法则 如图2,已知a、b,在平面内任取一点O,作OA=a,OB=b,则BA=a-b,即a-b可以表示为从b的终点指向a的终点的向量,这是向量减法的几何意义。(1)定义向量减法运算之前,应先引进相反向量。
与数x的相反数是-x类似,我们规定,与a长度相等,方向相反的量,叫做a的相反向量,记作-a。
(2)向量减法的定义。我们定义a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量。规定:零向量的相反向量是零向量。
(3)向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现。
五、我们规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,它的长度与方向规定如下:(1)|λa|=|λ||a|;
(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反。
由(1)可知,λ=0时,λa=0。
根据实数与向量的积的定义,我们可以验证下面的运算律。实数与向量的积的运算律 设λ、μ为实数,那么(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb.特别地,我们有(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb。
向量共线的等价条件是:如果a(a≠0)与b共线,那么有且只有一个实数λ,使b=λa。共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等。
数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|λ|·|a|确定。它的几何意义是把向量a沿a的方向或a的反方向放大或缩小。向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形。向量的加、减、数乘运算统称为向量的线性运算。对于任意向量a、b,以及任意实数λ、
1、2,恒有λ(1a±2b)=λ1a±λ2b。
●经典例题 例1 化简:(1)BC+AB(2)DB+CD+BC
(3)AB+DF+CD+BC+FA 解:
(1)BC+AB=AB+BC=AC
(2)DB+CD+BC=BC+CD+DB=(BC+CD)+DB=BD+DB=0(3)AB+DF+CD+BC+ FA=AB+BC+CD+DF+FA =AC+CD+DF+FA=AD+DF+FA=AF+FA=0 解析:要善于运用向量的加法的运算法则及运算律来求和向量。例2 若AC=a+b,DB=a-b ①当a.b满足什么条件时,a+b与a-b垂直? ②当a.b满足什么条件时,|a+b|=|a-b|?
③当a.b满足什么条件时,a+b平分a与b所夹的角? ④a+b与a-b可能是相等向量吗?
解析:如图6,用向量构建平行四边形,其中向量AC、DB恰为平行四边形的对角线。
由平行四边形法则,得
AC=a+b,DB=AB-AD=a-b。
由此问题就可转换为:
①当边AB、AD满足什么条件时,对角线互相垂直?(|a|=|b|)②当边AB、AD满足什么条件时,对角线相等?(a.b互相垂直)③当边AB、AD满足什么条件时,对角线平分内角?(a.b相等)④a+b与a-b可能是相等向量吗?(不可能,因为对角线方向不同)解析:灵活的构想,独特巧妙,数形结合思想得到充分体现。由此我们可以想到在解决向量问题时,可以利用向量的几何意义构造几何图形,转化为平面几何问题。
第二篇:高中数学平面向量的公式知识点
【摘要】“高中数学平面向量的公式知识点”数学公式讲解是这门学科的要点,套用公式是最终的题解方法,希望本文可以为大家带来帮助:
定比分点
定比分点公式(向量P1P=λ•向量PP2)设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式
三点共线定理
若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线
三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
[编辑本段]向量共线的重要条件
若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。
[编辑本段]向量垂直的充要条件
a⊥b的充要条件是 a•b=0。
a⊥b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.设a=(x,y),b=(x',y')。
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减”
