高中数学函数知识点总结

时间:2019-05-13 10:14:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学函数知识点总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学函数知识点总结》。

第一篇:高中数学函数知识点总结

高中数学函数知识点总结

(1)高中函数公式的变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

(2)一次函数:①若两个变量,间的关系式可以表示成(为常数,不等于0)的形式,则称 是的一次函数。②当=0时,称是的正比例函数。

(3)高中函数的一次函数的图象及性质

①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数=的图象是经过原点的一条直线。

③在一次函数中,当0,O,则经2、3、4象限;当0,0时,则经1、2、4象限;当0,0时,则经1、3、4象限;当0,0时,则经1、2、3象限。

④当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。

(4)高中函数的二次函数:

①一般式:(),对称轴是

顶点是;

②顶点式:(),对称轴是顶点是;

③交点式:(),其中(),()是抛物线与x轴的交点

(5)高中函数的二次函数的性质

①函数的图象关于直线对称。

随时,在对称轴()左侧,值随值的增大而减少;在对称轴()右侧;的值值的增大而增大。当时,取得最小值时,在对称轴()左侧,值随值的增大而增大;在对称轴()右侧;的值值的增大而减少。当时,取得最大值高中函数的图形的对称

(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。

(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

2012高中数学知识点总结:函数公式大全

9高中函数的图形的对称

(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。

(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分

第二篇:高中数学函数知识点

一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,其中x是自变量,y是因变量,x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。下面小编给大家分享一些高中数学函数知识点,希望能够帮助大家,欢迎阅读!

高中数学函数知识一、一次函数定义与定义式:

自变量x和因变量y有如下关系:

y=kx+b

则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)

二、一次函数的性质:

1.y的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k为任意不为零的实数b取任何实数)

2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:

1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;

当b=0时,直线通过原点

当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:

已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:

1.当时间t一定,距离s是速度v的一次函数。s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

六、常用公式:

1.求函数图像的k值:(y1-y2)/(x1-x2)

2.求与x轴平行线段的中点:|x1-x2|/2

3.求与y轴平行线段的中点:|y1-y2|/2

4.求任意线段的长:√(x1-x2)’2+(y1-y2)’2(注:根号下(x1-x2)与(y1-y2)的平方和)

高中数学函数知识2

二次函数

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax’2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax’2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)’2+k[抛物线的顶点P(h,k)]

交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a

III.二次函数的图像

在平面直角坐标系中作出二次函数y=x’2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线

x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P(-b/2a,(4ac-b’2)/4a)

当-b/2a=0时,P在y轴上;当Δ=b’2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ=b’2-4ac>0时,抛物线与x轴有2个交点。

Δ=b’2-4ac=0时,抛物线与x轴有1个交点。

Δ=b’2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b’2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax’2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax’2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

高中数学函数知识3

反比例函数

形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

如图,上面给出了k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数

当K<0时,反比例函数图像经过二,四象限,是增函数

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:

1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

对数函数

对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

高中数学函数知识点

第三篇:高中数学知识点总结

高中数学难度更大,难度在于它的深度和广度,但如果能理清思路,抓住重点,多实践,变渣滓为暴君并非不可能。高中数学知识点总结有哪些你知道吗?一起来看看高中数学知识点总结,欢迎查阅!

高中数学知识点汇总

1.必修课程由5个模块组成:

必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。

选修课程分为4个系列:

系列1:2个模块

选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修1-2:统计案例、推理与证明、数系的扩充与复数、框图

系列2:3个模块

选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何

选修2-2:导数及其应用、推理与证明、数系的扩充与复数

选修2-3:计数原理、随机变量及其分布列、统计案例

选修4-1:几何证明选讲

选修4-4:坐标系与参数方程

选修4-5:不等式选讲

2.重难点及其考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数,圆锥曲线

高考相关考点:

