传热学2章稳态导热总结问答题及答案

时间:2019-05-12 11:59:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《传热学2章稳态导热总结问答题及答案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《传热学2章稳态导热总结问答题及答案》。

第一篇:传热学2章稳态导热总结问答题及答案

一、名词解释

稳态温度场:物体内各点温度不随时间变化的温度场。

等温面 :温度场中同一瞬间温度相同点组成的面。

热扩散率(或导温系数):表征物体内部温度趋于一致的能力,为c

肋效率:肋片的实际散热量与假设整个肋片表面处于肋基温度下的散热量之比。

二、解答题和分析题

1.写出傅里叶定律的一般形式的数学表达式,并说明其中各个符号的意义。t答:傅里叶的一般表达式为:qgradtn。n

其中:q是热流密度矢量;λ为导热系数,它表示物质导热本领的大小;gradt是空间某点的温度梯度;n是通过该点的等温线上的法向单位矢量,指向温度升高的方向,“-”号表示热量沿温度降低的方向传递。

2、写出傅里叶定律的文字表达式。

答:在导热中,单位时间内通过给定截面面积的导热量,正比于垂直该截面方向上的温度变化率和截面面积,而热量传递的方向则与温度升高的方向相反。

3、等温面与等温线的特点,不同温度的等温面(线)能相交不?

答:1)温度不同的等温面或等温线彼此不能相交;

2)在连续的温度场中,等温面或等温线不会中断,它们或者是物体中完全封闭的曲面(曲线),或者就终止与物体的边界上;

3)物体的温度场通常用等温面或等温线表示,若每条等温线间的温度间隔相等时,等温线越密反映出该区域导热热流密度的越大。

不同温度的等温面(线)不能相交

4.得出导热微分方程所依据的是什么基本定律?

答:傅里叶定律和能量守恒定律。

5.解释材料的导热系数λ和导温系数α之间的区别和联系?(或热扩散率α的定义及物理意义。)

答:从表达式看,导温系数a/c与导热系数成正比关系,但导温系数不但与材料的导热系数有关,还与材料的热容量(或储热能力)也有关;从物理意义看,导热系数表征材料导热能力的强弱,导温系数表征材料传播温度变化的能力的大小,两者都是物性参数。

6.将一根铁棒一端置于火炉中,另一端很快烫手,而在冬天将手置于温度相同的铁板或木板上时,铁板感觉更冰凉一些,用传热学的知识解释这些原因。答:一根铁棒一端置于火炉中,另一端很快烫手,这是由于铁棒的热扩散率较大的原因,而在冬天将手置于温度相同的铁板或木板上时,铁板感觉c更冰凉一些,则是由于铁板的吸热系数c较木板的大的缘故。

7.写出稳态导热问题3种类型的边界条件。

答: 第一类边界条件:已知物体边界上的温度值;第二类边界条件:已知物体边界上的热流密度值;第三类边界条件:已知物体边界与周围流体间的对流换热换热系数h和周围流体的温度。

8、通过大平壁、圆筒壁的稳态导热,二者的温度分布规律分别是什么? 答:大平壁内的温度分布为直线;圆筒壁内的温度分布为对数曲线。

9、常物性、直角坐标系下、有内热源的三维非稳态导热微分方程的表达式? t2t2t2t 答:c(222)xyz10、在寒冷的北方地区,建房用砖采用实心砖还是多孔的空心砖好?为什么? 答:用多孔空心砖好。

原因:为了提高建筑节能的效果,必须尽量减少砖墙的散热损失。在其他条件相同时,实心砖的热量传递只是砖的导热。而多孔空心砖中充满着不动的空气,其导热包括砖的导热和空气的导热,空气在纯导热时,其导热系数很低,是很好的绝热材料,是提高砖墙导热阻力的有效方法。

第二篇:生活中的传热学 (问答题整理答案)

硕士研究生《高等工程热力学与传热学》作业 查阅相关资料,回答以下问题:

1、一滴水滴到120度和400度的板上,哪个先干?试从传热学的角度分析?

答:在大气压下发生沸腾换热时,上述两滴水的过热度分别是△t=tw–ts=20℃和△t=300℃,由大容器饱和沸腾曲线,前者表面发生的是泡态沸腾,后者发生膜态沸腾。虽然前者传热温差小,但其表面传热系数大,从而表面热流反而大于后者。所以水滴滴在120℃的铁板上先被烧干。

2、锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成,为什么? 答:是因为木料是热的不良导体,以便在烹任过程中不烫手。

3、滚烫的砂锅放在湿地上易破裂。为什么?

答:这是因为砂锅是热的不良导体, 如果把烧得滚热的砂锅,突然放到潮湿或冷的地方,砂锅外壁的热就很快地被传掉,而内壁的热又一下子传不出来,外壁冷却很快的收缩,内壁却还很热,没什么收缩,加以陶瓷特别脆,所以往往裂开。

或者:烫砂锅放在湿地上时,砂锅外壁迅速放热收缩而内壁温度降低慢,砂锅内外收缩不均匀,故易破裂。

4、往保温瓶灌开水时,不灌满能更好地保温。为什么?

答:因为未灌满时,瓶口有一层空气,是热的不良导体,能更好地防止热量散失。

5、煮熟后滚烫的鸡蛋放入冷水中浸一会儿,容易剥壳。为什么? 答:因为滚烫的鸡蛋壳与蛋白遇冷会收缩,但它们收缩的程度不一样,从而使两者脱离。

6、用焊锡的铁壶烧水,壶烧不坏,若不装水,把它放在火上一会儿就烧坏了。为什么?

答:这是因为水的沸点在1标准大气压下是100℃,锡的熔点是232℃,装水烧时,只要水不干,壶的温度不会明显超过100℃,达不到锡的熔点,更达不到铁的熔点,故壶烧不坏.若不装水在火上烧,不一会儿壶的温度就会达到锡的熔点,焊锡熔化,壶就烧坏了。

7、冬天水壶里的水烧开后,在离壶嘴一定距离才能看见“白气”,而紧靠壶嘴的地方看不见“白气”。这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。

答:这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。

8、某些表演者赤脚踩过炽热的木炭,从传热学角度解释为何不会烫伤?不会烫伤的基本条件是什么?

答:因为热量的传递和温度的升高需要一个过程,而表演者赤脚接触炽热木炭的时间极短,因此在这个极短的时间内传递的温度有限,不足以达到令人烫伤的温度,所以不会烫伤。

基本条件:表演者接触炽热木炭的时间必须极短,以至于在这段时间内所传递的热量不至于达到灼伤人的温度

9、我们许多人都喜欢在冬天有暖暖阳光时晒被子,我们都会深有体会,冬天经过在白天太阳底下晒过的棉被,晚上盖起来会觉得很暖和,并且经过拍打以后,效果更加明显。为什么?

答:棉被经过晾晒以后,可使棉花的空隙里进入更多的空气。而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温性能。而经过拍打的棉被可以让更多的空气进入,因而效果更明显。

10、冬天,在相同的室外温度条件下,为什么有风比无风时感到更冷些?

答:假定人体表面温度相同时,人体的散热在有风时相当于强制对流换热,而在无风时属自然对流换热(不考虑热辐射或假定辐射换热量相同时)。而空气的强制对流换热强度要比自然对流强烈。因而在有风时从人体带走的热量更多,所以感到更冷一些。

11、在冬季的晴天,白天和晚上空气温度相同,但白天感觉暖和,晚上却感觉冷。为什么?