a=(x,y)b=(x',y')则 a-b=(x-x',y-y').4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)•b=λ(a•b)=(a•λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
3、向量的的数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a•b=x•x'+y•y'。
向量的数量积的运算律
a•b=b•a(交换律);(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);向量的数量积的性质
a•a=|a|的平方。
a⊥b 〈=〉a•b=0。
|a•b|≤|a|•|b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。
2、向量的数量积不满足消去律,即:由 a•b=a•c(a≠0),推不出 b=c。
3、|a•b|≠|a|•|b|
4、由 |a|=|b|,推不出 a=b或a=-b。
4、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的。向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;① 当且仅当a、b反向时,左边取等号;② 当且仅当a、b同向时,右边取等号。
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
① 当且仅当a、b同向时,左边取等号;② 当且仅当a、b反向时,右边取等号。
第三篇:平面向量复习题
平面 向 量
向量思想方法和平面向量问题是新考试大纲考查的重要部分,是新高考的热点问题。题型多为选择或填空题,数量为1-2题,均属容易题,但是向量作为中学数学中的一个重要工具在三角、函数、导数、解几、立几等问题解决中处处闪光。最近几年的考试中向量均出现在解析几何题中,在解析几何的框架中考查向量的概念和方法、考查向量的运算性质、考查向量几何意义的应用,并直接与距离问题、角度问题、轨迹问题等相联系。近年考纲又新增“平面向量在几何中的应用”试题进一步要求我们具备多角度、多方向地分析,去探索、去发现、去研究、去创新,而不是去做大量的模仿式的解题。一个问题解决后,不能匆匆而过,回顾与反思是非常有必要的,以充分发挥每一道题目的价值。除了要重视一题多解外,更要重视一题多变,主动探索:条件和结论换一种说法如何?变换一个条件如何?反过来又会怎么样?等等。只有这样才能做到举一反三,以不变应万变。
一、高考考纲要求
1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念.
2.掌握向量的加法与减法.
3.掌握实数与向量的积,理解两个向量共线的充要条件.
4.了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.
5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.
6.掌握平面两点间的距离公式,掌握线段的定比分点和中点公式,并且能熟练运用;掌握平移公式.
二、高考热点分析
在高考试题中,对平面向量的考查主要有三个方面:
其一是主要考查平面向量的概念、性质和运算法则,理解和运用其直观的几何意义,并能正确地进行计算。其二考查向量坐标表示,向量的线性运算。
其三是和其他知识结合在一起,在知识的交汇点设计试题,考查向量与学科知识间综合运用能力。
数学高考命题注重知识的整体性和综合性,重视知识的交互渗透,在知识网络的交汇点设计试题.由于向量具有代数和几何的双重身份,使它成为中学数学知识的一个交汇点,成为联系多项知识的媒介.因此,平面向量与其他知识的结合特别是与解析几何的交汇、融合仍将是高考命题的一大趋势,同时它仍将是近几年高考的热点内容.
附Ⅰ、平面向量知识结构表
1.考查平面向量的基本概念和运算律
1此类题经常出现在选择题与填空题中,主要考查平面向量的有关概念与性质,要求考生深刻理解平面向量的相关概念,能熟练进行向量的各种运算,熟悉常用公式及结论,理解并掌握两向量共线、垂直的充要条件。1.(北京卷)| a |=1,| b |=2,c = a + b,且c⊥a,则向量a与b的夹角为
A.30°
B.60°
C.120°
D.150°
()
2.(江西卷)已知向量
A.30°
(1,2),(2,4),||
B.60°,若()
C.120°,则与的夹角为
2()
D.150°
3.(重庆卷)已知A(3,1),B(6,1),C(4,3),D为线段BC的中点,则
A.