1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

5.平面向量:初等运算、坐标运算、数量积及其应用

6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

9.直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

10.排列、组合和概率:排列、组合应用题、二项式定理及其应用

11.概率与统计:概率、分布列、期望、方差、抽样、正态分布

12.导数:导数的概念、求导、导数的应用

13.复数:复数的概念与运算

高中数学学习要注意的方法

1.用心感受数学,欣赏数学,掌握数学思想。有位数学家曾说过:数学是用最小的空间集中了的理想。

2.要重视数学概念的理解。高一数学与初中数学的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-1)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-1)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。

3.对数学学习应抱着二个词――“严谨,创新”,所谓严谨,就是在平时训练的时候,不能一丝马虎,是对就是对,错了就一定要承认,要找原因,要改正,万不可以抱着“好像是对的”的心态,蒙混过关。至于创新呢,要求就高一点了,要求在你会解决此问题的情况下,你还会不会用另一种更简单,更有效的方法,这就需要扎实的基本功。平时,我们看到一些人,做题时从不用常规方法,总爱自己创造一些方法以“偏方”解题,虽然有时候也能让他撞上一些好的方法,但我认为是不可取的。因为你首先必须学会用常规的方法,在此基础上你才能创新,你的创新才有意义,而那些总是片面“追求”新方法的人,他们的思维有如空中楼阁,必然是昙花一现。当然我们要有创新意识,但是,创新是有条件的,必须有扎实的基础,因此我想劝一下那些基础不牢,而平时总爱用“偏方”的同学们,该是清醒一下的时候了,千万不要继续钻那可怜的牛角尖啊!

4.建立良好的学习数学习惯,习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

5.多听、多作、多想、多问:此“四多”乃培养数学能力的要诀,“听”就是在“学”,作是“练习”(作课本上的习题或其它问题),也就是把您所学的,应用到解决问题上。“听”与“作”难免会碰到疑难,那就要靠“想”的功夫去打通它,假如还想不通,解不来就要“问”――问同学、问老师或参考书,务必将疑难解决为止。这就是所谓的学问:既学又问。

6.要有毅力、要有恒心:基本上要有一个认识:数学能力乃是长期努力累积的结果,而不是一朝一夕之功所能达到的。您可能花一天或一个晚上的功夫把某课文背得滚瓜烂熟,第二天考背诵时对答如流而获高分,也有可能花了一两个礼拜的时间拼命学数学,但到头来数学可能还考不好,这时候您可不能气馁,也不必为花掉的时间惋惜。

高中数学复习的五大要点分析

一、端正态度,切忌浮躁,忌急于求成在第一轮复习的过程中,心浮气躁是一个非常普遍的现象。主要表现为平时复习觉得没有问题,题目也能做,但是到了考试时就是拿不了高分!这主要是因为:

(1)对复习的知识点缺乏系统的理解,解题时缺乏思维层次结构。第一轮复习着重对基础知识点的挖掘,数学老师一定都会反复强调基础的重要性。如果不重视对知识点的系统化分析,不能构成一个整体的知识网络构架,自然在解题时就不能拥有整体的构思,也不能深入理解高考典型例题的思维方法。

(2)复习的时候心不静。心不静就会导致思维不清晰,而思维不清晰就会促使复习没有效率。建议大家在开始一个学科的复习之前,先静下心来认真想一想接下来需要复习哪一块儿,需要做多少事情,然后认真去做,同时需要很高的注意力,只有这样才会有很好的效果。

(3)在第一轮复习阶段,学习的重心应该转移到基础复习上来。

因此,建议广大同学在一轮复习的时候千万不要急于求成,一定要静下心来,认真的揣摩每个知识点,弄清每一个原理。只有这样,一轮复习才能显出成效。

二、注重教材、注重基础,忌盲目做题

要把书本中的常规题型做好,所谓做好就是要用最少的时间把题目做对。部分同学在第一轮复习时对基础题不予以足够的重视,认为题目看上去会做就可以不加训练,结果常在一些“不该错的地方错了”,最终把原因简单的归结为粗心,从而忽视了对基本概念的掌握,对基本结论和公式的记忆及基本计算的训练和常规方法的积累,造成了实际成绩与心理感觉的偏差。

