2021最新高中数学知识点[共五篇]

时间:2021-06-03 14:40:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2021最新高中数学知识点》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2021最新高中数学知识点》。

第一篇:2021最新高中数学知识点

数学是解决生活问题的钥匙,学数学就是为了学会应用,学会生活。只要我们细细感悟,就会发现数学就在我们的身边。2021最新高中数学知识点有哪些你知道吗?一起来看看2021最新高中数学知识点,欢迎查阅!

高中数学知识点

向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为的向量.单位向量:长度等于个单位的向量.相等向量:长度相等且方向相同的向量

&向量的运算

加法运算

AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算

与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ=0时,λa=0。

设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积

已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。

a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。

高考理科数学高频必考考点一、三角函数题

三角题一般在解答题的前两道题的位置上,主要考查三角恒等变换、三角函数的图像与性质、解三角形等有关内容.三角函数、平面向量和三角形中的正、余弦定理相互交汇,是高考中考查的热点.二、数列题

数列题重点考查等差数列、等比数列、递推数列的综合应用,常与不等式、函数、导数等知识综合交汇,既考查分类、转化、化归、归纳、递推等数学思想方法,又考查综合运用知识进行运算、推理论证及解决问题的能力.近几年这类试题的位置有所前移,难度明显降低.三、立体几何题

常以柱体、锥体、组合体为载体全方位地考查立体几何中的重要内容,如线线、线面与面面的位置关系,线面角、二面角问题,距离问题等,既有计算又有证明,一题多问,递进排列,此类试题既可用传统方法解答,又可用空间向量法处理,有的题是两法兼用,可谓珠联璧合,相得益彰.究竟选用哪种方法,要由自己的长处和图形特点来确定.便于建立空间直角坐标系的,往往选用向量法,反之,选用传统方法.另外,“动态”探索性问题是近几年高考立体几何命题的新亮点,三视图的巧妙参与也是立体几何命题的新手法,要注意把握.四、概率问题

概率题一般在解答题的前三道题的位置上,主要考查数据处理能力、应用意识、必然与或然思想,因此近几年概率题常以概率与统计的交汇形式呈现,并用实际生活中的背景来“包装”.概率重点考查离散型随机变量的分布列与期望、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验与二项分布等;统计重点考查抽样方法(特别是分层抽样)、样本的频率分布、样本的特征数、茎叶图、线性回归、列联表等,穿插考查合情推理能力和优化决策能力.同时,关注几何概型与定积分的交汇考查,此类试题在近几年的高考中难度有所提升,考生应有心理准备.五、圆锥曲线问题

解析几何题一般在解答题的后三道题的位置上,有时是“把关题”或“压轴题”,说明了解析几何题依然是重头戏,在新课标高考中依然占有较突出的地位.考查重点:第一,解析几何自身模块的小交汇,是指以圆、圆锥曲线为载体呈现的`,将两种或两种以上的知识结合起来综合考查.如不同曲线(含直线)之间的结合,直线是各类曲线和相关试题最常用的“调味品”,显示了直线与方程的各知识点的基础性和应用性.第二,圆锥曲线与不同模块知识的大交汇,以解析几何与函数、向量、代数知识的结合最为常见.有关解析几何的最值、定值、定点问题应给予重视.一般来说,解析几何题计算量大且有一定的技巧性(要求品出“几何味”来),需要“精打细算”,对考生的意志品质和数学机智都是一种考验和检测.六、导数、极值、最值、不等式恒成立(或逆用求参)问题

导数题考查的重点是用导数研究函数性质或解决与函数有关的问题.往往将函数、不等式、方程、导数等有机地综合,构成一道超大型综合题,体现了在“知识网络交汇点处设计试题”的高考命题指导思想.鉴于该类试题的难度大,有些题还有高等数学的背景和竞赛题的味道,标准答案提供的解法往往如同“神来之笔”,确实想不到,加之“搏杀”到此时的考生的精力和考试时间基本耗尽,建议考生一定要当机立断,视时间和自身实力,先看第(1)问可否拿下,再确定放弃、分段得分或强攻.近几年该类试题与解析几何题轮流“坐庄”,经常充当“把关题”或“压轴题”的重要角色.高中数学知识点大全

