“学而思”二次函数函数知识点总结

时间:2019-05-14 02:10:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《“学而思”二次函数函数知识点总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《“学而思”二次函数函数知识点总结》。

第一篇:“学而思”二次函数函数知识点总结

常见考法:

(1)考查二次函数的定义;(2)确定二次函数解析式;(3)二次函数的平移;(4)考查二次函数与一元二次方程的关系;(5)考查二次函数的各项系数与图象的位置的关系。

误区提醒:

(1)对二次函数概念理解有误,漏掉二次项系数不为0这一限制条件;(2)对二次函数图象和性质存在思维误区;(3)忽略二次函数自变量取值范围;(4)平移抛物线时,弄反方向。

第二篇:初中九年级二次函数知识点总结

初中九年级二次函数知识点总结

总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它能使我们及时找出错误并改正,让我们一起认真地写一份总结吧。那么总结应该包括什么内容呢?以下是小编收集整理的初中九年级二次函数知识点总结,希望能够帮助到大家。

初中九年级二次函数知识点总结1

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学难点:求出函数的自变量的取值范围。

教学过程:

一、问题引新

1.设矩形花圃的垂直于墙(墙长18)的一边AB的长为_m,先取_的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,AB长_(m)1 2 3 4 5 6 7 8 9

BC长(m)12

面积y(m2)48

2._的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(_)确定后,矩形的面积(y)也随之确定,y是_的函数,试写出这个函数的关系式,教师可提出问题,(1)当AB=_m时,BC长等于多少m?(2)面积y等于多少? y=_(20-2_)

二、提出问题,解决问题

1、引导学生看书第二页问题一、二

2、观察概括

y=6_2 d= n /2(n-3)y= 20(1-_)2

以上函数关系式有什么共同特点?(都是含有二次项)

3、二次函数定义:形如y=a_2+b_+c(a、b、、c是常数,a≠0)的函数叫做_的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.4、课堂练习

(1)(口答)下列函数中,哪些是二次函数?

(1)y=5_+1(2)y=4_2-1

(3)y=2_3-3_2(4)y=5_4-3_+1

(2).P3练习第1,2题。

五、小结叙述二次函数的定义.

第二课时:26.1二次函数(2)

教学目标:

1、使学生会用描点法画出y=a_2的图象,理解抛物线的有关概念。

2、使学生经历、探索二次函数y=a_2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。

教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=a_2的图象

教学难点:用描点法画出二次函数y=a_2的图象以及探索二次函数性质。

初中九年级二次函数知识点总结2

I.定义与定义表达式

一般地,自变量_和因变量y之间存在如下关系:y=a_^2+b_+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为_的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=a_^2+b_+c(a,b,c为常数,a≠0)

顶点式:y=a(_-h)^2+k[抛物线的顶点P(h,k)]

交点式:y=a(_-_?)(_-_?)[仅限于与_轴有交点A(_?,0)和B(_?,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

III.二次函数的图像

在平面直角坐标系中作出二次函数y=_^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线_=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线_=0)

2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在_轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与_轴交点个数

Δ=b^2-4ac>0时,抛物线与_轴有2个交点。

Δ=b^2-4ac=0时,抛物线与_轴有1个交点。

Δ=b^2-4ac<0时,抛物线与_轴没有交点。

_的取值是虚数(_=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=a_^2+b_+c,当y=0时,二次函数为关于_的一元二次方程(以下称方程),即a_^2+b_+c=0

此时,函数图像与_轴有无交点即方程有无实数根。函数与_轴交点的横坐标即为方程的根。

初中九年级二次函数知识点总结3

当h>0时,y=a(_-h)^2的图象可由抛物线y=a_^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.当h>0,k>0时,将抛物线y=a_^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(_-h)^2+k的图象;

当h>0,k<0时,将抛物线y=a_^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(_-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;

因此,研究抛物线y=a_^2+b_+c(a≠0)的图象,通过配方,将一般式化为y=a(_-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=a_^2+b_+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线_=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).3.抛物线y=a_^2+b_+c(a≠0),若a>0,当_≤-b/2a时,y随_的增大而减小;当_≥-b/2a时,y随_的增大而增大.若a<0,当_≤-b/2a时,y随_的增大而增大;当_≥-b/2a时,y随_的增大而减小.4.抛物线y=a_^2+b_+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与_轴交于两点A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

(a≠0)的两根.这两点间的距离AB=|_?-_?|

当△=0.图象与_轴只有一个交点;