答:白天和晚上人体向空气传递的热量相同,且均要向温度很低的太空辐射热量。但白天和晚上的差别在于:白天可以吸收来自太阳的辐射能量,而晚上却不能。因而晚上感觉会更冷一些。

12、夏季在维持20℃室内工作,穿单衣感到舒适,而冬季保持在22℃的室内工作时,为什么必须穿绒衣才觉得舒服?

答:首先,冬季和夏季的最大区别是室外温度不同。夏季室外温度比室内温度高,因此通过墙壁的热量传递方向是由室外传向室内。而冬季室外气温比室内气温低,通过墙壁的热量传递方向是由室内传向室

外。因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。尽管冬季室内温度22℃比夏季略高20℃,但人体在冬季通过辐射与墙壁的散热比夏季高很多。根据上题人体对冷暖的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。

13、我们国家北方深秋季节的清晨,树叶叶面上常常结霜,、为什么霜会结在树叶上表面?

答:这是因为清晨,上表面朝向太空,下表面朝向地面。而太空表面的温度低于摄氏零度,而地球表面温度一般在零度以上。由于相对树叶下表面来说,其上表面需要向太空辐射更多的能量,所以树叶下表面温度较高,而上表面温度较低且可能低于零度,因而容易结霜。

14、窗玻璃对红外线几乎不透明,但是隔着玻璃依然会被太阳晒到的发热?为什么?

答:虽说窗玻璃对红外线不透明,但对可见光却是透明的,因而隔着玻璃晒太阳,太阳光可以穿过玻璃进入室内,而室内物体发出的红外线却被阻隔在窗内,因而房间内温度越来越高,因而感到暖和。

15、在寒冷的北方地区,现在建房越来越多的人开始采用多孔的空心砖。为什么?

答:在其他条件相同时,实心砖材料如红砖的导热系数约为0.5W/(m〃K)(35℃),而多孔空心砖中充满着不动的空气,空气在纯导热(即忽略自然对流)时其导热系数很低,是很好的绝热材料。

16、冬天,在相同的室外温度条件下,为什么骑摩托车比步行感觉更冷?

答:强制对流换热强度与流体壁面之间的相对速度有关,相对速度越大,对流换热越强。与步行相比,骑摩托车时相对速度较大,对流换热强度大,因此人体会散失较多的热量从而感到更冷些。皮手套和护膝,由于导热系数小且有一定厚度,增加了一层较大的导热热阻,使总传热热阻增大,从而可降低散热量,从而起到保护作用。

17、绿色住宅的一种节能方式(夏天少用空调冬天多用暖气)就是在其房屋前栽种几棵大型落叶乔木,尝试从传热学角度说明大树的作用。

答:夏天室内热负荷主要来自太阳辐射,如房屋前栽种几棵大树,枝叶繁茂会遮挡阳光,使房屋处于树荫下,可以凉快些,从而减少使用空调。到了冬天,树叶落光,太阳光线可直射到房屋上,因而又可推迟使用暖气时间或少用暖气。这样便可达到节能的目的。

18、滚热的食物盛在砂锅里比在铝锅里不容易冷,为什么? 答:这是由于陶瓷的砂锅比金属的铝锅传热慢,锅壁又比较厚,热不容易传出来。

19、冬天时,用手摸72度的铁和600度的木材感觉一样吗,为什么?请用传热学的知识解释

答:一样,因为人手感觉到的冷暖实质是热量传递的快慢,而铁的导温系数远远大于木头的导温系数。不同的温差和不同的导热系数产生相同的热流密度,故导热效果相同。冬天,经过在白天太阳底下晒过的棉被,晚上盖起来为什么感到很暖和?并且经过拍打以后,为什么效果更加明显?

答:棉被经过晾晒以后,可使棉花的空隙里进入更多的空气。而空气

在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温性能。而经过拍打的棉被可以让更多的空气进入,因而效果更明显。冬天,在相同的室外温度条件下,为什么有风比无风时感到更冷些?

答:假定人体表面温度相同时,人体的散热在有风时相当于强制对流换热,而在无风时属自然对流换热(不考虑热辐射或假定辐射换热量相同时)。而空气的强制对流换热强度要比自然对流强烈。因而在有风时从人体带走的热量更多,所以感到更冷一些。夏季在维持20℃室内工作,穿单衣感到舒适,而冬季保持在22℃的室内工作时,为什么必须穿绒衣才觉得舒服?

答:首先,冬季和夏季的最大区别是室外温度不同。夏季室外温度比室内温度高,因此通过墙壁的热量传递方向是由室外传向室内。而冬季室外气温比室内气温低,通过墙壁的热量传递方向是由室内传向室外。因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。因此,尽管冬季室内温度22℃比夏季略高20℃,但人体在冬季通过辐射与墙壁的散热比夏季高很多。根据上题人体对冷暖的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。利用同一冰箱储存相同的物质时,试问结霜的冰箱耗电量大还是未结霜的冰箱耗电量大?

答:当其它条件相同时,冰箱的结霜相当于在冰箱蒸发器和冰箱冷冻室(或冷藏室)之间增加了一个附加热阻,因此,要达到相同的制冷室温度,必然要求蒸发器处于更低的温度。所以,结霜的冰箱耗电量更大。有人将一碗热稀饭置于一盆凉水中进行冷却。为使稀饭凉得更快一些,你认为他应该搅拌碗中的稀饭还是盆中的凉水?为什么? 答:从稀饭到凉水是一个传热过程。显然,稀饭和水的换热在不搅动时属自然对流。而稀饭的换热比水要差。因此要强化传热增加散热量,应该用搅拌的方式强化稀饭侧的传热。在寒冷的北方地区,建房用砖采用实心砖还是多孔的空心砖好?为什么?

答:在其他条件相同时,实心砖材料如红砖的导热系数约为0.5W/(m〃K)(35℃),而多孔空心砖中充满着不动的空气,空气在纯导热(即忽略自然对流)时其导热系数很低,是很好的绝热材料。因而用多孔空心砖好。电影《泰坦尼克号》里,男主人公杰克在海水里被冻死而女主人公罗丝却因躺在筏上而幸存下来。试从传热学的观点解释这一现象。答:杰克在海水里其身体与海水间由于自然对流交换热量,而罗丝在筏上其身体与空气之间产生自然对流。在其他条件相同时,水的自然对流强度要远大于空气,因此杰克身体由于自然对流散失能量的速度比罗丝快得多。因此杰克被冻死而罗丝却幸免于难。27 人造地球在卫星在返回地球表面时为何容易被烧毁?

答:卫星在太空中正常运行时,其表面的热量传递方式主要依靠与太空及太阳等星体的辐射。而在卫星返回地面的过程中,由于与大气层之间的摩擦,产生大量的热量,无法及时散失,因而易被烧毁。28 北方深秋季节的清晨,树叶叶面上常常结霜,试问树叶上、下表面的哪一面结霜?为什么?

答:霜会结在树叶上的表面。因为清晨,上表面朝向太空,下表面朝向地面。而太空表面的温度低于摄氏零度,而地球表面温度一般在零度以上。由于相对树叶下表面来说,其上表面需要向太空辐射更多的能量,所以树叶下表面温度较高,而上表面温度较低且可能低于零度,因而容易结霜。窗玻璃对红外线几乎不透明,但为什么隔着玻璃晒太阳却使人感到暖和?

