C语言函数知识点总结

时间:2019-05-14 04:00:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《C语言函数知识点总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《C语言函数知识点总结》。

第一篇:C语言函数知识点总结

函数

本章重点:

本章难点:

//函数相关内容:

*语法:包括定义,声明,调用,*语义

语句包括:表达式语句,空语句,控制语句,复合语句,函数调形参与实参的意义、作用与区别; 参数的两种传递方式; 对递归函数调用过程的理解; 全局变量和局部变量的作用。函数的定义和调用; 函数间的数据传递方式; 嵌套调用和递归调用; 变量的作用域和存储类别; 模块化程序设计方法。用语句

函数:*函数首部:包括返回值类型,函数名,形参

*函数体

*函数调用的过程:*开辟空间(形参,函数的局部变量)

1.函数其实就是一段可以重复调用的、功能相对独立完整的程序段。

2.主函数可以调用其他函数,其他函数也可以互相调用。

3.一个C程序必须有一个且只能有一个main函数,无论main函数位于程序 的什么位置,运行时都是从main函数开始执行的。

4.函数不能嵌套定义,也就是说一个函数不能从属于另一个函数。函数之

*把实参送给形参

*执行函数

*释放空间

间可以互相调用,但是任何函数不能调用main函数,main函数是被操作系

统调用的。

5.函数的分类:

(1)从用户角度看:库函数、用户自定义的函数(2)从形式:无参函数、有参函数

6.函数定义即函数的实现,是对所要完成功能的操作进行描述的过程,包

括函数命名和返回值类型声明、形式参数的类型说明、变量说明和一系

列操作语句等。

函数和变量一样,必须“先定义,后使用”

7.函数定义应包括以下内容:

函数的名字、返回值的类型。函数参数的类型和名字,无参函数不需要

指定。指定函数的功能

8.在函数体中,声明部分是对函数内部所用到的变量的类型说明,并对要

调用的函数进行声明。

9。定义有参函数的一般形式为: 类型标识符 函数名(形式参数表列){

声明部分;

} 语句;

10.在C语言中,可以用以下几种方式调用函数(1)函数表达式

函数作为表达式中的一项出现在表达式中,以函数返回值参与表达式

的运算。这时要求函数是有返回值的。

例如:y=sin(x);(2)函数语句

函数调用的一般形式加上分号即构成函数语句。

例如:printf(“%d”,a);

这种方式通常只要求函数完成一定的操作,不要求函数带回值。(3)函数实参

这种方式是函数作为另一个函数调用的实际参数出现,也就是把该函

数的返回值作为实参进行数据传送,所以要求该函数必须是有返回值

的。

例如:printf(“%d”,max(a,b));

11.实参:可以是常量、变量和表达式。

12.只有在发生函数调用时,才给形参分配单元,并且赋值,一旦函数调

用结束后,形参所占的内存单元又被释放掉。

13.在调用函数过程中发生的实参与形参间的数据传递是“值传递”,只

能由实参向形参传递数据,是单向传递,不能由形参传给实参。

14.声明的作用是把函数的返回值类型、函数名、函数参数的个数和类型

等信息通知编译系统,以便在遇到函数调用时,编译系统能识别该函

数并检查调用是否合法

15.函数的声明方法:

(1)只说明函数的类型,这称为简单声明。int min();(2)不仅说明函数的类型还要说明参数的个数和类型,这称为原型声明。

int min(int x,int y);

16.数组名作函数参数时,形参数组和实参数组为同一数组,共同拥有一段

内存空间。

17.数组元素不能用作形参,因为形参是在函数调用时临时分配内存存储

单元的,不能为一个数组元素单独分配存储单元。

18.变量的有效范围(作用域)

19.局部变量也称为内部变量,是在函数内或函数的复合语句内定义说明的。

20.全局变量也称为外部变量,它是在函数外部定义的变量,位置在所有

函数前、各个函数之间或所有函数后。

*其作用域是从定义变量的位置开始到本源文件结束。

*设置全局变量的作用是可以增加各个函数之间的数据传输渠道。21.变量的完整说明为:

存储类型 数据类型 变量名表列; 例如: auto int x,y;

22.C语言变量的存储方式可以分为动态存储方式和静态存储方式。

23.动态存储方式:(1)自动变量(auto变量)(2)寄存器变量(register变量)(3)形式参数

24.静态存储方式:

(1)静态局部变量(static局部变量)

其语法格式为:

static 类型标识符 变量名;

例如:static int f;

(2)全局变量(全局变量赋初值也是在编译时完成的,且仅执行一次赋初值的操作。)

不能用extern来初始化外部变量。

(3)静态外部变量

25.一般为了叙述方便,把建立存储空间的变量声明称定义,而把不需要

建立存储空间的声明称为声明

26.在函数中出现的对变量的声明(除了用extern声明的以外)都是定义。

例如:extern int x=25;

//错误

*外部变量

第二篇:初中函数知识点总结

千承培训学校

函数知识点总结(掌握函数的定义、性质和图像)

(一)平面直角坐标系

1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系

2、各个象限内点的特征: 第一象限:(+,+)点P(x,y),则x>0,y>0; 第二象限:(-,+)点P(x,y),则x<0,y>0; 第三象限:(-,-)点P(x,y),则x<0,y<0; 第四象限:(+,-)点P(x,y),则x>0,y<0;

3、坐标轴上点的坐标特征:

x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。

4、点的对称特征:已知点P(m,n), 关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y轴的对称点坐标是(-m,n)纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n)横,纵坐标都反号

5、平行于坐标轴的直线上的点的坐标特征:平行于x轴的直线上的任意两点:纵坐标相等;平行于y轴的直线上的任意两点:横坐标相等。

6、各象限角平分线上的点的坐标特征:

第一、三象限角平分线上的点横、纵坐标相等。

第二、四象限角平分线上的点横、纵坐标互为相反数。

7、点P(x,y)的几何意义: 点P(x,y)到x轴的距离为 |y|,点P(x,y)到y轴的距离为 |x|。点P(x,y)到坐标原点的距离为

8、两点之间的距离:

X轴上两点为A(x1,0)、B(x2,0)|AB||x2x1|

x2y2 Y轴上两点为C(0,y1)、D(0,y2)|CD|已知A(x1,y1)、B(x2,y2)AB|=

|y2y1|

(x2x1)2(y2y1)

29、中点坐标公式:已知A(x1,y1)、B(x2,y2)M为AB的中点

则:M=(x2x1yy1 , 2)2210、点的平移特征: 在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x-a,y); 将点(x,y)向左平移a个单位长度,可以得到对应点(x+a,y); 将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b); 将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)。

注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。

(二)函数的基本知识: 基本概念

1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。*判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:

(1)关系式为整式时,函数定义域为全体实数;

(2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零;

(4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

7、描点法画函数图形的一般步骤

第一步:列表(表中给出一些自变量的值及其对应的函数值);

第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);

第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(三)正比例函数和一次函数

1、正比例函数及性质

一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 y=kx(k不为零)① k不为零 ② x指数为1 ③ b取零 当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)

(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴

2、一次函数及性质

一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b(k不为零)① k不为零 ②x指数为1 ③ b取任意实数

一次函数y=kx+b的图象是经过(0,b)和(-

b,0)两点的一条直线,我们称它为直k线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

(1)解析式:y=kx+b(k、b是常数,k0)(2)必过点:(0,b)和(-

b,0)k(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限

k0k0直线经过第一、二、三象限 直线经过第一、三、四象限 b0b0k0k0直线经过第一、二、四象限 直线经过第二、三、四象限 b0b0注:y=kx+b中的k,b的作用:

1、k决定着直线的变化趋势

① k>0 直线从左向右是向上的 ② k<0 直线从左向右是向下的

2、b决定着直线与y轴的交点位置

① b>0 直线与y轴的正半轴相交 ② b<0 直线与y轴的负半轴相交

(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移: 当b>0时,将直线y=kx的图象向上平移b个单位;

当b<0时,将直线y=kx的图象向下平移b个单位.3、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.注:对于y=kx+b 而言,图象共有以下四种情况:

1、k>0,b>0

2、k>0,b<0

3、k<0,b<0

4、k<0,b>0

4、直线y=kx+b(k≠0)与坐标轴的交点.