当△<0.图象与_轴没有交点.当a>0时,图象落在_轴的上方,_为任何实数时,都有y>0;当a<0时,图象落在_轴的下方,_为任何实数时,都有y<0.5.抛物线y=a_^2+b_+c的最值:如果a>0(a<0),则当_=-b/2a时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知_、y的三对对应值时,可设解析式为一般形式:

y=a_^2+b_+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(_-h)^2+k(a≠0).(3)当题给条件为已知图象与_轴的两个交点坐标时,可设解析式为两根式:y=a(_-_?)(_-_?)(a≠0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

初中九年级二次函数知识点总结4

一、基本概念

1.方程、方程的解(根)、方程组的解、解方程(组)

2.分类:

二、解方程的依据—等式性质

1.a=b←→a+c=b+c

2.a=b←→ac=bc(c≠0)

三、解法

1.一元一次方程的解法:去分母→去括号→移项→合并同类项→

系数化成1→解。

2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法

②加减法

四、一元二次方程

1.定义及一般形式:

2.解法:⑴直接开平方法(注意特征)

⑵配方法(注意步骤—推倒求根公式)

⑶公式法:

⑷因式分解法(特征:左边=0)

3.根的判别式:

4.根与系数顶的关系:

逆定理:若,则以为根的一元二次方程是:。

5.常用等式:

五、可化为一元二次方程的方程

1.分式方程

⑴定义

⑵基本思想:

⑶基本解法:①去分母法②换元法(如,)

⑷验根及方法

2.无理方程

⑴定义

⑵基本思想:

⑶基本解法:①乘方法(注意技巧!)②换元法(例,)⑷验根及方法

3.简单的二元二次方程组

由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

六、列方程(组)解应用题

一概述

列方程(组)解应用题是中学数学联系实际的'一个重要方面。其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答案。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

二常用的相等关系

1.行程问题(匀速运动)

基本关系:s=vt

⑴相遇问题(同时出发):

+ =;

⑵追及问题(同时出发):

若甲出发t小时后,乙才出发,而后在B处追上甲,则

⑶水中航行:;

2.配料问题:溶质=溶液_浓度

溶液=溶质+溶剂

3.增长率问题:

4.工程问题:基本关系:工作量=工作效率_工作时间(常把工作量看着单位“1”)。

5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

初中九年级二次函数知识点总结5

计算方法

1.样本平均数:

2.样本方差:

3.样本标准差:

相交线与平行线、三角形、四边形的有关概念、判定、性质。

内容提要

一、直线、相交线、平行线

1.线段、射线、直线三者的区别与联系

从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

2.线段的中点及表示

3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)

4.两点间的距离(三个距离:点-点;点-线;线-线)

5.角(平角、周角、直角、锐角、钝角)

6.互为余角、互为补角及表示方法

7.角的平分线及其表示

8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)

9.对顶角及性质

10.平行线及判定与性质(互逆)(二者的区别与联系)

11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成13.公理、定理

14.逆命题

二、三角形

分类:

⑴按边分;

⑵按角分

1.定义(包括内、外角)

2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,3.三角形的主要线段

讨论:①定义②__线的交点—三角形的_心③性质

①高线②中线③角平分线④中垂线⑤中位线

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②专用方法

6.三角形的面积

⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要辅助线

⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

8.证明方法

⑴直接证法:综合法、分析法

⑵间接证法—反证法:①反设②归谬③结论

⑶证线段相等、角相等常通过证三角形全等

⑷证线段倍分关系:加倍法、折半法

⑸证线段和差关系:延结法、截余法

⑹证面积关系:将面积表示出来

三、四边形

分类表:

1.一般性质(角)

⑴内角和:360°

⑵顺次连结各边中点得平行四边形。

推论1:顺次连结对角线相等的四边形各边中点得菱形。

推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

⑶外角和:360°

2.特殊四边形

⑴研究它们的一般方法:

⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定

⑶判定步骤:四边形→平行四边形→矩形→正方形

菱形

⑷对角线的纽带作用:

3.对称图形

⑴轴对称(定义及性质);⑵中心对称(定义及性质)

4.有关定理:①平行线等分线段定理及其推论1、2

②三角形、梯形的中位线定理

③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。

6.作图:任意等分线段。

第三篇:二次函数知识点总结(共10篇)