答:窗玻璃对红外线不透明,但对可见光却是透明的,因而隔着玻璃晒太阳,太阳光可以穿过玻璃进入室内,而室内物体发出的红外线却被阻隔在窗内,因而房间内温度越来越高,因而感到暖和。30 在太阳系中地球和火星距太阳的距离相差不大,但为什么火星表面温度昼夜变化却比地球要大得多?

答:由于火星附近没有大气层,因而在白天,太阳辐射时火星表现温度很高,而在夜间,没有大气层的火星与温度接近于绝对零度的太空进行辐射换热,因而表面温度很低。而地球附近由于大气层(主要成份是CO2和水蒸气)的辐射作用,夜间天空温度比太空高,白天大气层又会吸收一部分来自太阳的辐射能量,因而昼夜温差较小。31 在冬季的晴天,白天和晚上空气温度相同,但白天感觉暖和,晚上却感觉冷。试解释这种现象。

答:白天和晚上人体向空气传递的热量相同,且均要向温度很低的太空辐射热量。但白天和晚上的差别在于:白天可以吸收来自太阳的辐射能量,而晚上却不能。因而晚上感觉会更冷一些。32 住新房和旧房的感觉一样吗?

答:不一样,由于水的导热系数远远大于空气,而新房墙壁含水较多,所以住新房感觉冷。

第三篇:稳态法导热系数测定实验

稳态法导热系数测定实验

一、实验目的

1、通过实验使学生加深对傅立叶导热定律的认识。

2、通过实验,掌握在稳定热流情况下利用稳态平板法测定材料导热系数的方法。

3、确定材料的导热系数与温度之间的依变关系。

4、学习用温差热电偶测量温度的方法。

5、学习热工仪表的使用方法

二、实验原理

平板式稳态导热仪的测量原理是基于一维无限大平板稳态传热模型,这种方法是把被测材料做成比较薄的圆板形或方板形,薄板的一个表面进行加热,另一个表面则进行冷却,建立起沿厚度方向的温差。图1是无限大平板导热示意图。

根据傅立叶(Fourier)定律:

Tw2 y x T Q Tw1 cTTTT()()()xxyyyy(1)

在一维无限大平板稳态传热时,方程(1)可简化为:

2T02x

δ图1 无限大平板的稳态导热示意图

(2)

其边界条件为

x=0时,T=Tw1 x=δ时,T=Tw2

可解得下列方程

QA(Tw1Tw2)

(3)

由式(3)可得

QA(Tw1Tw2)

(4)

式中

λ——导热系数,W/m ·℃; δ——试件厚度,m;

Q——热流量,w; A——试件面积,m2;

Tw1 ——试件下表面温度,℃; Tw2 ——试件上表面温度,℃。

一般情况下,选择平板试件的尺寸要注意满足下列条件:

17D~110D

式中

D ——方板的短边长度,m。

热流量Q也可以由输入电压和电阻表示为:

QU2R 式中 U——施加在加热板上的电压,V;

R——加热板上内部加热电阻丝的电阻,Ω。将式(5)带入式(4)得

U2RA(Tw1Tw2)

对应此λ的材料温度为

TTw1Tw2 2

(5)

(6)

(7)

根据式(7)只要知道试件面积A、电压U、电阻R、厚度δ以及在厚度δ方向上的温度差,便可求出导热系数。

三、实验设备

实验设备如图2所示。

图2平板式稳态法导热仪的总体结构图

1.调压器2.铜板3.主加热板 4.上均热片 5.中均热片

6.下均热片7.热电偶 8.副加热板 9.数据采控系统 10.温度仪表 11.试样装置 12.循环水箱电位器 13.保温材料 14.电位器

键盘共有6个按键组成,包括为“5”、“1”、“0.1”3个数据键,“±”正负号转换键,“RST”复位键,“ON/OFF”开关键。

数据键:根据不同的功能对相应的数据进行加减,与后面的“±”正负号转换键和“shift”功能键配合使用。

“±”正负号转换键:当“±”正负号转换键为“+”时,在原数据基础上加相应的数值;为“-”时,减相应的数值。

“RST”复位键:复位数据,重新选择。

控制板上的四个发光二极管分别对应四路热电偶,发光二极管发光表示对应的热电偶接通。由一台调压器输出端采用并联方式提供两路输出电压,电位器对每路输出电压进行调整,作为两个加热板的输入电压。

四、实验内容

1、根据提供的实验设备仪器材料,搭建实验台,合理设计实验步骤。调整好电加热器的电压(调节调压器),并测定相关的温度及电热器的电压等试验数据。

2、对测定的实验数据按照一定的方法测量进行数据处理,确定材料的导热系数与温度之间的依变关系公式。

3、对实验结果进行分析与讨论。

4、分析影响制导热仪测量精度的主要因素。

5、在以上分析结论的基础之上尽可能的提出实验台的改进方法。

五、实验步骤

1、利用游标卡尺测量试样的长、宽、厚度,测试样3个点的厚度,取其算术平均值,作为试样厚度和面积。

2、测量加热板的内部电阻。

3、校准热工温度仪表。

4、向水箱内注入冷却水。

5、通过调整电位器改变提供给主加热板和副加热板的加热功率,通过4位“LED”显示主加热板和副加热板的温度,根据主加热板的温度,调整电位器改变施加在副加热板的电压,使副加热板的温度与主加热板的温度一致。利用数字电压表测量并记录主加热板电压。

6、在加热功率不变条件下, 试样下表面和循环水箱下表面的温度波动每5min不超过±1℃时,认为达到稳态。此时,记录主加热板温度、试样两面温差。

7、通过数据键输入试样面积、厚度等相关参数,由试样面积、厚度、主加热板的电阻、电压、上表面温度及上均热片的上表面温度获得试样的导热系数。

8、改变电位器改变提供给主加热板和副加热板的加热功率件,重复步骤(5至7)测量并记录多个温度下的材料导热系数。

9、关掉电源。

六、实验要求

1、采用精度不低于0.05 mm的厚度测量工具(游标卡尺),沿试样四周测量四处的厚度,取其算术平均值,作为实验前试样厚度。

2、用酒精将试件及均热片擦洗干净并晾干,晾干后在其上均匀涂抹导热油。

3、用调压器将电压调至一定值,保持不变,经一段时间后,待跟试件上下表面接触的铜片各点温度为一定值时,即导热过程达到稳定后记录各点温度及电热器的电压。

4、改变电加热器的电压(调节调压器),即改变电热器热量使之维持在另一个数值上,跟试件上下表面接触的铜片各点温度达到新的稳定状态后,重复第3项的测量。

5、用最小二乘法计算不同橡胶材料的导热系数随温度变化的关系式。

五、实验报告要求

1、材料温度可取材料上下表面温度的平均值,即T(Tw1Tw2)/2,其中:Tw1为试样材料下表面温度,Tw2为试样上表面温度。

2、实验报告需用专用的实验报告用纸进行书写;

3、实验报告中必须包含实验目的和实验步骤;

4、实验报告中必须包括实验数据的记录;

5、实验报告中必须包括实验数据处理的具体步骤,并有材料的导热系数随温度变化的关系式及关系曲线图;