(1)直线y=kx与x轴、y轴的交点都是(0,0);

(2)直线y=kx+b与x轴交点坐标为

5、用待定系数法确定函数解析式的一般步骤:

与 y轴交点坐标为(0,b).

(1)根据已知条件写出含有待定系数的函数关系式;

(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;

(3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.6、两条直线交点坐标的求法:

方法:联立方程组求x、y 例题:已知两直线y=x+6 与y=2x-4交于点P,求P点的坐标?

7、直线y=k1x+b1与y=k2x+b2的位置关系(1)两条直线平行:k1=k2且b1b2(2)两直线相交:k1k2(3)两直线重合:k1=k2且b1=b2平行于轴(或重合)的直线记作

.特别地,轴记作直线

8、正比例函数与一次函数图象之间的关系

一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).9、一元一次方程与一次函数的关系

任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.10、一次函数与一元一次不等式的关系

任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.11、一次函数与二元一次方程组

(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=acx的bb图象相同.(2)二元一次方程组a1xb1yc1ac的解可以看作是两个一次函数y=1x1和

b1b1a2xb2yc2y=a2cx2的图象交点.b2b212、函数应用问题(理论应用 实际应用)

(1)利用图象解题 通过函数图象获取信息,并利用所获取的信息解决简单的实际问题.(2)经营决策问题 函数建模的关键是将实际问题数学化,从而解决最佳方案,最佳策略等问题.建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知题.(四)反比例函数

一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。

取值范围: ① k ≠ 0;②在一般的情况下 , 自变量 x 的取值范围可以是 不等于0的任意实数;③函数 y 的取值范围也是任意非零实数。反比例函数的图像属于以原点为对称中心的中心对称的双曲线

反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

反比例函数的性质:

1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0和 x>0上同为减函数;k<0时,函数在x<0和x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4.在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2,则S1=S2=|K| 5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴

y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n2 +4k·m≥(不小于)0。(k/x=mx+n,即mx^2+nx-k=0)

8.反比例函数y=k/x的渐近线:x轴与y轴。

9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.(第5点的同义不同表述)

10.反比例上一点m向x、y轴分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|

11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

12.|k|越大,反比例函数的图象离坐标轴的距离越远。

(五)二次函数

二次函数是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。

一般式(已知图像上三点或三对、的值,通常选择一般式.)

y=ax^2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(4ac-b^2/4a);

顶点式(已知图像的顶点或对称轴,通常选择顶点式.)

y=a(x+m)^2+k(a≠0,a、m、k为常数)或y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)或(h,k)对称轴为x=-m或x=h,有时题目会指出让你用配方法把一般式化成顶点式;

交点式(已知图像与轴的交点坐标、,通常选用交点式)

y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;

抛物线的三要素:开口方向、对称轴、顶点 顶点

抛物线有一个顶点P,坐标为P(-b/2a,4ac-b^2/4a),当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。开口

二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。决定对称轴位置的因素

一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。(左同右异)

c的大小决定抛物线当①时,∴抛物线,与与

轴交点的位置.与

轴有且只有一个交点(0,): ,与

轴交于负半轴.,抛物线经过原点;②轴交于正半轴;③直线与抛物线的交点(1)(2)与(,轴与抛物线轴平行的直线).得交点为(0,).与抛物线

有且只有一个交点(3)抛物线与轴的交点 二次函数程根的判别式判定:

①有两个交点

抛物线与轴相交;

抛物线与轴相切; 的图像与轴的两个交点的横坐标、,是对应一元二次方的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的 ②有一个交点(顶点在轴上)③没有交点

抛物线与轴相离.(4)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是个实数根.(5)一次函数的图像与二次函数的图像的交的两点,由方程组

①方程组有两组不同的解时一个交点;③方程组无解时的解的数目来确定: 与与

有两个交点;②方程组只有一组解时没有交点.与

只有(6)抛物线与轴两交点之间的距离:若抛物线,由于、是方程

与轴两交点为的两个根,故

千承培训学校

第三篇:(最新)初中函数知识点总结

函数知识点总结(掌握函数的定义、性质和图像)

(一)平面直角坐标系

1、点P(x,y)到坐标原点的距离为

3、两点之间的距离:A、B

AB|=

3、中点坐标公式:已知A、B

M为AB的中点

则:M=(,)

(二)正比例函数和一次函数

1、正比例函数及性质

当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.