与的夹角为()
444
4B.arccos C.arccos()D.-arccos()
2555
5
4.(浙江卷)已知向量a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则
arccos
()
A.a⊥e B.a⊥(a-e)
C.e⊥(a-e)D.(a+e)⊥(a-e)
.(上海卷)在△ABC中,若C90,ACBC4,则BABC 2.考查向量的坐标运算
1.(湖北卷)已知向量a=(-2,2),b=(5,k).若|a+b|不超过5,则k的取值范围是
A.[-4,6]
2.(重庆卷)设向量a=(-1,2),b=(2,-1),则(a·b)(a+b)等于
A.(1,1)
B.(-4,-4)
C.-4
D.(-2,-2)
()
()
B.[-6,4]
C.[-6,2]
D.[-2,6]
()
3.(浙江卷)已知向量a=(x-5,3),b=(2,x),且a⊥b,则由x的值构成的集合是
A.{2,3}
B.{-1,6}
C.{2}
D.{6}
例4.(2005年高考·天津卷·理14)在直角坐标系xOy中,已知点A(0,1)和点B(-3,4),若点C在∠AOB的平分线上且||=2,则OC=。
5.(全国卷)已知向量OA(k,12),OB(4,5),OC(k,10),且A、B、C三点共线,则k=.6.(湖北卷)已知向量a7.(广东卷)已知向量a
(2,2),b(5,k).若|ab|不超过5,则k的取值范围是
(2,3),b(x,6),且a//b,则x.3.平面向量在平面几何中的应用
ABAC
),[0,),则1.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OPOA(|AB||AC|
P的轨迹一定通过△ABC
A.外心的()B.内心
C.重心
D.垂心
2.(辽宁卷)已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A,C),则AP等于()
A.(ABAD),(0,1)
B.(ABBC),(0,C.(ABAD),(0,1)
D.(ABBC),(0,
3.已知有公共端点的向量a,b不共线,|a|=1,|b|=2,则与向量a,b的夹角平分线平行的单位向量是.
4.已知直角坐标系内有三个定点A(2,1)、B(0,10)、C(8,0),若动点P满足:OPOAt(ABAC),tR,则点P的轨迹方程。
4.平面向量与三角函数、函数等知识的结合当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式。在此基础上,可以设计出有关函数、不等式、三角函数、数列的综合问题。此类题的解题思路是转化为代数运算,其转化途径主要有两种:
①利用向量平行或垂直的充要条件,②利用向量数量积的公式和性质.1.(江西卷)已知向量(2cos
xxxx,tan()),(2sin(),tan()),令f(x).224242
4求函数f(x)的最大值,最小正周期,并写出f(x)在[0,π]上的单调区间.2.(山东卷)已知向量
m(cos,sin)
和
n
sin,cos,,2
,且
mn求
cos的值.28
3.(上海卷)已知函数
f(x)kxb的图象与x,y轴分别相交于点
A、B,22(,分别是与x,y轴正半
轴同方向的单位向量),函数g(x)
x2x6.f(x)g(x)时,求函数
(1)求k,b的值;(2)当x满足
g(x)
1的最小值.f(x)
【反思】这类问题主要是以平面向量的模、数量积、夹角等公式和相互知识为纽带,促成与不等式知识的相互迁移,有效地考查平面向量有关知识、不等式的性质、不等式的解法、不等式的应用及综合解题能力。
5.平面向量与解析几何的交汇与融合由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合与转换的桥梁和纽带。而解析几何也具有数形结合与转换的特征,所以在向量与解析几何知识的交汇处设计试题,已逐渐成为高考命题的一个新的亮点。
平面几何与解析几何的结合通常涉及到夹角、平行、垂直、共线、轨迹等问题的处理,解决此类问题基本思路是将几何问题坐标化、符号化、数量化,从而将推理转化为运算;或者考虑向量运算的几何意义,利用其几何意义解决有关问题。主要包括以下三种题型:
1、运用向量共线的充要条件处理解几中有关平行、共线等问题
运用向量共线的充要条件来处理解几中有关平行、共线等问题思路清晰,易于操作,比用斜率或定比分点公式研究这类问
题要简捷的多。
2、运用向量的数量积处理解几中有关长度、角度、垂直等问题
运用向量的数量积,可以把有关的长度、角度、垂直等几何关系迅速转化为数量关系,从而“计算”出所要求的结果。
3、运用平面向量综合知识,探求动点轨迹方程,还可再进一步探求曲线的性质。
1.(江西卷)以下同个关于圆锥曲线的命题中 ①设A、B为两个定点,k为非零常数,|
PA||PB|k,则动点P的轨迹为双曲线;
(),则动点P的轨迹为椭圆; 2
②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若③方程2x
5x20的两根可分别作为椭圆和双曲线的离心率;
x2y2x2
1与椭圆y21有相同的焦点.④双曲线