可见,数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。不妨以既是重点也是难点的函数部分为例,就必须掌握函数的概念,建立函数关系式,掌握定义域、值域与最值、奇偶性、单调性、周期性、对称性等性质,学会利用图像即数形结合。

三、抓薄弱环节,做好复习的针对性,忌无计划

每个同学在数学学习上遇到的问题有共同点,更有不同点。在复习课上,老师只能针对性去解决共同点,而同学们自己的个别问题则需要通过自己的思考,与同学们的讨论,并向老师提问来解决问题,我们提倡同学多问老师,要敢于问。每个同学必须了解自己掌握了什么,还有哪些问题没有解决,要明确只有把漏洞一一补上才能提高。复习的过程,实质就是解决问题的过程,问题解决了,复习的效果就实现了。同时,也请同学们注意:在你问问题之前先经过自己思考,不要把不经过思考的问题就直接去问,因为这并不能起到更大作用。

高三的复习一定是有计划、有目标的,所以千万不要盲目做题。第一轮复习非常具有针对性,对于所有知识点的地毯式轰炸,一定要做到不缺不漏。因此,仅靠简单做题是达不到一轮复习应该具有的效果。而且盲目做题没有针对性,更不会有全面性。在概念模糊的情况下一定要回归课本,注意教材上最清晰的概念与原理,注重对知识点运用方法的总结。

四、在平时做题中要养成良好的解题习惯,忌不思

1.树立信心,养成良好的运算习惯。部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这就是一种非常不好的习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位同学必备的,以便以后查询。

2.做好解题后的开拓引申,培养一题多解和举一反三的能力。解题能力的培养可以从一题多解和举一反三中得到提高,因而解完题后,需要再回味和引申,它包括对解题方法的开拓引申,即一道数学题从不同的角度去考虑去分析,可以有不同的思路,不同的解法。

考虑的愈广泛愈深刻,获得的思路愈广阔,解法愈多样;及对题目做开拓引申,引申出新题和新解法,有利于培养同学们的发散思维,激发创造精神,提高解题能力:

(1)把题目条件开拓引申。

①把特殊条件一般化;②把一般条件特殊化;③把特殊条件和一般条件交替变化。

(2)把题目结论开拓引申。

(3)把题型开拓引申,同一个题目,给出不同的提法,可以变成不同的题型。俗称为“一题多变”但其解法仍类似,按其解法而言,这些题又可称为“多题一解”或“一法多用”。

3.提高解题速度,掌握解题技巧。提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。

五、学会总结、归纳,训练到位,忌题量不足

我在暑期上课的时候发现,很多同学都是一看到题目就开始做题,这也是一轮复习应该避免的地方。做题如果不注重思路的分析,知识点的运用,效果可想而知。因此建议同学们在做题前要把老师上课时复习的知识再回顾一下,梳理知识体系,回顾各个知识点,对所学的知识结构要有一个完整清楚的认识,认真分析题目考查的知识,思想,以及方法,还要学会总结归纳不留下任何知识的盲点,在一轮复习中要注意对各个知识点的细化。这个过程不需要很长的时间,而且到了后续阶段会越来越熟练。因此,养成良好的做题习惯,有助于训练自己的解题思维,提高自己的解题能力。

实践出真知,充足的题量是把理论转化为能力的一种保障,在足够的题目的练习下不仅可以更扎实的掌握知识点,还可以更深入的了解知识点,避免出现“会而不对、对而不全”的现象。由于高考依然是以做题为主,所以解题能力是高考分数的一个直接反映,尤其是数学试题。而解题能力不是三两道题就能提升的,而是要大量的反复的训练、认真细致的推敲才会有较大的提升。有句话说的好,“量变导致质变”,因此,同学们在每章复习的时候,一定要做足够的题,才能够充分的理解这一章的内容,才能够做到对这一章知识点的熟练运用。

但是,大量训练绝对不是题海战术。因为针对每章节做题都有目标,同时做题训练都需要不断的总结,既要横向总结,也要纵向深入。只要在每章节做题做到一定程度的时候都能感觉到这一章的知识点有哪些,典型题型有哪些,方法和技巧有哪些,换句话说,如果随机抽取一些近几年关于这一章的高考题都会做,那我认为就可以了。


高中数学知识点总结

第四篇:高中数学知识点总结

高中数学知识点总结

1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

中元素各表示什么?