篇1:二次函数知识点总结

二次函数知识点总结

二次函数概念

一般地,把形如y=ax²+bx+c(其中a、b、c是常数,a≠0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。二次函数图像是轴对称图形。

注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别,如同函数不等于函数的关系。

二次函数公式大全

二次函数

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax²+bx+c(a,b,c为常数,a≠0)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax²;+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)²;+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b²;)/4a x1,x2=(-b±√b²;-4ac)/2a

III.二次函数的图象

在平面直角坐标系中作出二次函数y=x??的图象,

可以看出,二次函数的图象是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线

x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P [ -b/2a ,(4ac-b²;)/4a ]。

当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b²-4ac>0时,抛物线与x轴有2个交点。

Δ= b²-4ac=0时,抛物线与x轴有1个交点。

Δ= b²-4ac<0时,抛物线与x轴没有交点。

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax²;+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax²;+bx+c=0

此时,函数图象与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

篇2:二次函数的知识点总结

二次函数的知识点总结

二次函数的知识点总结

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

III.二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的'对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x-x|

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

篇3:数学二次函数知识点总结

1二次函数及其图像

二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2bxc(a不为0)。其图像是一条主轴平行于y轴的抛物线。

一般的,自变量x和因变量y之间存在如下关系:

一般式

y=ax∧2;bxc(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);

顶点式

y=a(xm)∧2k(a≠0,a、m、k为常数)或y=a(x-h)∧2k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;

交点式

y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];

重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。

牛顿插值公式(已知三点求函数解析式)

y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引导出交点式的系数a=y1/(x1*x2)(y1为截距)

求根公式

二次函数表达式的右边通常为二次三项式。

x是自变量,y是x的二次函数

x1,x2=[-b±(√(b^2-4ac))]/2a

(即一元二次方程求根公式)

求根的方法还有因式分解法和配方法

在平面直角坐标系中作出二次函数y=2x的平方的图像,

可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像

如果所画图形准确无误,那么二次函数将是由一般式平移得到的。

注意:草图要有1本身图像,旁边注明函数。

2画出对称轴,并注明X=什么

3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质

轴对称

1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

顶点

2.抛物线有一个顶点P,坐标为P(-b/2a,4ac-b^2;)/4a)

当-b/2a=0时,P在y轴上;当Δ=b^2;-4ac=0时,P在x轴上。

开口

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

决定对称轴位置的因素

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号

当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b 2a=“">0,所以b/2a要小于0,所以a、b要异号

可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

决定抛物线与y轴交点的因素

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

抛物线与x轴交点个数

6.抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

当a>0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b/4a;在{x|x<-b/2a}上是减函数,在

{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变

当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2c(a≠0)

特殊值的形式

7.特殊值的形式

①当x=1时y=abc

②当x=-1时y=a-bc

③当x=2时y=4a2bc

④当x=-2时y=4a-2bc

二次函数的性质

8.定义域:R

值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,

正无穷);②[t,正无穷)

奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。

周期性:无

解析式:

①y=ax^2bxc[一般式]

⑴a≠0

⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

⑶极值点:(-b/2a,(4ac-b^2)/4a);

⑷Δ=b^2-4ac,

Δ>0,图象与x轴交于两点:

([-b-√Δ]/2a,0)和([-b√Δ]/2a,0);

Δ=0,图象与x轴交于一点:

(-b/2a,0);

Δ<0,图象与x轴无交点;

②y=a(x-h)^2k[顶点式]

此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)