(1)

解析式:y=kx(k是常数,k≠0)

(2)

必过点:(0,0)、(1,k)

(3)

走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限

(4)

增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小

(5)

倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴

2、一次函数及性质

一次函数y=kx+b的图象是经过(0,b)和(-,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

(1)解析式:y=kx+b(k、b是常数,k0)

(2)必过点:(0,b)和(-,0)

(3)走向:

k>0,图象经过第一、三象限;k<0,图象经过第二、四象限

b>0,图象经过第一、二象限;b<0,图象经过第三、四象限

直线经过第一、二、三象限

直线经过第一、三、四象限

直线经过第一、二、四象限

直线经过第二、三、四象限

注:y=kx+b中的k,b的作用:

1、k决定着直线的变化趋势

k>0

直线从左向右是向上的②

k<0

直线从左向右是向下的2、b决定着直线与y轴的交点位置

b>0

直线与y轴的正半轴相交

b<0

直线与y轴的负半轴相交

(4)增减性:

k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:

当b>0时,将直线y=kx的图象向上平移b个单位;

当b<0时,将直线y=kx的图象向下平移b个单位.3、一次函数y=kx+b的图象.1、对于y=kx+b

而言,图象共有以下四种情况:

1、k>0,b>02、k>0,b<03、k<0,b<04、k<0,b>02、直线y=kx+b(k≠0)与坐标轴的交点.

(1)直线y=kx与x轴、y轴的交点都是(0,0);

(2)直线y=kx+b与x轴交点坐标为与

y轴交点坐标为(0,b).

(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.3、直线y=k1x+b1与y=k2x+b2的位置关系

(1)两条直线平行:k=1k2且b1b2

(2)两直线相交:k1k2

(3)两直线重合:k1=k2且b1=b2

平行于轴(或重合)的直线记作.特别地,轴记作直线

(三)反比例函数的性质:

1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0和

x>0上同为减函数;k<0时,函数在x<0和x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4.在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2,则S1=S2=|K|

5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴

y=x

y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A

B两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n2

+4k·m≥(不小于)0。

(k/x=mx+n,即mx^2+nx-k=0)

8.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.(第5点的同义不同表述)

9.反比例上一点m向x、y轴分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|

10.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

11.|k|越大,反比例函数的图象离坐标轴的距离越远。

(五)二次函数

1.y=ax^2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(4ac-b^2/4a);

抛物线的三要素:开口方向、对称轴、顶点

1.顶点

抛物线有一个顶点P,坐标为P

(-b/2a,4ac-b^2/4a),当-b/2a=0时,P在y轴上;当Δ=

b^2-4ac=0时,P在x轴上。

2.开口

二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

3.决定对称轴位置的因素

一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。(左同右异)

c的大小决定抛物线与轴交点的位置.当时,∴抛物线与轴有且只有一个交点(0,):

①,抛物线经过原点;

②,与轴交于正半轴;③,与轴交于负半轴.4.直线与抛物线的交点

(1)轴与抛物线得交点为(0,).(2)与轴平行的直线与抛物线有且只有一个交点(,).(3)抛物线与轴的交点

二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:

①有两个交点抛物线与轴相交;

②有一个交点(顶点在轴上)抛物线与轴相切;

③没有交点抛物线与轴相离.(4)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.(5)一次函数的图像与二次函数的图像的交点,由方程组的解的数目来确定:

①方程组有两组不同的解时与有两个交点;

②方程组只有一组解时与只有一个交点;③方程组无解时与没有交点.(6)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故