6、实验报告中必须有对实验数据结果的分析。

第四篇:传热学答案

2-4 一烘箱的炉门由两种保温材料A及B组成,且A2B(见附图)。已知A0.1W/(m.K),B0.06W/(m.K),烘箱内空气温度tf1400℃,内壁面的总表面传热系数h150W/(m.K)。为安全起见,希望烘箱炉门的 外表面温度不得高于50℃。设可把炉门导热作为一维问题处理,试决定所需保温材料的厚度。环境温度tf225℃,外表面总传热系数h29.5W/(m.K)。

qtf1tfw2AABBh1tf1th2ttf2解:热损失为又tfw50

℃;AB

3联立得A0.078m;B0.039m

2-16 一根直径为3mm的铜导线,每米长的电阻为2.2210。导线外包有厚为1mm导热系数为0.15W/(m.K)的绝缘层。限定绝缘层的最高温度为65℃,最低温度为0℃。试确定在这种条件下导线中允许通过的最大电流。

Q2lq2l(t1t2)ln(r2/r1)210.15650ln2.5/1.5119.8W解:根据题意有:

119.86IR 解得:I232.36A

-40 试由导热微分方程出发,导出通过有内热源的空心柱体的稳态导热热量计算式及壁中的温度分布。为常数。

解:有内热源空心圆柱体导热系数为常数的导热微分方程式为

1tr0rrr

2经过积分得

tc1lnrc2rr

r3/t0tw0lnr01r3因为所以得 trr0,ttw;r0,tt0r3/t0tw0lnr01lnrt0对其求导得

2-53 过热蒸气在外径为127mm的钢管内流过,测蒸气温度套管的布置如附图所示。已知套管外径d=15mm,壁厚=0.9mm,导热系数49.1W/(m.K)。蒸气与套管间的表面传热系数h=105有的长度。W/(m.K)2。为使测温误差小于蒸气与钢管壁温度差的0.6%,试确定套管应

h01chmh0.6100, 解:按题意应使h00.6%,chmh166.7,查附录得:mharcch(166.7)5.81,mhU。

3-7 如图所示,一容器中装有质量为m、比热容为c的流体,初始温度为tO。另一流体在管内凝结放热,凝结温度为t。容器外壳绝热良好。容器中的流体因有搅拌器的作用而可认为任一时刻整个流体的温度都是均匀的。管内流体与容器中流体间的总传热系数k及传热面积A均为以知,k为常数。试导出开始加热后任一时刻t时容器中流体温度的计算式。

解:按集总参数处理,容器中流体温度由下面的微分方程式描述 A10549.10.910348.75,H5.8148.750.119mhA(TT1)cvtt1dtd

kA此方程的解为 t0t1exp(c)

0

03-10 一热电偶热接点可近似地看成为球形,初始温度为25C,后被置于温度为200C地气流中。问欲使热电偶的时间常数c1s热接点的直径应为多大?以知热接点与气流间的表面传热系数为35W/(mK),热接点的物性为:20W/(mk),c400J/(kgk),8500kg/m32,如果气流与热接点之间还有辐射换热,对所需的热接点直径有何影响?热电偶引线的影响忽略不计。

解:由于热电偶的直径很小,一般满足集总参数法,时间常数为:V/AR/3tch1350850040010.29105ccvhA

5 故cm

0.617m 热电偶的直径: d2R2310.2910 验证Bi数是否满足集总参数法 Bivh(V/A)35010.2910205 0.00180.0333

故满足集总参数法条件。

若热接点与气流间存在辐射换热,则总表面传热系数h(包括对流和辐射)增加,由ccvhA知,保持c不变,可使V/A增加,即热接点直径增加。

3-12 一块单侧表面积为A、初温为t0的平板,一侧表面突然受到恒定热流密度q0的加热,另一侧表面受到初温为t的气流冷却,表面传热系数为h。试列出物体温度随时间变化的微分方程式并求解之。设内阻可以不计,其他的几何、物性参数均以知。解:由题意,物体内部热阻可以忽略,温度只是时间的函数,一侧的对流换热和另一侧恒热流加热作为内热源处理,根据热平衡方程可得控制方程为: dtcvhA(tt)Aqw0d t/t0t0

引入过余温度tt则: cvddhAAqw0 /t00

hABecvqwh 上述控制方程的解为:B0qw 由初始条件有:

h,故温度分布为: tt0exp(hAcv)qwh(1exp(hAcv))

3-13 一块厚20mm的钢板,加热到5000C后置于200C的空气中冷却。设冷却过程中钢板两侧面的平均表面传热系数为35W/(mK),钢板的导热系数为45W/(mK),若扩散率为1.37510522m/s。试确定使钢板冷却到空气相差100C时所需的时间。2 解:由题意知BihA0.00780.1

故可采用集总参数法处理。由平板两边对称受热,板内温度分布必以其中心对称,建立微分方程,引入过余温度,则得: dcvhA0d(0)tt0

 解之得:00exp(hAcv)exp(hc(V/A))exp(h)

当10C时,将数据代入得,=3633s

3-24 一高H=0.4m的圆柱体,初始温度均匀,然后将其四周曲面完全绝热,而上、下底面暴露于气流中,气流与两端面间的表面传热系数均为50W/(mK)。圆柱体导热系数20W/(mk),热扩散率5.6106m2/s。试确定圆柱体中心过余温度下降到初值

2一半时间所需的时间。解:因四周表面绝热,这相当于一个厚为20.4m的无限大平壁的非稳态导热问题,m00.5,Bih500.2200.5 F01.7,F0由图3-6查得

2a1.70.2265.61012142s3.37h6-

11、已知:平均温度为100℃、压力为120kPa的空气,以1.5m/s的流速流经内径为25mm电加热管子。均匀热流边界条件下在管内层流充分发展对流换热区Nu=4.36。

求:估计在换热充分发展区的对流换热表面传热系数。

pRT1200002873731.121kg/m3解:空气密度按理想气体公式计算,空气的与压力关系甚小,仍可按一物理大气压下之值取用,100℃时:

21.9106

kg/ms,Re1.1211.521.90.025100.03210.025619192300,故为层流。按给定条件得:

h4.36d4.365.6W/mK2。

6-

13、已知:一直管内径为16cm,流体流速为1.5m/s,平均温度为10℃,换热进入充分发展阶段。管壁平均温度与液体平均温度的差值小于10℃,流体被加热。

求:试比较当流体分别为氟利昂134a及水时对流换热表面传热系数的相对大小。解:由附录10及13,10℃下水及R134a的物性参数各为:

R134a:0.0888W/mK,0.201810水:0.574W/mK,1.30610对R134a:

Re1.50.0160.2018100.86626m/s,Pr3.915;

2m/s,Pr9.52;

1.1893100.45,2531.3W/mKh0.0231189303.9150.08880.0162

对水:

Re1.50.0161.306100.8618376,0.4h0.023183769.520.5740.0165241W/mK2

对此情形,R134a的对流换热系数仅为水的38.2%。

25、已知:冷空气温度为0℃,以6m/s的流速平行的吹过一太阳能集热器的表面。该表面尺寸为1m1m,其中一个边与来流方向垂直。表面平均温度为20℃。

求:由于对流散热而散失的热量。

tf020210解:℃

610℃空气的物性 14.1610Reul61.014.1610112,2.511052,Pr0.705

x64.2372810

Nu0.664RehPr3384.68

2384.682.51101.0

29.655w(mk)2

s111.0m

hs(twt0)9.655(200)193.1

6-27、已知:一个亚音速风洞实验段的最大风速可达40m/s。设来流温度为30℃,平板壁温为70℃,风洞的压力可取1.01310Pa。

求:为了时外掠平板的流动达到510的Rex数,平板需多长。如果平板温度系用低

55压水蒸气在夹层中凝结来维持,平板垂直于流动方向的宽度为20cm时。试确定水蒸气的凝结量。

tm7030250解:℃,查附录8得:

6

0.0283W/mK,17.9510Re40x17.95100.56m/s,Pr0.698,1 x5105,x17.95104050.50.224m,416.5,Nu0.664RePr1/30.6645100.6981/h416.50,0283/0.22452.62W/mK, 2hAt52.620.20.224703094.3W,在t70℃时,气化潜热r2334.110J/kg,凝结水量G94.336002334.11030.1454kg/h。

6-33、已知:直径为0.1mm的电热丝与气流方向垂直的放置,来流温度为20℃,电热丝温度为40℃,加热功率为17.8W/m。略去其它的热损失。

求:此时的流速。

解:

qlhdtwtf,hdtwtf30ql17.80.110540202833W/mK2

定性温度tm20402℃,60.0267W/mK,1610Nu28330.02670.1101/0.4663m/s,Pr0.701

210.61。先按表5-5中的第三种情况计算,10.610.6836NuRe0.683侧u2.1459360,符合第二种情形的适用范围。

57.6m/sd故得:Re161036030.110。

34、已知:可以把人看成是高1.75m、直径为0.35m的圆柱体。表面温度为31℃,一个马拉松运动员在2.5h内跑完全程(41842.8m),空气是静止的,温度为15℃。不计柱体两端面的散热,不计出汗散失的部分。

求:此运动员跑完全程后的散热量。

u41842.842.536004.649m/s

解:平均速度,定性温度

62tm3115223℃,空气的物性为:0.0261W/mK,15.3410Re4.6490.3515.3416m/s,Pr0.702,1060724104,按表5-5.有:

0.02661060720.805 Nu0.0266Re0.805295.5,h295.50.0261/0.3522W/mK, Aht3.14160.351.75223115677.3W

在两个半小时内共散热2.53600677.360959606.09610J6-

37、已知:如图,最小截面处的空气流速为3.8m/s,tf2635℃,肋片的平均表面温度为65℃,98W/mK,肋根温度维持定值:s1/ds2/d2,d10mm,规定肋片的mH值不应大于1.5.在流动方向上排数大于10.求:肋片应多高

解:采用外掠管束的公式来计算肋束与气流间的对流换热,定性温度“

tm3565250℃,0.0283W/mK,17.951021176m/s,Re3.80.0117.95106,由表(5-7)查得C0.482,m0.556,34.050.02830.0196.4W/mKNu0.48221170.55634.05,h

,d980.018-

15、已知材料AB的光谱发射率与波长的关系如附图所示,试估计这两种材料的发射率m4h496.419.83,H1.随温度变化的特性,并说明理由。

解:A随稳定的降低而降低;B随温度的降低而升高。理由:温度升高,热辐射中的短波比例增加。9—30、已知:如图,(1)所有内表面均是500K的黑体;(2)所有内表面均是=0.6的漫射体,温度均为500K。求:从小孔向外辐射的能量。解:设小孔面积为2A2,内腔总表面壁为

2A1,则:

2A2r13.14160.0168.0410m1,A1r2d1Hr2r12222223.14160.020.040.040.020.016x1,2A2A18.0410436.736103m,42

4x2,11,6.736100.11941,2A20T1T2。,4411/21x2,11/11x1,2211,28.0410(1)1,1,25.6752.85W4;

8.04105.6754(2)21,10.6,10.11941/0.612.64W9-

45、已知:用裸露的热电偶测定圆管气流的温度,热电偶的指示值为t1=170℃。管壁温度tw=90℃,气流对热节点的对流换热系数为h=50W/(m·K),热节点表面发射率为=0.6。求:气流的真实温度及测温误差。解:htft10T1Tw442

,tft14C0T1h40.65.67Tw441704.433.6350100100

184.41704

17014.1℃84,测温误差:.4184.4100%7.8%

第五篇:传热学复习题及其答案经典总结

传热学复习题及其答案(Ⅰ部分)

一、概念题

1、试分析室内暖气片的散热过程,各个环节有哪些热量传递方式?以暖气片管内走热水为例。

答:有以下换热环节及传热方式:

(1)

由热水到暖气片管道内壁,热传递方式为强制对流换热;

(2)

由暖气片管道内壁到外壁,热传递方式为固体导热;

(3)

由暖气片管道外壁到室内空气,热传递方式有自然对流换热和辐射换热。

2、试分析冬季建筑室内空气与室外空气通过墙壁的换热过程,各个环节有哪些热量传递方式?

答:有以下换热环节及传热方式:

(1)

室内空气到墙体内壁,热传递方式为自然对流换热和辐射换热;

(2)

墙的内壁到外壁,热传递方式为固体导热;

(3)

墙的外壁到室外空气,热传递方式有对流换热和辐射换热。

3、何谓非稳态导热的正规阶段?写出其主要特点。

答:物体在加热或冷却过程中,物体内各处温度随时间的变化率具有一定的规律,物体初始温度分布的影响逐渐消失,这个阶段称为非稳态导热的正规阶段。

4、分别写出Nu、Re、Pr、Bi数的表达式,并说明其物理意义。

答:(1)努塞尔(Nusselt)数,它表示表面上无量纲温度梯度的大小。(2)雷诺(Reynolds)数,它表示惯性力和粘性力的相对大小。

(3)普朗特数,它表示动量扩散厚度和能量扩散厚度的相对大小。

(4)毕渥数,它表示导热体内部热阻与外部热阻的相对大小。

5、竖壁倾斜后其凝结换热表面传热系数是增加还是减小?为什么?。

答:竖壁倾斜后,使液膜顺壁面流动的力不再是重力而是重力的一部分,液膜流

动变慢,从而热阻增加,表面传热系数减小。另外,从表面传热系数公式知,公式中的亦要换成,从而h减小。

6、按照导热机理,水的气、液、固三种状态中那种状态的导热系数最大?

答:根据导热机理可知,固体导热系数大于液体导热系数;液体导热系数大于气体导热系数。所以水的气、液、固三种状态的导热系数依次增大。

7、热扩散系数是表征什么的物理量?它与导热系数的区别是什么?

答:热扩散率,与导热系数一样都是物性参数,它是表征物体传递温度的能力大小,亦称为导温系数,热扩散率取决于导热系数

和的综合影响;而导热系数是反映物体的导热能力大小的物性参数。一般情况下,稳态导热的温度分布取决于物体的导热系数,但非稳态导热的温度分布不仅取决于物体的导热系数,还取决于物体的导温系数。

8、集总参数法的适用条件是什么?满足集总参数法的物体,其内部温度分布有何特点?

答:集总参数法的适用条件是Bi<0.1,应用于物体的导热系数相当大,或者几何尺寸很小,或表面传热系数极低;其特点是当物体内部导热热阻远小于外部对流换热热阻时,物体内部在同一时刻均处于同一温度,物体内部的温度仅是时间的函数,而与位置无关。

9、灰体的含义?

答:灰体是指物体单色辐射力与同温度黑体单色辐射力随波长的变化曲线相似,或它的单色发射率不随波长变化的物体;或单色吸收比与波长无关的物体,即单色吸收比为常数的物体。

10、漫射表面?