1、含n个元素的有限集合其子集共有2n个,非空子集有2n—1个,非空真子集有2n—2个。

2、集合中,Cu(A∩B)=(CuA)U(CuB),交之补等于补之并。

Cu(AUB)=(CuA)∩(CuB),并之补等于补之交。

3、ax2+bx+c<0的解集为x(0

+c>0的解集为x,cx2+bx+a>0的解集为>x或x<;ax2—bx+

4、c<0的解集为x,cx2—bx+a>0的解集为->x或x<-。

5、原命题与其逆否命题是等价命题。

原命题的逆命题与原命题的否命题也是等价命题。

6、函数是一种特殊的映射,函数与映射都可用:f:A→B表示。

A表示原像,B表示像。当f:A→B表示函数时,A表示定义域,B大于或等于其值域范围。只有一一映射的函数才具有反函数。

7、原函数与反函数的单调性一致,且都为奇函数。

偶函数和周期函数没有反函数。若f(x)与g(x)关于点(a,b)对称,则g(x)=2b-f(2a-x).8、若f(-x)=f(x),则f(x)为偶函数,若f(-x)=f(x),则f(x)为奇函数;

偶函数关于y轴对称,且对称轴两边的单调性相反;奇函数关于原点对称,且在整个定义域上的单调性一致。反之亦然。若奇函数在x=0处有意义,则f(0)=0。函数的单调性可用定义法和导数法求出。偶函数的导函数是奇函数,奇函数的导函数是偶函数。对于任意常数T(T≠0),在定义域范围内,都有f(x+T)=f(x),则称f(x)是周期为T的周期函数,且f(x+kT)=f(x),k≠0.9、周期函数的特征性:①f(x+a)=-f(x),是T=2a的函数,②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函数,③若f(x)既x=a关对称,又关于x=b对称,则f(x)是T=2(b-a)的函数④若f(x

+a)?f(x+b)=±1,即f(x+a)=±,则f(x)是T=2(b-a)的函数⑤f(x+a)=±,则f(x)

是T=4(b-a)的函数

10、复合函数的单调性满足“同增异减”原理。

定义域都是指函数中自变量的取值范围。

11、抽象函数主要有f(xy)=f(x)+f(y)(对数型),f(x+y)=f(x)?f(y)(指数型),f(x+y)=f(x)+f(y)(直线型)。

解此类抽象函数比较实用的方法是特殊值法和周期法。

12、指数函数图像的规律是:底数按逆时针增大。

对数函数与之相反.13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。

在解可化为a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指数方程或不等式时,常借助于换元法,应特别注意换元后新变元的取值范围。

14、log10N=lgN;logeN=lnN(e=2.718???);对数的性质:如果a>0,a≠0,M>0N>0,那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N.换底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk.15、函数图像的变换:

(1)水平平移:y=f(x±a)(a>0)的图像可由y=f(x)向左或向右平移a个单位得到;

(2)竖直平移:y=f(x)±b(b>0)图像,可由y=f(x)向上或向下平移b个单位得到;

(3)对称:若对于定义域内的一切x均有f(x+m)=f(x—m),则y=f(x)的图像关于直线x=m对称;y=f(x)关于(a,b)对称的函数为y!=2b—f(2a—x).(4),学习计划;翻折:①y=|f(x)|是将y=f(x)位于x轴下方的部分以x轴为对称轴将期翻折到x轴上方的图像。②y=f(|x|)是将y=f(x)位于y轴左方的图像翻折到y轴的右方而成的图像。

(5)有关结论:①若f(a+x)=f(b—x),在x为一切实数上成立,则y=f(x)的图像关于

x=对称。②函数y=f(a+x)与函数y=f(b—x)的图像有关于直线x=对称。

15、等差数列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+

16、若n+m=p+q,则am+an=ap+aq;

sk,s2k—k,s3k—2k成以k2d为公差的等差数列。an是等差数列,若ap=q,aq=p,则ap+q=0;若sp=q,sq=p,则sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差数列,则可设前n项和为sn=an2+bn(注:没有常数项),用方程的思想求解a,b。在等差数列中,若将其脚码成等差数列的项取出组成数列,则新的数列仍旧是等差数列。

17、等比数列中,an=a1?qn-1=am?qn-m,若n+m=p+q,则am?an=ap?aq;sn=na1(q=1),sn=,(q≠1);若q≠1,则有=q,若q≠—1,=q;

sk,s2k—k,s3k—2k也是等比数列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比数列。在等比数列中,若将其脚码成等差数列的项取出组成数列,则新的数列仍旧是等比数列。裂项公式:

=—,=?(—),常用数列递推形式:叠加,叠乘,18、弧长公式:l=|α|?r。

s扇=?lr=?|α|r2=?;当一个扇形的周长一定时(为L时),其面积为,其圆心角为2弧度。

19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;

Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ

第二篇:高中数学知识点

高中数学知识点 必修1集合函数概念与基本初等函数Ⅰ必修2立体几何初步平面解析几何初步必修3算法初步统计概率

必修4

基本初等函数Ⅱ(三角函数)平面向量三角恒等变形必修5

解三角形数列不等式

选修

常用逻辑用语圆锥曲线与方程空间向量与立体几何导数及其应用推理与证明数系的扩充与复数的引入计数原理概率与统计几何证明选讲坐标系与参数方程不等式选讲

第三篇:高中数学知识点

高中数学重点知识与结论分类解析

一、集合与简易逻辑 1.集合的元素具有确定性、无序性和互异性. 2.对集合,时,必须注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、是任何非空集合的真子集. 3.对于含有 个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”. 5.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”. 6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”. 7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”. 原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果. 注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” . 8.充要条件

第四篇:高中数学幂函数知识点

进入到高一阶段,大家的学习压力都是呈直线上升的,因此平时的积累也显得尤为重要,下面小编给大家分享一些高中数学幂函数知识,希望能够帮助大家,欢迎阅读!

高中数学幂函数知识1

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;

(2)图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3)函数单调区间与单调性的判定方法

(A)定义法:

a.任取x1,x2∈D,且x1

b.作差f(x1)-f(x2);

c.变形(通常是因式分解和配方);

d.定号(即判断差f(x1)-f(x2)的正负);

e.下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:

a.首先确定函数的定义域,并判断其是否关于原点对称;

b.确定f(-x)与f(x)的关系;

c.作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定.9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:

1)凑配法

2)待定系数法

3)换元法

4)消参法

10.函数最大(小)值(定义见课本p36页)

a.利用二次函数的性质(配方法)求函数的最大(小)值

b.利用图象求函数的最大(小)值

c.利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);.高中数学幂函数知识2一、一次函数定义与定义式:

自变量x和因变量y有如下关系:

y=kx+b

则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)

二、一次函数的性质:

1.y的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k为任意不为零的实数b取任何实数)

2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:

1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;

当b=0时,直线通过原点

当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:

已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

高中数学幂函数知识3

一、高中数学函数的有关概念

1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域.注意:

函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.?相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

2.高中数学函数值域:先考虑其定义域

(1)观察法

(2)配方法

(3)代换法

3.函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法

A、描点法:

B、图象变换法

常用变换方法有三种

1)平移变换

2)伸缩变换

3)对称变换

4.高中数学函数区间的概念

(1)函数区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

5.映射

一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”

对于映射f:A→B来说,则应满足:

(1)函数A中的每一个元素,在函数B中都有象,并且象是唯一的;

(2)函数A中不同的元素,在函数B中对应的象可以是同一个;

(3)不要求函数B中的每一个元素在函数A中都有原象。

6.高中数学函数之分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数

如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

高中数学幂函数知识点

第五篇:高中数学知识点总结

高中数学知识点总结

1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

中元素各表示什么?

A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

显然,这里很容易解出A={-1,3}.而B最多只有一个元素。故B只能是-1或者3。根据条件,可以得到a=-1,a=1/3.但是,这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。

3.注意下列性质:

要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。同样,对于元素a2, a3,......an,都有2种选择,所以,总共有种选择,即集合A有个子集。

当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为

(3)德摩根定律:

有些版本可能是这种写法,遇到后要能够看懂

4.你会用补集思想解决问题吗?(排除法、间接法)的取值范围。

注意,有时候由集合本身就可以得到大量信息,做题时不要错过; 如告诉你函数f(x)=ax2+bx+c(a>0)在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1.或者,我说在上,也应该马上可以想到m,n实际上就是方程 的2个根

5、熟悉命题的几种形式、命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。)

原命题与逆否命题同真、同假;逆命题与否命题同真同假。

6、熟悉充要条件的性质(高考经常考)满足条件,满足条件,若 ;则是的充分非必要条件; 若 ;则是的必要非充分条件; 若 ;则是的充要条件;

若 ;则是的既非充分又非必要条件;

7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?