A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

显然,这里很容易解出A={-1,3}.而B最多只有一个元素。故B只能是-1或者3。根据条件,可以得到a=-1,a=1/3.但是,这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。

3.注意下列性质:

要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。同样,对于元素a2, a3,......an,都有2种选择,所以,总共有种选择,即集合A有个子集。

当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为

(3)德摩根定律:

有些版本可能是这种写法,遇到后要能够看懂

4.你会用补集思想解决问题吗?(排除法、间接法)的取值范围。

注意,有时候由集合本身就可以得到大量信息,做题时不要错过; 如告诉你函数f(x)=ax2+bx+c(a>0)在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1.或者,我说在上,也应该马上可以想到m,n实际上就是方程 的2个根

5、熟悉命题的几种形式、命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。)

原命题与逆否命题同真、同假;逆命题与否命题同真同假。

6、熟悉充要条件的性质(高考经常考)满足条件,满足条件,若 ;则是的充分非必要条件; 若 ;则是的必要非充分条件; 若 ;则是的充要条件;

若 ;则是的既非充分又非必要条件;

7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?

(一对一,多对一,允许B中有元素无原象。)

注意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B的映射个数有nm个。

如:若,;问:到的映射有 个,到的映射有 个;到的函数有 个,若,则到的一一映射有 个。

函数的图象与直线交点的个数为 个。

8.函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)

相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)

9.求函数的定义域有哪些常见类型?

函数定义域求法: * 分式中的分母不为零;

* 偶次方根下的数(或式)大于或等于零; * 指数式的底数大于零且不等于一;

* 对数式的底数大于零且不等于一,真数大于零。* 正切函数 * 余切函数

* 反三角函数的定义域

函数y=arcsinx的定义域是 [-1, 1],值域是,函数y=arccosx的定义域是 [-1, 1],值域是 [0, π],函数y=arctgx的定义域是 R,值域是.,函数y=arcctgx的定义域是 R,值域是(0, π).当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。

10.如何求复合函数的定义域?

义域是_____________。

复合函数定义域的求法:已知的定义域为,求的定义域,可由解出x的范围,即为的定义域。

例 若函数的定义域为,则的定义域为。

分析:由函数的定义域为可知:;所以中有。

解:依题意知:

解之,得 ∴ 的定义域为

11、函数值域的求法

1、直接观察法

对于一些比较简单的函数,其值域可通过观察得到。例 求函数y=的值域

2、配方法

配方法是求二次函数值域最基本的方法之一。例、求函数y=-2x+5,x[-1,2]的值域。

3、判别式法

对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面 下面,我把这一类型的详细写出来,希望大家能够看懂

4、反函数法

直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例 求函数y=值域。

5、函数有界性法

直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。例 求函数y=,的值域。

6、函数单调性法

通常和导数结合,是最近高考考的较多的一个内容 例求函数y=(2≤x≤10)的值域

7、换元法

通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角

函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发

挥作用。

例 求函数y=x+的值域。8 数形结合法 其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这

类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。例:已知点P(x.y)在圆x2+y2=1上,例求函数y=+的值域。

解:原函数可化简得:y=∣x-2∣+∣x+8∣ 上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。由上图可知:当点P在线段AB上时,y=∣x-2∣+∣x+8∣=∣AB∣=10

当点P在线段AB的延长线或反向延长线上时,y=∣x-2∣+∣x+8∣>∣AB∣=10 故所求函数的值域为:[10,+∞)例求函数y=+ 的值域

解:原函数可变形为:y=+

上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和,由图可知当点P为线段与x轴的交点时,y=∣AB∣==,故所求函数的值域为[,+∞)。例求函数y=-的值域 解:将函数变形为:y=-