对称轴X=(X1X2)/2当a>0且X≧(X1X2)/2时,Y随X的增大而增大,当a>0且X≦(X1X2)/2时Y随X

的增大而减小

此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连

用)。

交点式是Y=A(X-X1)(X-X2)知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1X2值。

26.2用函数观点看一元二次方程

1.如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此就是方程的一个根。

2.二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。

26.3实际问题与二次函数

在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。

篇4:初中二次函数知识点总结

初中二次函数知识点归纳

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2a

III.二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x₂-x₁|

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

初中数学解题技巧顺口溜

1、有理数的加法运算

同号两数来相加,绝对值加不变号

异号相加大减小,大数决定和符号

互为相反数求和,结果是零须记好

【注】“大”减“小”是指绝对值的大小

2、有理数的减法运算

减正等于加负,减负等于加正

有理数的乘法运算符号法则

同号得正异号负,一项为零积是零

3、合并同类项

说起合并同类项,法则千万不能忘

只求系数代数和,字母指数留原样

4、去、添括号法则

去括号或添括号,关键要看连接号

扩号前面是正号,去添括号不变号

括号前面是负号,去添括号都变号

5、解方程

已知未知闹分离,分离要靠移完成

移加变减减变加,移乘变除除变乘

6、平方差公式

两数和乘两数差,等于两数平方差

积化和差变两项,完全平方不是它

7、完全平方公式

二数和或差平方,展开式它共三项

首平方与末平方,首末二倍中间放

和的平方加联结,先减后加差平方

8、完全平方公式

首平方又末平方,二倍首末在中央

和的平方加再加,先减后加差平方

9、解一元一次方程

先去分母再括号,移项变号要记牢

同类各项去合并,系数化“1”还没好

求得未知须检验,回代值等才算了

10、因式分解与乘法

和差化积是乘法,乘法本身是运算

积化和差是分解,因式分解非运算

初中数学学习方法

1、按部就班,环环相扣

数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题,一定要把每一个环节都学牢。

2、概念记清,基础夯实

千万不要忽视最基本的概念、公理、定理和公式,每新学一个定理或者定义的时候,都要在理解的基础上去深挖每一个字眼,有时候少说一两个字,都可能导致结果的不同。要在刚开始学概念的时候就弄清楚,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。

3、适当做题,巧做为主

学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉中考的题型,训练要做到有的放矢。有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。数学需要实践,需要大量做题,但要”埋下头去做题,抬起头来想题“,在做题中关注思路、方法、技巧,要”苦做“更要”巧做“.考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。

4、记录错题,避免再犯

俗话说,”一朝被蛇咬,十年怕井绳“,可是同学们常会一次又一次地掉入相似甚至相同的”陷阱“里。因此,建议大家在平时的做题中就要及时记录错题,更重要的是还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。毕竟,中考或者在平时考试当中是”分分必争“,一分也失不得。这样 复习时,这个错题本也就成了宝贵的复习资料。

5、集中兵力,攻下弱点

每个人都有自己的”软肋“,如果试题中涉及到你的薄弱环节,一定会成为你的最痛。因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成”瘸腿".

篇5:高中二次函数知识点总结

一、二次函数概念:

1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.

2. 二次函数的结构特征:

⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2.

⑵ 是常数,是二次项系数,是一次项系数,是常数项.

二、二次函数的基本形式

1. 二次函数基本形式:的性质:

a 的绝对值越大,抛物线的开口越小。

的符号开口方向顶点坐标对称轴性质

向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.

向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.

2. 的性质:

上加下减。

的符号开口方向顶点坐标对称轴性质

向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.

向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.

3. 的性质:

左加右减。

的符号开口方向顶点坐标对称轴性质

向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值.

向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值.

4. 的性质:

的符号开口方向顶点坐标对称轴性质

向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值.

向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值.

三、二次函数图象的平移

1.平移步骤:

方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;

⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:

2.平移规律

在原有函数的基础上“值正右移,负左移;值正上移,负下移”.

概括成八个字“左加右减,上加下减”.

方法二:

⑴沿轴平移:向上(下)平移个单位,变成

(或)

⑵沿轴平移:向左(右)平移个单位,变成(或)

四、二次函数与的比较

从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.

五、二次函数图象的画法

五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).

画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.

六、二次函数的性质

1. 当时,抛物线开口向上,对称轴为,顶点坐标为.

当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.

[高中二次函数知识点总结]

篇6:高中数学二次函数知识点

一、定义与定义式:

自变量x和因变量y有如下关系:

y=kx+b

则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)

二、一次函数的性质:

1.y的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k为任意不为零的实数b取任何实数)

2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:

1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b.(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;

当b=0时,直线通过原点

当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限

四、确定一次函数的表达式:

已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b.

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b.所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:

1.当时间t一定,距离s是速度v的一次函数。s=vt.

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S.g=S-ft.