(一对一,多对一,允许B中有元素无原象。)

注意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B的映射个数有nm个。

如:若,;问:到的映射有 个,到的映射有 个;到的函数有 个,若,则到的一一映射有 个。

函数的图象与直线交点的个数为 个。

8.函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)

相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)

9.求函数的定义域有哪些常见类型?

函数定义域求法: * 分式中的分母不为零;

* 偶次方根下的数(或式)大于或等于零; * 指数式的底数大于零且不等于一;

* 对数式的底数大于零且不等于一,真数大于零。* 正切函数 * 余切函数

* 反三角函数的定义域

函数y=arcsinx的定义域是 [-1, 1],值域是,函数y=arccosx的定义域是 [-1, 1],值域是 [0, π],函数y=arctgx的定义域是 R,值域是.,函数y=arcctgx的定义域是 R,值域是(0, π).当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。

10.如何求复合函数的定义域?

义域是_____________。

复合函数定义域的求法:已知的定义域为,求的定义域,可由解出x的范围,即为的定义域。

例 若函数的定义域为,则的定义域为。

分析:由函数的定义域为可知:;所以中有。

解:依题意知:

解之,得 ∴ 的定义域为

11、函数值域的求法

1、直接观察法

对于一些比较简单的函数,其值域可通过观察得到。例 求函数y=的值域

2、配方法

配方法是求二次函数值域最基本的方法之一。例、求函数y=-2x+5,x[-1,2]的值域。

3、判别式法

对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面 下面,我把这一类型的详细写出来,希望大家能够看懂

4、反函数法

直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例 求函数y=值域。

5、函数有界性法

直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。例 求函数y=,的值域。

6、函数单调性法

通常和导数结合,是最近高考考的较多的一个内容 例求函数y=(2≤x≤10)的值域

7、换元法

通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角

函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发

挥作用。

例 求函数y=x+的值域。8 数形结合法 其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这

类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。例:已知点P(x.y)在圆x2+y2=1上,例求函数y=+的值域。

解:原函数可化简得:y=∣x-2∣+∣x+8∣ 上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。由上图可知:当点P在线段AB上时,y=∣x-2∣+∣x+8∣=∣AB∣=10

当点P在线段AB的延长线或反向延长线上时,y=∣x-2∣+∣x+8∣>∣AB∣=10 故所求函数的值域为:[10,+∞)例求函数y=+ 的值域

解:原函数可变形为:y=+

上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和,由图可知当点P为线段与x轴的交点时,y=∣AB∣==,故所求函数的值域为[,+∞)。例求函数y=-的值域 解:将函数变形为:y=-

上式可看成定点A(3,2)到点P(x,0)的距离与定点B(-2,1)到点P(x,0)的距离之差。即:y=∣AP∣-∣BP∣ 由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点P1,则构成△ABP1,根据三角形两边之差小于第三边,有 ∣∣AP1∣-∣BP1∣∣<∣AB∣== 即:-<y<(2)当点P恰好为直线AB与x轴的交点时,有 ∣∣AP∣-∣BP∣∣=∣AB∣=。综上所述,可知函数的值域为:(-,-)。

注:求两距离之和时,要将函数式变形,使A,B两点在x轴的两侧,而求两距离之差时,则要使两点A,B在x轴的同侧。9、不等式法

利用基本不等式a+b≥2,a+b+c≥3(a,b,c∈),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。例:

倒数法

有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况 例 求函数y=的值域

多种方法综合运用

总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

12.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 切记:做题,特别是做大题时,一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,与到手的满分失之交臂

13.反函数存在的条件是什么?(一一对应函数)

求反函数的步骤掌握了吗?

(①反解x;②互换x、y;③注明定义域)

在更多时候,反函数的求法只是在选择题中出现,这就为我们这些喜欢偷懒的人提供了大方便。请看这个例题:

(2004.全国理)函数的反函数是(B)A.y=x2-2x+2(x<1)B.y=x2-2x+2(x≥1)C.y=x2-2x(x<1)D.y=x2-2x(x≥1)

当然,心情好的同学,可以自己慢慢的计算,我想,一番心血之后,如果不出现计算问题的话,答案还是可以做出来的。可惜,这个不合我胃口,因为我一向懒散惯了,不习惯计算。下面请看一下我的思路:

原函数定义域为 x〉=1,那反函数值域也为y>=1.排除选项C,D.现在看值域。原函数至于为y>=1,则反函数定义域为x>=1, 答案为B.我题目已经做完了,好像没有动笔(除非你拿来写*书)。思路能不能明白呢?