上式可看成定点A(3,2)到点P(x,0)的距离与定点B(-2,1)到点P(x,0)的距离之差。即:y=∣AP∣-∣BP∣ 由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点P1,则构成△ABP1,根据三角形两边之差小于第三边,有 ∣∣AP1∣-∣BP1∣∣<∣AB∣== 即:-<y<(2)当点P恰好为直线AB与x轴的交点时,有 ∣∣AP∣-∣BP∣∣=∣AB∣=。综上所述,可知函数的值域为:(-,-)。

注:求两距离之和时,要将函数式变形,使A,B两点在x轴的两侧,而求两距离之差时,则要使两点A,B在x轴的同侧。9、不等式法

利用基本不等式a+b≥2,a+b+c≥3(a,b,c∈),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。例:

倒数法

有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况 例 求函数y=的值域

多种方法综合运用

总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

12.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 切记:做题,特别是做大题时,一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,与到手的满分失之交臂

13.反函数存在的条件是什么?(一一对应函数)

求反函数的步骤掌握了吗?

(①反解x;②互换x、y;③注明定义域)

在更多时候,反函数的求法只是在选择题中出现,这就为我们这些喜欢偷懒的人提供了大方便。请看这个例题:

(2004.全国理)函数的反函数是(B)A.y=x2-2x+2(x<1)B.y=x2-2x+2(x≥1)C.y=x2-2x(x<1)D.y=x2-2x(x≥1)

当然,心情好的同学,可以自己慢慢的计算,我想,一番心血之后,如果不出现计算问题的话,答案还是可以做出来的。可惜,这个不合我胃口,因为我一向懒散惯了,不习惯计算。下面请看一下我的思路:

原函数定义域为 x〉=1,那反函数值域也为y>=1.排除选项C,D.现在看值域。原函数至于为y>=1,则反函数定义域为x>=1, 答案为B.我题目已经做完了,好像没有动笔(除非你拿来写*书)。思路能不能明白呢?

14.反函数的性质有哪些? 反函数性质:

1、反函数的定义域是原函数的值域(可扩展为反函数中的x对应原函数中的y)

2、反函数的值域是原函数的定义域(可扩展为反函数中的y对应原函数中的x)

3、反函数的图像和原函数关于直线=x对称(难怪点(x,y)和点(y,x)关于直线y=x对称

①互为反函数的图象关于直线y=x对称; ②保存了原来函数的单调性、奇函数性;

由反函数的性质,可以快速的解出很多比较麻烦的题目,如(04.上海春季高考)已知函数,则方程的解__________.1 对于这一类题目,其实方法特别简单,呵呵。已知反函数的y,不就是原函数的x吗?那代进去阿,答案是不是已经出来了呢?(也可能是告诉你反函数的x值,那方法也一样,呵呵。自己想想,不懂再问我.如何用定义证明函数的单调性?(取值、作差、判正负)

判断函数单调性的方法有三种:(1)定义法:

根据定义,设任意得x1,x2,找出f(x1),f(x2)之间的大小关系

可以变形为求的正负号或者与1的关系(2)参照图象:

①若函数f(x)的图象关于点(a,b)对称,函数f(x)在关于点(a,0)的对称区间具有相同的单调性;(特例:奇函数)②若函数f(x)的图象关于直线x=a对称,则函数f(x)在关于点(a,0)的对称区间里具有相反的单调性。(特例:偶函数)(3)利用单调函数的性质:

①函数f(x)与f(x)+c(c是常数)是同向变化的

②函数f(x)与cf(x)(c是常数),当c>0时,它们是同向变化的;当c<0时,它们是反向变化的。

③如果函数f1(x),f2(x)同向变化,则函数f1(x)+f2(x)和它们同向变化;(函数相加)

④如果正值函数f1(x),f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数f1(2)与f2(x)同向变化,则函数f1(x)f2(x)和它们反向变化;(函数相乘)

⑤函数f(x)与在f(x)的同号区间里反向变化。

⑥若函数u=φ(x),x[α,β]与函数y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]同向变化,则在[α,β]上复合函数y=F[φ(x)]是递增的;若函数u=φ(x),x[α,β]与函数y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]反向变化,则在[α,β]上复合函数y=F[φ(x)]是递减的。(同增异减)⑦若函数y=f(x)是严格单调的,则其反函数x=f-1(y)也是严格单调的,而且,它们的增减性相同。

f(g)g(x)f[g(x)] f(x)+g(x)f(x)*g(x)都是正数增增增增增增减减 / / 减增减 / / 减减增减减

∴......)