六、常用公式:(不全,希望有人补充)

1.求函数图像的k值:(y1-y2)/(x1-x2)

2.求与x轴平行线段的中点:|x1-x2|/2

3.求与y轴平行线段的中点:|y1-y2|/2

4.求任意线段的长:√(x1-x2)’2+(y1-y2)’2(注:根号下(x1-x2)与(y1-y2)的平方和)

数学学习建议有哪些

学习数学虽然需要大量做题,但是同样重要的还有背诵,这也是同学们最容易忽视的一个问题,尤其是理科生最不愿意背公式和定义,这一点值得纠正。背公式和定义很有必要,因为一个定义看似懂了,但是只有自己真正背下来,一字一句的去理解以后,才能真正明白它所需要的条件,做题时才会考虑的更全面,不容易出错。

数学公式一定要看推导过程,尽管很多公式是可以直接拿过来用的,但是如果同学们知道公式是怎么来的,就能更加了解公式的意义所在,在做题时也会更加灵活的使用公式的变形公式及推导公式,同时会更加自如的运用所学公式。

学数学其实并不难,但是每一章节都是全新的内容,需要大家跟住老师的节奏与步伐,不能中途落下。

篇7:九年级数学二次函数知识点

九年级数学二次函数知识点

1什么是二次函数

二次函数的基本表示形式为y=ax²+bx+c(a≠0)二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。它的定义是一个二次多项式(或单项式)。

如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。

2二次函数的表达式

一般式:y=ax²+bx+c (a≠0)

顶点式:y=a(x-h)²+k 顶点坐标为(h,k)

交点式:y=a(x-x₁)(x-x₂) 函数与图像交于(x₁,0)和(x₂,0)

3二次函数顶点式及推导过程

二次函数的一般形式:y=ax^2+bx+c(a,b,c为常数,a≠0)

二次函数的顶点式:y=a(x-h)^2+k k(a≠0,a、h、k为常数),顶点坐标为(h,k)

推导过程:

y=ax^2+bx+c

y=a(x^2+bx/a+c/a)

y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)

y=a(x+b/2a)^2+c-b^2/4a

y=a(x+b/2a)^2+(4ac-b^2)/4a

对称轴x=-b/2a

顶点坐标(-b/2a,(4ac-b^2)/4a)

4二次函数的图像

1.二次函数图像是轴对称图形,对称轴与二次函数图像唯一的交点为二次函数图象的顶点P。

a,b同号,对称轴在y轴左侧; a,b异号,对称轴在y轴右侧。

2.二次函数图像有一个顶点P,坐标为P(h,k)。

3.二次项系数a决定二次函数图像的开口方向和大小。

当a>0时,二次函数图象向上开口;当a<0时,抛物线向下开口。

|a|越大,则二次函数图像的开口越小。

4.二次函数图像与y轴交于(0,C)点 注意:顶点坐标为(h,k),与y轴交于(0,C)。

5二次函数的平移规律口诀

加左减右,加上减下。

y=a(x+b)²+c,只要将y=ax²的函数图像按以下规律平移。

(1)b>0时,图像向左平移b个单位(加左)。

(2)b<0时,图像向右平移b个单位(减右)。

(3)c>0时,图像向上平移c个单位(加上)。

(4)c<0时,图像向下平移c个单位(减下)。

初一数学数轴知识点复习

(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.

数轴的三要素:原点,单位长度,正方向.

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

初三数学学习方法总结

课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.

让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.

课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.

篇8:九年级二次函数知识点总结

九年级二次函数知识点总结

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a

III.二次函数的图像

在平面直角坐标系中作出二次函数y=x²的图像,

可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线

x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P [ -b/2a ,(4ac-b^2;)/4a ]。

当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

Δ= b^2-4ac<0时,抛物线与x轴没有交点。

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2;+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax^2;+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

篇9:初中数学二次函数知识点总结

目录

定义与定义表达式

二次函数的三种表达式

二次函数的图像

抛物线的性质

二次函数与一元二次方程

定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

返回目录

二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x? ,0)和 B(x?,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a

返回目录

二次函数的图像

在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

返回目录

抛物线的性质

1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)

返回目录

二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x?-x?|

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

返回目录

篇10:初中九年级二次函数知识点总结

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学难点:求出函数的自变量的取值范围。

教学过程:

一、问题引新

1.设矩形花圃的垂直于墙(墙长18)的一边AB的长为_m,先取_的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

AB长_(m) 1 2 3 4 5 6 7 8 9

BC长(m) 12

面积y(m2) 48

2._的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(_)确定后,矩形的面积(y)也随之确定,y是_的函数,试写出这个函数的关系式,教师可提出问题,(1)当AB=_m时,BC长等于多少m?(2)面积y等于多少? y=_(20-2_)

二、提出问题,解决问题

1、引导学生看书第二页问题一、二

2、观察概括

y=6_2 d= n /2 (n-3) y= 20 (1-_)2

以上函数关系式有什么共同特点? (都是含有二次项)

3、二次函数定义:形如y=a_2+b_+c(a、b、、c是常数,a≠0)的函数叫做_的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

4、课堂练习

(1) (口答)下列函数中,哪些是二次函数?