25935
其中真命题的序号为(写出所有真命题的序号)
2.平面直角坐标系中,O为坐标原点,已知A(3,1),B(1,3),若点C满足OC0AOB,其中,R,且
1,则点C的轨迹方程为()
A.C.3x2y110B.(x1)2(y2)25 2xy0D.x2y50
2.已知平面上一个定点C(-1,0)和一条定直线l:x=-4,P为该平面上一动点,作PQ⊥l,垂足为Q,
(PQ+2PC)(PQ-2PC)=0.(1)求点P的轨迹方程;
PC的取值范围.(2)求PQ·
第四篇:高中数学有关平面向量的公式的知识点总结
定比分点
定比分点公式(向量P1P=λ•向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+λOP2)(1+λ);(定比分点向量公式)
x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ)。(定比分点坐标公式)
我们把上面的式子叫做有向线段P1P2的定比分点公式
三点共线定理
若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
向量共线的重要条件
若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。
向量垂直的充要条件
a⊥b的充要条件是 a•b=0。
a⊥b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.设a=(x,y),b=(x',y')。
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
AB-AC=CB.即“共同起点,指向被减”
a=(x,y)b=(x',y')则 a-b=(x-x',y-y').4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)•b=λ(a•b)=(a•λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
3、向量的的数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a•b=x•x'+y•y'。
向量的数量积的运算律
a•b=b•a(交换律);
(λa)•b=λ(a•b)(关于数乘法的结合律);
(a+b)•c=a•c+b•c(分配律);
向量的数量积的性质
a•a=|a|的平方。
a⊥b 〈=〉a•b=0。
|a•b|≤|a|•|b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。
2、向量的数量积不满足消去律,即:由 a•b=a•c(a≠0),推不出 b=c。
3、|a•b|≠|a|•|b|
4、由 |a|=|b|,推不出 a=b或a=-b。
4、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的。
向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
① 当且仅当a、b反向时,左边取等号;
② 当且仅当a、b同向时,右边取等号。
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
① 当且仅当a、b同向时,左边取等号;
② 当且仅当a、b反向时,右边取等号。
第五篇:期末考试知识点总结——向量专题总结
期末考试知识点总结:
向量专题
向量是高考的一个亮点,因为向量知识,向量观点在数学、物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视。
一、平面向量加、减、实数与向量积
(一)基本知识点提示
1、重点要理解向量、零向量、向量的模、单位向量、平行向量、反向量、相等向量、两向量的夹角等概念。
2、了解平面向量基本定理和空间向量基本定理。
3、向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4、向量形式的三角形不等式:|||-|||≤|±|≤||+||(试问:取等号的条件是什么?); 向量形式的平行四边形定理:2(||2+||2)=|-|2+|a+b|25、实数与向量的乘法(即数乘的意义)
实数λ与向量的积是一个向量,记λ
定如下:
(1)|λ|=|λ,它的长度与方向规|·||;
(2)当λ>0时,λ
λ当λ的方向与的方向相同;=0时,λ<0时,的方向与的方向相反;当λ=,方向是任意的.6、共线向量定理的应用:若≠,则∥存在唯一实数对λ使得=λ
y2))
二、向量的坐标运算及应用
(一)基本知识回顾
1、向量的坐标概念和坐标表示法
2、向量的坐标运算(加、减、实数和向量的乘法、数量积)
3、线段的定比分点概念及定比分点坐标公式
4、图形的平移概念及平移变换公式
三、平面向量的数量积及其应用
1、数量积(点乘或内积)=||||cos=x1x2+y1y2注意区别“实数与向量的乘法;向量与向量的乘法”
2、数量积的主要应用:①求模长;②求夹角;③判垂直;,=(x2,x1y2-x2y1=0(其中=(x1,y1)