答:通常把服从兰贝特定律的表面称为漫射表面,即该表面的定向辐射强度与方向无关。或物体发射的辐射强度与方向无关的性质叫漫辐射,具有这样性质的表面称为漫射表面。

11、气体的热边界层与流动边界层的相对大小?

答:由于,对于气体来说,所以气体的热边界层的厚度大于流动边界层的厚度。

12、沸腾换热的临界热流密度的含义是什么?

答:在泡态沸腾阶段时,液体温度与壁面温度之差若进一步增大,汽泡在表面上生成、长大,随后引因浮力作用而离开表面。沸腾的液体主体温度这时有一定的过热度,故汽泡通过液体层时还会继续被加热、膨胀,直到逸出液面,由于气泡的大量迅速生成和它的剧烈运动,换热强度剧增,热流密度随的提高而急剧增大,直到达到热流密度的峰值,此时的热流密度称为临界热流密度。当进一步增大时,热流密度又开始下降。

13、影响强制对流换热的表面换热系数的因素有哪些?

答:影响强制对流换热的表面换热系数的因素有流态、流体的物性、换热表面的几何因素等,用函数表示为。

14、;利用同一冰箱储存相同的物质时,试问结霜的冰箱耗电量大还是未结霜冰箱耗电量大?为什么?

答:在其它条件相同时,冰箱的结霜相当于在冰箱的蒸发器和冰箱的冷冻室(或冷藏室)之间增加了一个附加的热阻,因此,冷冻室(或冷藏室)要达到相同的温度,必须要求蒸发器处于更低的温度。所以,结霜的冰箱的耗电量要大。

16、圆管临界热绝缘直径与哪些因素有关?

答:圆管临界热绝缘直径,根据公式加以分析(略)。

17、为什么珠状凝结表面换热系数比膜状凝结表面换热系数大?

答:膜状凝结换热时

沿整个壁面形成一层液膜,并且在重力的作用下流动,凝结放出的汽化潜热必须通过液膜,因此,液膜厚度直接影响了热量传递。

珠状凝结换热时,凝结液体不能很好的浸润壁面,仅在壁面上形成许多小液珠,此时壁面的部分表面与蒸汽直接接触,因此,换热速率远大于膜状凝结换热。

18、不凝结气体对表面凝结换热强弱有何影响?

答:不凝结气体的存在,一方面使凝结表面附近蒸汽的分压力降低,从而蒸汽饱和温度降低,使得传热驱动力即温差减小;另一方面,凝结蒸汽穿过不凝结气体层到达壁面依靠的是扩散,从而增加了阻力。因此,上述两方面原因导致凝结换热时的表面传热系数降低。

19、空气横掠垂直管束时,沿流动方向管排数越多,换热越强,而蒸汽在水平管束外凝结时,沿液膜流动方向管排数越多,换热强度降低,为什么?

答:空气横掠垂直管束时,沿流动方向管排数越多,气流扰动越强,换热越强,而蒸汽在水平管束外凝结时,沿液膜流动方向管排数越多,凝结液膜越厚,凝结换热热阻越大,换热强度降低。

20、写出时间常数的表达式,时间常数是从什么导热问题中定义出来的?它与哪些因素有关?

答:时间常数的表达式为,是从非稳态导热问题中定义出来的,它不仅取决于几何参数和物性参数,还取决于换热条件h。

21、什么是物体表面的发射率?它与哪些因素有关?

答:实际物体的辐射力与同温度下黑体辐射力之比称为该物体的发射率,物体的发射率只取决于物体的表面特性(物体的种类、表面状况和温度),而与外界条件无关。

22、什么是物体表面的吸收比(率)?它与哪些因素有关?

答:物体对投入辐射所吸收的百分数称为该物体的吸收比(率),物体的吸收比(率)只取决于物体的表面特性(物体的种类、表面状况和温度),对于全波长的特性还与投射能量的波长分布有关关。

23、何谓遮热板(罩)?

答:插入两个辐射换热表面之间的用于削弱两个表面之间辐射换热的薄板或罩。

24、黑体辐射包括哪几个定律?

答:普朗克定律、维恩位移定律、斯蒂芬-玻尔兹曼定律、兰贝特定律。

25、其它条件相同时,同一根管子横向冲刷与纵向冲刷相比,哪个的表面换热系数大?为什么?

答:同一根管子横向冲刷比纵向冲刷相比的表面换热系数大。因为纵向冲刷时相当于外掠平板的流动,热边界层较厚,热阻较大;而横向冲刷时热边界层较薄且在边界层由于分离而产生的旋涡,增加了流体扰动,因而换热增强。

26、下列三种关联式描述的是那种对流换热?,答:描述的是无相变的强迫对流换热,且自然对流不可忽略;

描述的是自然对流可忽略的无相变的强迫对流换热;描述的是自然对流换热。

27、写出辐射换热中两表面间的平均角系数的表达式,并说明其物理意义。

答:平均角系数X1,2=,它表示A1表面发射出的辐射能中直接落到另一表面A2上的百分数。或者它表示离开A1表面的辐射能中直接落到另一表面A2上的百分数。

28、表面辐射热阻

答:当物体表面不是黑体时,该表面不能全部吸收外来投射的辐射能量,这相当于表面存在热阻,该热阻称为表面辐射热阻,常以表示。

29、有效辐射

答:单位时间内离开单位面积的总辐射能为该表面的有效辐射J,它包括辐射表面的自身的辐射E和该表面对投射辐射G的反射辐射,即。

30、换热器的污垢热阻

答:换热设备运行一段时间以后,在管壁产生污垢层,由于污垢的导热系数较小,热阻不可以忽略,这种由于污垢生成的产生的热阻称为污垢热阻。

31、在寒冷的北方地区,建房用砖采用实心砖还是多孔的空心砖好?为什么?

答:采用空心砖较好,因为空心砖内部充满着空气,而空气的导热系数相对较小,热阻较大,空心砖导热性较之实心砖差,同一条件下空心砖的房间的散热量小保温性好。

32、下列材料中导热系数最大的是

(纯铜)

(a)

纯铜

(b)纯铁

(c)黄铜

(d)天然金刚石

33、什么是雷诺类比律(写出表达式)?它的应用条件是什么?答:雷诺类比率:,条件:Pr=1,34、下列工质的普朗特数最小的是

(液态金属)

(a)水

(b)

空气

(c)液态金属

(d)变压器油

35、为什么多层平壁中的温度分布曲线不是一条连续的直线而是一条折线?

36、对管壳式换热器来说,两种工质在下列哪种情况下,何种工质走管内,何种工质走管外?

(1)

清洁的和不清洁的工质(2)腐蚀性大与小的工质(3)高温与低温的工质

(2)

答:(1)不清洁流体应在管内,因为壳侧清洗比较困难,而管内可以拆开端盖进行清洗;(2)腐蚀性大的流体走管内,因为更换管束的代价比更换壳体要低,且如将腐蚀性大的流体走壳程,被腐蚀的不仅是壳体,还有管子外侧。

(3)温度低的流体置于壳侧,这样可以减小换热器的散热损失。

37、北方深秋季节的清晨,树叶叶面上常常结霜。试问树叶上、下表面的哪一面上容易结霜?为什么?

答:霜会容易结在树叶的上表面,因为树叶上表面朝向太空,而太空表面的温度会低于摄氏零度;下表面朝向地面,而地球表面的温度一般在零度以上。相对于下表面来说,树叶上表面向外辐射热量较多,温度下降的快,一旦低于零度时便会结霜。

38、什么是物体的发射率和吸收率?二者在什么条件下相等?