14.反函数的性质有哪些? 反函数性质:

1、反函数的定义域是原函数的值域(可扩展为反函数中的x对应原函数中的y)

2、反函数的值域是原函数的定义域(可扩展为反函数中的y对应原函数中的x)

3、反函数的图像和原函数关于直线=x对称(难怪点(x,y)和点(y,x)关于直线y=x对称

①互为反函数的图象关于直线y=x对称; ②保存了原来函数的单调性、奇函数性;

由反函数的性质,可以快速的解出很多比较麻烦的题目,如(04.上海春季高考)已知函数,则方程的解__________.1 对于这一类题目,其实方法特别简单,呵呵。已知反函数的y,不就是原函数的x吗?那代进去阿,答案是不是已经出来了呢?(也可能是告诉你反函数的x值,那方法也一样,呵呵。自己想想,不懂再问我.如何用定义证明函数的单调性?(取值、作差、判正负)

判断函数单调性的方法有三种:(1)定义法:

根据定义,设任意得x1,x2,找出f(x1),f(x2)之间的大小关系

可以变形为求的正负号或者与1的关系(2)参照图象:

①若函数f(x)的图象关于点(a,b)对称,函数f(x)在关于点(a,0)的对称区间具有相同的单调性;(特例:奇函数)②若函数f(x)的图象关于直线x=a对称,则函数f(x)在关于点(a,0)的对称区间里具有相反的单调性。(特例:偶函数)(3)利用单调函数的性质:

①函数f(x)与f(x)+c(c是常数)是同向变化的

②函数f(x)与cf(x)(c是常数),当c>0时,它们是同向变化的;当c<0时,它们是反向变化的。

③如果函数f1(x),f2(x)同向变化,则函数f1(x)+f2(x)和它们同向变化;(函数相加)

④如果正值函数f1(x),f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数f1(2)与f2(x)同向变化,则函数f1(x)f2(x)和它们反向变化;(函数相乘)

⑤函数f(x)与在f(x)的同号区间里反向变化。

⑥若函数u=φ(x),x[α,β]与函数y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]同向变化,则在[α,β]上复合函数y=F[φ(x)]是递增的;若函数u=φ(x),x[α,β]与函数y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]反向变化,则在[α,β]上复合函数y=F[φ(x)]是递减的。(同增异减)⑦若函数y=f(x)是严格单调的,则其反函数x=f-1(y)也是严格单调的,而且,它们的增减性相同。

f(g)g(x)f[g(x)] f(x)+g(x)f(x)*g(x)都是正数增增增增增增减减 / / 减增减 / / 减减增减减

∴......)

16.如何利用导数判断函数的单调性?

值是()

A.0 B.1 C.2 D.3

∴a的最大值为3)

17.函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)

注意如下结论:

(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

判断函数奇偶性的方法

一、定义域法

一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数..二、奇偶函数定义法

在给定函数的定义域关于原点对称的前提下,计算,然后根据函数的奇偶性的定义判断其奇偶性.三、复合函数奇偶性

f(g)g(x)f[g(x)] f(x)+g(x)f(x)*g(x)奇奇奇奇偶奇偶偶非奇非偶奇偶奇偶非奇非偶奇偶偶偶偶偶

18.你熟悉周期函数的定义吗?

函数,T是一个周期。)

我们在做题的时候,经常会遇到这样的情况:告诉你f(x)+f(x+t)=0,我们要马上反应过来,这时说这个函数周期2t.推导:,同时可能也会遇到这种样子:f(x)=f(2a-x),或者说f(a-x)=f(a+x).其实这都是说同样一个意思:函数f(x)关于直线对称,对称轴可以由括号内的2个数字相加再除以2得到。比如,f(x)=f(2a-x),或者说f(a-x)=f(a+x)就都表示函数关于直线x=a对称。

如:

19.你掌握常用的图象变换了吗? 联想点(x,y),(-x,y)联想点(x,y),(x,-y)联想点(x,y),(-x,-y)联想点(x,y),(y,x)联想点(x,y),(2a-x,y)联想点(x,y),(2a-x,0)

(这是书上的方法,虽然我从来不用,但可能大家接触最多,我还是写出来吧。对于这种题目,其实根本不用这么麻烦。你要判断函数y-b=f(x+a)怎么由y=f(x)得到,可以直接令y-b=0,x+a=0,画出点的坐标。看点和原点的关系,就可以很直观的看出函数平移的轨迹了。)注意如下“翻折”变换:

19.你熟练掌握常用函数的图象和性质了吗?