16.如何利用导数判断函数的单调性?

值是()

A.0 B.1 C.2 D.3

∴a的最大值为3)

17.函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)

注意如下结论:

(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

判断函数奇偶性的方法

一、定义域法

一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数..二、奇偶函数定义法

在给定函数的定义域关于原点对称的前提下,计算,然后根据函数的奇偶性的定义判断其奇偶性.三、复合函数奇偶性

f(g)g(x)f[g(x)] f(x)+g(x)f(x)*g(x)奇奇奇奇偶奇偶偶非奇非偶奇偶奇偶非奇非偶奇偶偶偶偶偶

18.你熟悉周期函数的定义吗?

函数,T是一个周期。)

我们在做题的时候,经常会遇到这样的情况:告诉你f(x)+f(x+t)=0,我们要马上反应过来,这时说这个函数周期2t.推导:,同时可能也会遇到这种样子:f(x)=f(2a-x),或者说f(a-x)=f(a+x).其实这都是说同样一个意思:函数f(x)关于直线对称,对称轴可以由括号内的2个数字相加再除以2得到。比如,f(x)=f(2a-x),或者说f(a-x)=f(a+x)就都表示函数关于直线x=a对称。

如:

19.你掌握常用的图象变换了吗? 联想点(x,y),(-x,y)联想点(x,y),(x,-y)联想点(x,y),(-x,-y)联想点(x,y),(y,x)联想点(x,y),(2a-x,y)联想点(x,y),(2a-x,0)

(这是书上的方法,虽然我从来不用,但可能大家接触最多,我还是写出来吧。对于这种题目,其实根本不用这么麻烦。你要判断函数y-b=f(x+a)怎么由y=f(x)得到,可以直接令y-b=0,x+a=0,画出点的坐标。看点和原点的关系,就可以很直观的看出函数平移的轨迹了。)注意如下“翻折”变换:

19.你熟练掌握常用函数的图象和性质了吗?

(k为斜率,b为直线与y轴的交点)的双曲线。

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系--二次方程

②求闭区间[m,n]上的最值。

③求区间定(动),对称轴动(定)的最值问题。④一元二次方程根的分布问题。

由图象记性质!(注意底数的限定!)

利用它的单调性求最值与利用均值不等式求最值的区别是什么?(均值不等式一定要注意等号成立的条件)

20.你在基本运算上常出现错误吗?

21.如何解抽象函数问题?(赋值法、结构变换法)

(对于这种抽象函数的题目,其实简单得都可以直接用死记了

1、代y=x,2、令x=0或1来求出f(0)或f(1)

3、求奇偶性,令y=-x;求单调性:令x+y=x1

几类常见的抽象函数 1.正比例函数型的抽象函数

f(x)=kx(k≠0)---------------f(x±y)=f(x)±f(y)2.幂函数型的抽象函数

f(x)=xa----------------f(xy)= f(x)f(y);f()= 3.指数函数型的抽象函数

f(x)=ax-------------------f(x+y)=f(x)f(y);f(x-y)= 4.对数函数型的抽象函数

f(x)=logax(a>0且a≠1)-----f(x·y)=f(x)+f(y);f()= f(x)-f(y)

5.三角函数型的抽象函数

f(x)=tgx--------------------------f(x+y)= f(x)=cotx------------------------f(x+y)=