第四篇:高中数学函数知识点总结

高中数学函数知识点总结

(1)高中函数公式的变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

(2)一次函数:①若两个变量,间的关系式可以表示成(为常数,不等于0)的形式,则称 是的一次函数。②当=0时,称是的正比例函数。

(3)高中函数的一次函数的图象及性质

①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数=的图象是经过原点的一条直线。

③在一次函数中,当0,O,则经2、3、4象限;当0,0时,则经1、2、4象限;当0,0时,则经1、3、4象限;当0,0时,则经1、2、3象限。

④当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。

(4)高中函数的二次函数:

①一般式:(),对称轴是

顶点是;

②顶点式:(),对称轴是顶点是;

③交点式:(),其中(),()是抛物线与x轴的交点

(5)高中函数的二次函数的性质

①函数的图象关于直线对称。

随时,在对称轴()左侧,值随值的增大而减少;在对称轴()右侧;的值值的增大而增大。当时,取得最小值时,在对称轴()左侧,值随值的增大而增大;在对称轴()右侧;的值值的增大而减少。当时,取得最大值高中函数的图形的对称

(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。

(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

2012高中数学知识点总结:函数公式大全

9高中函数的图形的对称

(1)轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。

(2)中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分

第五篇:初中函数知识点总结

一次函数

1、表达式:y=kx+b(k≠0)图象呈一条直线

b2、与坐标轴交点:x轴:(,0)k

y轴:(0,b)

3、系数k和b的意义:

① 当k>0时,y随x的增大而增大,函数图象成上坡趋势且过一三象限

当k<0时,y随x的增大而减小,函数图象成下坡趋势且过二四象限 ② 当b>0时,图象与y轴交于正半轴,且图象过一二象限

当b<0时,图象与y轴交于负半轴,且图象过三四象限

4、正比列函数:当一次函数b=0时,该函数为正比列函数,即表达式为: y=kx(k≠0),该函数图象恒过原点

反比列函数

k(k0)x2、图象:双曲线且与坐标轴没有交点

3、系数k的意义:

① k>0时,图象两支在一三象限内,且在各个象限内y随x的增大而减小,图象呈下坡趋势

② k<0时,图象两支在二四象限内,且在各个象限内y随x的增大而增大,图象呈上坡趋势

4、图象特点:在图像上任意一点向坐标轴引垂线与坐标轴所围成的矩形面积都

1、表达式:y为k

二次函数

下载C语言函数知识点总结word格式文档
下载C语言函数知识点总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高一函数知识点总结范文

    (一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三......

    初中2次函数知识点总结

    导语:对初中2次函数知识点,同学们有必要进行总结。以下是初中2次函数知识点总结,供大家阅读。I、定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常......

    函数的应用知识点总结

    函数的应用类型问题一直是期末数学重要题型之一,那一起来看看函数的应用的知识点吧,下面是小编为大家收集整理的函数的应用知识点总结,欢迎阅读。函数的应用知识点总结:函数图象......

    函数与方程知识点总结[范文]

    在中国古代把数学叫算术,又称算学,最后才改为数学。数学分为两部分,一部分是几何,另一部分是代数。小编准备了高一数学函数与方程知识点,希望你喜欢。一、函数的概念与表示1、映......

    高中数学函数知识点大全

    一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,其中x是自变量,y是因变量,x的取值范围叫做这个函数的定义域,相应y......

    C语言知识点总结

    C语言知识点总结资料I 总体上必须清楚的: 程序结构是三种:顺序结构,循环结构(三个循环结构),选择结构(if和switch) 读程序都要从main()入口,然后从最上面顺序往下读(碰到循环做循......

    C语言知识点总结

    C语言总结 第一章 概述 1. C语言的特点 ①语言简洁、紧凑,使用方便、灵活。共有32个关键字,9种控制语句。 ②运算符丰富,公有34种运算符。 ③数据结构丰富,数据类型有:整型、实型、字......

    C语言函数大全

    Turbo C函数 Turbo C函数 alloc.h brk 【功能】更改数据段空间的分配 【原型】int brk(void *endds) 【位置】alloc.h 【说明】将程序数据段的顶部设置为endds所指向的内存......