(k为斜率,b为直线与y轴的交点)的双曲线。

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系--二次方程

②求闭区间[m,n]上的最值。

③求区间定(动),对称轴动(定)的最值问题。④一元二次方程根的分布问题。

由图象记性质!(注意底数的限定!)

利用它的单调性求最值与利用均值不等式求最值的区别是什么?(均值不等式一定要注意等号成立的条件)

20.你在基本运算上常出现错误吗?

21.如何解抽象函数问题?(赋值法、结构变换法)

(对于这种抽象函数的题目,其实简单得都可以直接用死记了

1、代y=x,2、令x=0或1来求出f(0)或f(1)

3、求奇偶性,令y=-x;求单调性:令x+y=x1

几类常见的抽象函数 1.正比例函数型的抽象函数

f(x)=kx(k≠0)---------------f(x±y)=f(x)±f(y)2.幂函数型的抽象函数

f(x)=xa----------------f(xy)= f(x)f(y);f()= 3.指数函数型的抽象函数

f(x)=ax-------------------f(x+y)=f(x)f(y);f(x-y)= 4.对数函数型的抽象函数

f(x)=logax(a>0且a≠1)-----f(x·y)=f(x)+f(y);f()= f(x)-f(y)

5.三角函数型的抽象函数

f(x)=tgx--------------------------f(x+y)= f(x)=cotx------------------------f(x+y)=

例1已知函数f(x)对任意实数x、y均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)= -2求f(x)在区间[-2,1]上的值域.分析:先证明函数f(x)在R上是增函数(注意到f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1));再根据区间求其值域.例2已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)= 5,求不等式 f(a2-2a-2)<3的解.分析:先证明函数f(x)在R上是增函数(仿例1);再求出f(1)=3;最后脱去函数符号.例3已知函数f(x)对任意实数x、y都有f(xy)=f(x)f(y),且f(-1)=1,f(27)=9,当0≤x<1时,f(x)∈[0,1].(1)判断f(x)的奇偶性;

(2)判断f(x)在[0,+∞]上的单调性,并给出证明;(3)若a≥0且f(a+1)≤,求a的取值范围.分析:(1)令y=-1;

(2)利用f(x1)=f(·x2)=f()f(x2);

(3)0≤a≤2.例4设函数f(x)的定义域是(-∞,+∞),满足条件:存在x1≠x2,使得f(x1)≠f(x2);对任何x和y,f(x+y)=f(x)f(y)成立.求:(1)f(0);

(2)对任意值x,判断f(x)值的符号.分析:(1)令x= y=0;(2)令y=x≠0.例5是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②f(a+b)= f(a)f(b),a、b∈N;③f(2)=4.同时成立?若存在,求出f(x)的解析式,若不存在,说明理由.分析:先猜出f(x)=2x;再用数学归纳法证明.例6设f(x)是定义在(0,+∞)上的单调增函数,满足f(x·y)=f(x)+f(y),f(3)=1,求:(1)f(1);

(2)若f(x)+f(x-8)≤2,求x的取值范围.分析:(1)利用3=1×3;

(2)利用函数的单调性和已知关系式.例7设函数y= f(x)的反函数是y=g(x).如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由.分析:设f(a)=m,f(b)=n,则g(m)=a,g(n)=b,进而m+n=f(a)+f(b)= f(ab)=f [g(m)g(n)]....例8已知函数f(x)的定义域关于原点对称,且满足以下三个条件: ① x1、x2是定义域中的数时,有f(x1-x2)=; ② f(a)= -1(a>0,a是定义域中的一个数); ③ 当0<x<2a时,f(x)<0.试问:

(1)f(x)的奇偶性如何?说明理由;