答:实际物体的辐射力与同温度下黑体的辐射力之比称为该物体的发射率;投射到物体表面的总能量中被吸收的能量所占的份额是物体的吸收率。由基尔霍夫定律可知:当物体表面为漫灰表面时,二者相等。

39、窗玻璃对红外线几乎是不透过的,但为什么隔着玻璃晒太阳却使人感到暖和?

答:窗玻璃对红外线几乎不透过,但对可见光则是可透过的,当隔着玻璃晒太阳时,太阳光可以穿过玻璃进入室内,而室内物体发出的红外线却被阻隔在室内,因房间内温度越来越高,从而感到暖和。

40、对流换热过程微分方程式与导热过程的第三类边界条件表达式有什么不同之处?

答:对流换热过程微分方程式与导热过程的第三类边界条件表达式都可以用下式表示,但是,前者的导热系数为流体的导热系数,而且表面传热系数h是未知的;后者的导热系数为固体的导热系数,而且表面传热系数h是已知的。

41、写出竖平壁上膜状凝结的冷凝雷诺数的表达式。

答:冷凝雷诺数:,或者,其中

42、为什么用电加热时容易发生电热管壁被烧毁的现象?而采用蒸汽加热时则不会?

答:用电加热时,加热方式属于表面热流密度可控制的,而采用蒸汽加热时则属于壁面温度可控制的情形。由大容器饱和沸腾曲线可知,当热流密度一旦超过临界热流密度时,工况就有可能很快跳至稳定的膜态沸腾,使得表面温度快速上升,当超过壁面得烧毁温度时,就会导致设备的烧毁;采用蒸汽加热由于壁面温度可控制,就容易控制壁面的温升,避免设备壁面温度过度升高,使其温度始终低于设备的烧毁温度。

43、用热电偶监测气流温度随时间变化规律时,应如何选择热电偶节点的大小?

答:在其它条件相同时,热电偶节点越大,它的温度变化一定幅度所需要吸收(或放出)的热量越多,此时虽然节点换热表面积也有所增大,但其增大的幅度小于体积增大的幅度。故综合地讲,节点大的热电偶在相同的时间内吸收热量所产生的温升要小一些。由定义知,为节点的半径,显然,节点半径越小,时间常数越小,热电偶的相应速度越快。

44、由导热微分方程可知,非稳态导热只与热扩散率有关,而与导热系数无关。你认为对吗?

答:由于描述一个导热问题的完整数学表达,不仅包括控制方程,还包括定解条件。虽然非稳态导热控制方程只与热扩散率有关,但边界条件中却有可能包括导热系数。因此,上述观点不正确。

45、由对流换微分方程可知,该式中没有出现流速,有人因此认为表面传热系数与流体速度场无关。你认为对吗?

答:这种说法不正确,因为在描述流动的能量方程中,对流项含有流体速度,要获得流体的温度场,必须先获得流体的速度场,在对流换热中流动与换热是密不可分的。因此,对流换热的表面传热系数与流体速度有关。

46、什么是等温线?在连续的温度场中,等温线的特点是什么?

47.大平壁在等温介质中冷却的冷却率与哪些因素有关

48、何谓集总参数法?其应用的条件是什么?应怎样选择定型尺寸?

答:集总参数法是忽略物体内部导热热阻的简化分析方法。应用于物体的导热系数相当大,或者几何尺寸很小,或表面传热系数极低。集总参数法的适用条件是对于平板Bi<0.1,对于圆柱Bi<0.05,对于球Bi<0.033。

49、写出计算一维等截面直肋散热量的公式。

50、简述遮热罩削弱辐射换热的基本思想。

51、判定两个物理现象相似的条件是什么?

1.同名的以定特征数相等;2.单值性条件相似

52、试述强化管内流体对流换热采用的方法,并简述理由。

54、影响膜状凝结换热的主要热阻是什么?

55、大空间饱和沸腾有哪三种状态?什么是沸腾换热的临界热负荷?

答:核态沸腾、过渡沸腾、稳定膜态沸腾。由大容器饱和沸腾曲线可知,当热流密度一旦超过临界热流密度时,工况就有可能很快跳至稳定的膜态沸腾,使得表面温度快速上升,当超过壁面得烧毁温度时,就会导致设备的烧毁,这个临界热负荷为沸腾换热的临界热负荷。

56、写出傅立叶定律的数学表达式,并解释其物理意义。

57、简要说明太阳能集热器采用的选择性表面应具备的性质和作用原理。

58、试用传热学理论解释热水瓶的保温原理。

59、无内热源,常物性二维导热物体在某一瞬时的温度分布为t=2y2cosx。试说明该导热物体在x=0,y=1处的温度是随时间增加逐渐升高,还是逐渐降低。

答:由导热控制方程,得:

当时,故该点温度随时间增加而升高。

60、工程中应用多孔性材料作保温隔热,使用时应注意什么问题?为什么?

答:应注意防潮。保温材料的一个共同特点是它们经常呈多孔状,或者具有纤维结构,其中的热量传递是导热、对流换热、热辐射三种传热机理联合作用的综合过程。如果保温材料受潮,水分将替代孔隙中的空气,这样不仅水分的导热系数高于空气,而且对流换热强度大幅度增加,这样材料保温性能会急剧下降。

61、用套管温度计测量容器内的流体温度,为了减小测温误差,套管材料选用铜还是不锈钢?

答:由于套管温度计的套管可以视为一维等截面直助,要减小测温误差(即使套管顶部温度tH尽量接近流体温度tf),应尽量减小沿套管长度流向容器壁面的热量,即增大该方向的热阻。所以,从套管树料上说应采用导热系数更小的不锈钢。

62、两种几何尺寸完全相同的等截面直肋,在完全相同的对流环境(即表面传热系数和流体温皮均相同)下,沿肋高方向温度分布曲线如图所示。请判断两种材料导热系数的大小和肋效率的高低?

答:对一维肋片,导热系数越高时,沿肋高方向热阻越小,因而沿肋高方向的温度变化(降落或上升)越小。因此曲线1对应的是导热系数大的材料.曲线2对应导热系数小的材料。而且,由肋效率的定义知,曲线1的肋效率高于曲线2。

63、一维无内热源、平壁稳态导热的温度场如图所示。试说明它的导热系数λ是随温度增加而增加,还是随温度增加而减小?

答:由傅立叶里叶定律,图中随x增加而减小,因而随2增加x而增加,而温度t随x增加而降低,所以导热系数随温度增加而减小。

64、夏季在维持20℃的室内工作,穿单衣感到舒适,而冬季在保持22℃的室内工作时,却必须穿绒衣才觉得舒服。试从传热的观点分析原因。

答:首先,冬季和夏季的最大区别是室外温度的不同。夏季室外温度比室内气温高,因此通过墙壁的热量传递方向是出室外传向室内。而冬季室外气温比室内低,通过墙壁的热量传递方向是由室内传向室外。因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。因此,尽管冬季室内温度(22℃)比夏季略高(20℃),但人体在冬季通过辐射与墙壁的散热比夏季高很多。根据上题人体对冷感的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。

65、冬天,经过在白天太阳底下晒过的棉被,晚上盖起来感到很暖和,并且经过拍打以后,效果更加明显。试解释原因。

答:棉被经过晾晒以后,可使棉花的空隙里进人更多的空气。而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小(20℃,1.01325×105Pa时,空气导热系数为0.0259W/(m·K),具有良好的保温性能。而经过拍打的棉被可以让更多的空气进入,因而效果更明显。

66、由对流换热微分方程知,该式中没有出现流速,有人因此得出结论:表面传热系数h与流体速度场无关。试判断这种说法的正确性?