例1已知函数f(x)对任意实数x、y均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)= -2求f(x)在区间[-2,1]上的值域.分析:先证明函数f(x)在R上是增函数(注意到f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1));再根据区间求其值域.例2已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)= 5,求不等式 f(a2-2a-2)<3的解.分析:先证明函数f(x)在R上是增函数(仿例1);再求出f(1)=3;最后脱去函数符号.例3已知函数f(x)对任意实数x、y都有f(xy)=f(x)f(y),且f(-1)=1,f(27)=9,当0≤x<1时,f(x)∈[0,1].(1)判断f(x)的奇偶性;

(2)判断f(x)在[0,+∞]上的单调性,并给出证明;(3)若a≥0且f(a+1)≤,求a的取值范围.分析:(1)令y=-1;

(2)利用f(x1)=f(·x2)=f()f(x2);

(3)0≤a≤2.例4设函数f(x)的定义域是(-∞,+∞),满足条件:存在x1≠x2,使得f(x1)≠f(x2);对任何x和y,f(x+y)=f(x)f(y)成立.求:(1)f(0);

(2)对任意值x,判断f(x)值的符号.分析:(1)令x= y=0;(2)令y=x≠0.例5是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②f(a+b)= f(a)f(b),a、b∈N;③f(2)=4.同时成立?若存在,求出f(x)的解析式,若不存在,说明理由.分析:先猜出f(x)=2x;再用数学归纳法证明.例6设f(x)是定义在(0,+∞)上的单调增函数,满足f(x·y)=f(x)+f(y),f(3)=1,求:(1)f(1);

(2)若f(x)+f(x-8)≤2,求x的取值范围.分析:(1)利用3=1×3;

(2)利用函数的单调性和已知关系式.例7设函数y= f(x)的反函数是y=g(x).如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由.分析:设f(a)=m,f(b)=n,则g(m)=a,g(n)=b,进而m+n=f(a)+f(b)= f(ab)=f [g(m)g(n)]....例8已知函数f(x)的定义域关于原点对称,且满足以下三个条件: ① x1、x2是定义域中的数时,有f(x1-x2)=; ② f(a)= -1(a>0,a是定义域中的一个数); ③ 当0<x<2a时,f(x)<0.试问:

(1)f(x)的奇偶性如何?说明理由;

(2)在(0,4a)上,f(x)的单调性如何?说明理由.分析:(1)利用f [-(x1-x2)]= -f [(x1-x2)],判定f(x)是奇函数;(3)先证明f(x)在(0,2a)上是增函数,再证明其在(2a,4a)上也是增函数.对于抽象函数的解答题,虽然不可用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟悉的基本初等函数.因此,针对不同的函数要进行适当变通,去寻求特殊模型,从而更好地解决抽象函数问题.例9已知函数f(x)(x≠0)满足f(xy)=f(x)+f(y),(1)求证:f(1)=f(-1)=0;(2)求证:f(x)为偶函数;

(3)若f(x)在(0,+∞)上是增函数,解不等式f(x)+f(x-)≤0.分析:函数模型为:f(x)=loga|x|(a>0)(1)先令x=y=1,再令x=y= -1;(2)令y= -1;

(3)由f(x)为偶函数,则f(x)=f(|x|).例10已知函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)·f(y),且当x<0时,f(x)>1,求证:(1)当x>0时,0<f(x)<1;(2)f(x)在x∈R上是减函数.分析:(1)先令x=y=0得f(0)=1,再令y=-x;(3)受指数函数单调性的启发:

由f(x+y)=f(x)f(y)可得f(x-y)=,进而由x1<x2,有=f(x1-x2)>1.练习题:

1.已知:f(x+y)=f(x)+f(y)对任意实数x、y都成立,则()

(A)f(0)=0(B)f(0)=1

(C)f(0)=0或1(D)以上都不对

2.若对任意实数x、y总有f(xy)=f(x)+f(y),则下列各式中错误的是()

(A)f(1)=0(B)f()= f(x)

(C)f()= f(x)-f(y)(D)f(xn)=nf(x)(n∈N)

3.已知函数f(x)对一切实数x、y满足:f(0)≠0,f(x+y)=f(x)f(y),且当x<0时,f(x)>1,则当x>0时,f(x)的取值范围是()

(A)(1,+∞)(B)(-∞,1)