(2)在(0,4a)上,f(x)的单调性如何?说明理由.分析:(1)利用f [-(x1-x2)]= -f [(x1-x2)],判定f(x)是奇函数;(3)先证明f(x)在(0,2a)上是增函数,再证明其在(2a,4a)上也是增函数.对于抽象函数的解答题,虽然不可用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟悉的基本初等函数.因此,针对不同的函数要进行适当变通,去寻求特殊模型,从而更好地解决抽象函数问题.例9已知函数f(x)(x≠0)满足f(xy)=f(x)+f(y),(1)求证:f(1)=f(-1)=0;(2)求证:f(x)为偶函数;

(3)若f(x)在(0,+∞)上是增函数,解不等式f(x)+f(x-)≤0.分析:函数模型为:f(x)=loga|x|(a>0)(1)先令x=y=1,再令x=y= -1;(2)令y= -1;

(3)由f(x)为偶函数,则f(x)=f(|x|).例10已知函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)·f(y),且当x<0时,f(x)>1,求证:(1)当x>0时,0<f(x)<1;(2)f(x)在x∈R上是减函数.分析:(1)先令x=y=0得f(0)=1,再令y=-x;(3)受指数函数单调性的启发:

由f(x+y)=f(x)f(y)可得f(x-y)=,进而由x1<x2,有=f(x1-x2)>1.练习题:

1.已知:f(x+y)=f(x)+f(y)对任意实数x、y都成立,则()

(A)f(0)=0(B)f(0)=1

(C)f(0)=0或1(D)以上都不对

2.若对任意实数x、y总有f(xy)=f(x)+f(y),则下列各式中错误的是()

(A)f(1)=0(B)f()= f(x)

(C)f()= f(x)-f(y)(D)f(xn)=nf(x)(n∈N)

3.已知函数f(x)对一切实数x、y满足:f(0)≠0,f(x+y)=f(x)f(y),且当x<0时,f(x)>1,则当x>0时,f(x)的取值范围是()

(A)(1,+∞)(B)(-∞,1)

(C)(0,1)(D)(-1,+∞)

4.函数f(x)定义域关于原点对称,且对定义域内不同的x1、x2都有

f(x1-x2)=,则f(x)为()

(A)奇函数非偶函数(B)偶函数非奇函数

(C)既是奇函数又是偶函数(D)非奇非偶函数

5.已知不恒为零的函数f(x)对任意实数x、y满足f(x+y)+f(x-y)=2[f(x)+f(y)],则函数f(x)是()

(A)奇函数非偶函数(B)偶函数非奇函数

(C)既是奇函数又是偶函数(D)非奇非偶函数

参考答案: 1.A 2.B 3.C 4.A 5.B 23.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?

(和三角形的面积公式很相似,可以比较记忆.要知道圆锥展开图面积的求法)

下载2021最新高中数学知识点[共五篇]word格式文档
下载2021最新高中数学知识点[共五篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学知识点小结

    集合的交、并、补,集合的包含即子集关系; 函数的单调性,奇偶性,基本函数模型(一次函数,二次函数,反比例函数,指数函数,对数函数),分数指数幂的定义及运算法则,对数的定义及运算性质与运......

    高中数学知识点--立体几何

    【高中数学知识点】立体几何学习的几点建议.txt 一 逐渐提高逻辑论证能力 立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证......

    高中数学超几何分布知识点总结

    高中数学超几何分布知识点总结: 超几何分布:在产品质量的不放回抽检中,若件N产品中有M件次品,抽检n件时所得次品数X=k,则P(X=k)=?,此时我们称随机变量X服从超几何分布。 高中数学......

    最全高中数学知识点总结

    高中新课标理科数学 (必修+选修) 所有知识点总结 第 1 页 共 117 页 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体......

    高中数学函数知识点大全

    一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,其中x是自变量,y是因变量,x的取值范围叫做这个函数的定义域,相应y......

    高中数学选修2-2知识点

    高中数学选修2----2知识点 第一章 导数及其应用 一.导数概念的引入limx0f(x0x)f(x0) x 1. 导数的物理意义:瞬时速率。导数的几何意义: 切线斜率 二.导数的计算 f(x)f(x)g(x)f(x......

    高中数学知识点提纲(5篇)

    学数学要对整个数学知识点的脉络有清晰的掌握,就是心中要有一个发展的数学框架。把每单元前的单元介绍看看,注意后几行,一般都是重点。以下是小编给大家整理的高中数学知识点提......

    高中数学数列知识点(5篇)

    数列是以正整数集为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。下面小编给大家分享一些数学数列知识点,希望能够帮助大家,欢迎阅读!数学数列知识点1等......