(1)y=5_+1 (2)y=4_2-1

(3)y=2_3-3_2 (4)y=5_4-3_+1

(2).P3练习第1,2题。

五、小结叙述二次函数的定义.

第二课时:26.1二次函数(2)

教学目标:

1、使学生会用描点法画出y=a_2的图象,理解抛物线的有关概念。

2、使学生经历、探索二次函数y=a_2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。

教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=a_2的图象

教学难点:用描点法画出二次函数y=a_2的图象以及探索二次函数性质。

第四篇:初中九年级二次函数知识点总结

二次函数

I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,|a|还可以决定开口大小,|a|越大开口就越小,|a|越小开口就越大.)则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]III.二次函数的图像 在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线 x =-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为 P [-b/2a,(4ac-b^2)/4a ]。当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。(即左同右异)

5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数 Δ= b^2-4ac>0时,抛物线与x轴有2个交点。Δ= b^2-4ac=0时,抛物线与x轴有1个交点。Δ= b^2-4ac<0时,抛物线与x轴没有交点。

V.二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。补充 画抛物线时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)^2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax^2+k的顶点在y轴上;当k=0时,抛物线a(x-h^)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点

第五篇:二次函数

2.二次函数定义__________________________________________________二次函数(1)导学案

一.教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学过程:

二、教学过程

(一)提出问题

某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?[10-8=2(元),(10-8)×100=200(元)]

3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?

[(10-8-x);(100+100x)]

4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]

5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x)(100+100x)(0≤x≤2)]

将函数关系式y=x(20-2x)(0 <x <10=化为:

y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D(0≤x≤2)……………………(2)

(二)、观察;概括

(1)函数关系式(1)和(2)的自变量各有几个?

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(3)函数关系式(1)和(2)有什么共同特点?(4)这些问题有什么共同特点?

三、课堂练习

1.下列函数中,哪些是二次函数?(1)y=5x+1(2)y=4x2-1

(3)y=2x3-3x2(4)y=5x4-3x+1

2.P25练习第1,2,3题。

四、小结

1.请叙述二次函数的定义.

2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

五.堂堂清

下列函数中,哪些是二次函数?

(1)Y=2x+1(2)y=2x2+1(3)y=x(x-2)(4)y=(2x-1)(2x-2)(5)y=x2(x-1)-1

下载“学而思”二次函数函数知识点总结word格式文档
下载“学而思”二次函数函数知识点总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二次函数

    ?二次函数?测试一.选择题〔36分〕1、以下各式中,y是的二次函数的是()A.B.C.D.2.在同一坐标系中,作+2、-1、的图象,那么它们()A.都是关于轴对称B.顶点都在原点C.都是抛物线开口向上D.以上......

    二次函数综合题

    二次函数综合题 如图所示,在直角坐标系中,A(-1,0),B(3,0),C(0,3) 1.用三种方法求出经过A B C三点的抛物线解析式2.抛物线的顶点坐标为D( ) 3.求△ABC的面积,求四边形ACDB的面......

    二次函数练习

    二次函数练习 1,函数fxx2bxc,对于任意tr,均有f2xf2x则f1,f2,f4,的大小关系是_____________________ 2,二次函数yax24xa3的最大值恒为负,则a的取值范围是________________------ 3,二......

    《二次函数 》教案

    命题人:刘英明 审题人:曹金满 课型:新授课《二次函数 》教案学习重点:通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.学习难点:理解二次函数的概念,掌握......

    二次函数教案

    二次函数教案 本资料为woRD文档,请点击下载地址下载全文下载地址20.1二次函数一、教学目标: .知识与技能: 通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模......

    《二次函数》说课稿

    《二次函数》说课稿 课题:22.1 二次函数(第一节课时) 一、教材分析: 1、教材所处的地位: 二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及......

    二次函数练习

    练习【动动手、动动脑,让我们课堂更精彩!】 1.如图,抛物线y=x2-2x-3与x轴交A、B两点,与y轴交于D点.直线l与抛物线交于A、C两点,其中C点的横坐标为2. 填空:A点坐标为( , );B点坐标......

    二次函数(精选五篇)

    配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+2=- +2 方程左边成为一......