(C)(0,1)(D)(-1,+∞)

4.函数f(x)定义域关于原点对称,且对定义域内不同的x1、x2都有

f(x1-x2)=,则f(x)为()

(A)奇函数非偶函数(B)偶函数非奇函数

(C)既是奇函数又是偶函数(D)非奇非偶函数

5.已知不恒为零的函数f(x)对任意实数x、y满足f(x+y)+f(x-y)=2[f(x)+f(y)],则函数f(x)是()

(A)奇函数非偶函数(B)偶函数非奇函数

(C)既是奇函数又是偶函数(D)非奇非偶函数

参考答案: 1.A 2.B 3.C 4.A 5.B 23.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?

(和三角形的面积公式很相似,可以比较记忆.要知道圆锥展开图面积的求法)

第五篇:高中数学知识点总结

第一部分集合与常用逻辑用语

1.理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取.....

值?还是因变量的取值?还是曲线上的点?„ ;

2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系....

或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;是任何集合的子集,是任何非空集合的真子集。

nn3.(1)含n个元素的集合的子集数为2,真子集数为2-1;非空真子集的数为

n2-2;

(2)ABABAABB 注意:讨论的时候不要遗忘了A的情况。

4.四种命题:

⑴原命题:若p则q;⑵逆命题:若q则p;

⑶否命题:若p则q;⑷逆否命题:若q则p

注:原命题与逆否命题等价;逆命题与否命题等价。

5.充要条件的判断:

(1)定义法----正、反方向推理;

(2)利用集合间的包含关系:

例如:若AB,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;

6.逻辑联结词:⑴且: pq;⑵或: pq;⑶非: p

7.全称量词与存在量词

⑴全称量词-------“所有的”、“任意一个”等,用表示;

全称命题p:xM,p(x); 全称命题p的否定p:xM,p(x)。⑵存在量词--------“存在一个”、“至少有一个”等,用表示;

存在性命题p:xM,p(x); 存在性命题p的否定p:xM,p(x)。易错点1:错误理解集合的代表元素含义:

例:若集合Ay|ylgx,B(x,y)|ylgx,则AB。

易错点2:四种命题的结构不明导致错误:

例:若a0,b0,则ab0的否命题是,它为(真,假)命题。

易错点3:充分必要条件颠倒致误:

例:已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么,p是q的条件。

下载高中数学函数知识点总结word格式文档
下载高中数学函数知识点总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中数学必修1知识点总结:第三章 函数的应用

    高中数学必修1知识点总结 第三章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。 2、函数零点的......

    初中函数知识点总结

    千承培训学校 函数知识点总结(掌握函数的定义、性质和图像) (一)平面直角坐标系 1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系 2、各个象......

    (最新)初中函数知识点总结

    函数知识点总结(掌握函数的定义、性质和图像)(一)平面直角坐标系1、点P(x,y)到坐标原点的距离为3、两点之间的距离:A、BAB|=3、中点坐标公式:已知A、BM为AB的中点则:M=(,)(二)正比例......

    初中函数知识点总结

    一次函数1、表达式:y=kx+b(k≠0)图象呈一条直线b2、与坐标轴交点:x轴:(,0)ky轴: (0,b)3、系数k和b的意义:① 当k>0时,y随x的增大而增大 ,函数图象成上坡趋势且过一三象限当k0时,图象与y轴交......

    高一函数知识点总结范文

    (一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三......

    高中数学知识点总结(推荐9篇)

    篇1:高中数学知识点总结高中数学知识点汇总1.必修课程由5个模块组成:必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)必修2:立体几何初步、平面解析几何初步。必修3:......

    最全高中数学知识点总结

    高中新课标理科数学 (必修+选修) 所有知识点总结 第 1 页 共 117 页 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体......

    高中数学超几何分布知识点总结

    高中数学超几何分布知识点总结: 超几何分布:在产品质量的不放回抽检中,若件N产品中有M件次品,抽检n件时所得次品数X=k,则P(X=k)=?,此时我们称随机变量X服从超几何分布。 高中数学......