答:这种说法不正确,因为在描述流动的能量微分方程中,对流项含有流体速度,即要获得流体的温度场,必须先获得其速度场,“流动与换热密不可分”。因此表面传热系数必与流体速度场有关。

67、在流体温度边界层中,何处温度梯度的绝对值最大?为什么?有人说对一定表面传热温差的同种流体,可以用贴壁处温度梯度绝对值的大小来判断表面传热系数h的大小,你认为对吗?

答:在温度边界层中,贴壁处流体温度梯度的绝对值最大,因为壁面与流体间的热量交换都要通过贴壁处不动的薄流体层,因而这里换热最剧烈。由对流换热微分方程,对一定表面传热温差的同种流体λ与△t均保持为常数,因而可用绝对值的大小来判断表面传热系数h的大小。

68、简述边界层理论的基本论点。

答:边界层厚度δ、δt与壁的尺寸l相比是极小值;

边界层内壁面速度梯度及温度梯度最大;

边界层流动状态分为层流与紊流,而紊流边界层内,紧贴壁面处仍将是层流,称为层流底层;

流场可以划分为两个区:边界层区(粘滞力起作用)和主流区,温度同样场可以划分为两个区:边界层区(存在温差)和主流区(等温区域);

对流换热热阻主要集中在热边界层区域的导热热阻。层流边界层的热阻为整个边界层的导热热阻。紊流边界层的热阻为层流底层的导热热阻

69、有若干个同类物理现象,怎样才能说明其单值性条件相似。试设想用什么方法对以实现物体表面温度恒定、表面热流量恒定的边界条件?

答:所谓单值条件是指包含在准则中的各已知物理量,即影响过程特点的那些条件──时间条件、物理条件、边界条件。所谓单值性条件相似,首先是时间条件相似(稳态过程不存在此条件)。然后,几何条件、边界条件及物理条件要分别成比例。采用饱和蒸汽(或饱和液体)加热(或冷却)可实现物体表面温度恒定的边界条件,而采用电加热可实现表面热流量恒定的边界条件。

70、对皆内强制对流换热,为何采用短管和弯管可以强化流体的换热?

答:采用短管,主要是利用流体在管内换热处于入口段温度边界层较薄,因而换热强的特点,即所谓的“入口效应”,从而强化换热。而对于弯管,流体流经弯管时,由于离心力作用,在横截面上产生二次环流,增加了扰动,从而强化了换热。

71、在地球表面某实验室内设计的自然对流换热实验,到太空中是否仍然有效,为什么?

答:该实验到太空中无法得到地面上的实验结果。因为自然对流是由流体内部的温度差从而引起密度差并在重力的作用下引起的。在太空中实验装置格处于失重状态,因而无法形成自然对流,所以无法得到顶期的实验结果。

72、在对流温度差大小相同的条件下,在夏季和冬季,屋顶天花板内表面的对流放热系数是否相同?为什么?

答:在夏季和冬季两种情况下,虽然它们的对流温差相同,但它们的内表面的对流放热系数却不一定相等。原因:在夏季tf<tw,在冬季tf>tw,即在夏季,温度较高的水平壁面在上,温度较低的空气在下,自然对流不易产生,因此放热系数较低.反之,在冬季,温度较低的水平壁面在上,而温度较高的空气在下,自然对流运动较强烈,因此,放热系数较高。

73、试述沸腾换热过程中热量传递的途径。

答:半径R≥Rmin的汽泡在核心处形成之后,随着进一步地的加热,它的体积将不断增大,此时的热量是以导热方式输入,其途径一是由汽泡周围的过热液体通过汽液界面输入,另一是直接由汽泡下面的汽固界面输入,由于液体的导热系数远大于蒸汽,故热量传递的主要途径为前者。

当汽泡离开壁面升入液体后,周围过热液体继续对它进行加热,直到逸出液面,进入蒸汽空间。

74、两滴完全相同的水滴在大气压下分别滴在表面温度为120℃和400℃的铁板上,试问滴在哪块板上的水滴先被烧干,为什么?

答:在大气压下发生沸腾换热时,上述两水滴的过热度分别是℃和℃,由大容器饱和沸腾曲线,前者表面发生的是核态沸腾,后者发生膜态沸腾。虽然前者传热温差小,但其表面传热系数大,从而表面热流反而大于后者。所以水滴滴在120℃的铁板上先被烧干。

75、有—台放置于室外的冷库,从减小冷库冷量损失的角度出发,冷库外壳颜色应涂成深色还是浅色?

答:要减少冷库冷损,须尽可能少地吸收外界热量,而尽可能多地向外释放热量。因此冷库败取较浅的颜色,从而使吸收的可见光能量较少,而向外发射的红外线较多。

76、何谓“漫─灰表面”?有何实际意义?

答:“漫─灰表面”是研究实际物体表面时建立的理想体模型.漫辐射、漫反射指物体表面在辐射、反射时各方向相同.灰表面是指在同一温度下表面的辐射光谱与黑体辐射光谱相似,吸收率也取定值.“漫─灰表面”的实际意义在于将物体的辐射、反射、吸收等性质理想化,可应用热辐射的基本定律了。大部分工程材料可作为漫辐射表面,并在红外线波长范围内近似看作灰体.从而可将基尔霍夫定律应用于辐射换热计算中。

77、某楼房室内是用白灰粉刷的,但即使在晴朗的白天,远眺该楼房的窗口时,总觉得里面黑洞洞的,这是为什么?

答:窗口相对于室内面积来说较小,当射线(可见光射线等)从窗口进入室内时在室内经过多次反复吸收、反射,只有极少的可见光射线从窗口反射出来,由于观察点距离窗口很远,故从窗口反射出来的可见光到达观察点的份额很小,因而就很难反射到远眺人的眼里,所以我们就觉得窗口里面黑洞洞的.78、黑体表面与重辐射面相比,均有J=Eb。这是否意味着黑体表面与重辐射面具有相同的性质?

答:虽然黑体表面与重辐射面均具有J=Eb的特点,但二者具有不同的性质。黑体表面的温度不依赖于其他参与辐射的表面,相当于源热势。而重辐射面的温度则是浮动的,取决于参与辐射的其他表面。

79、要增强物体间的辐射换热,有人提出用发射率ε大的材料。而根据基尔霍夫定律,对漫灰表面ε=α,即发射率大的物体同时其吸收率也大。有人因此得出结论:用增大发射率ε的方法无法增强辐射换热。请判断这种说法的正确性,并说明理由。

答:在其他条件不变时,由物体的表面热阻可知,当ε越大时,物体的表面辐射热阻越小,因而可以增强辐射换热。因此,上述说法不正确。

80、对壳管式换热器来说,两种流体在下列情况下,何种走管内,何种走管外?

(1)清洁与不清洁的;(2)腐蚀性大与小的;(3)温度高与低的;(4)压力大与小的;(5)流量大与小的;(6)粘度大与小的。

答:(1)不清洁流体应在管内,因为壳侧清洗比较困难,而管内可定期折开端盖清洗;(2)腐蚀性大的流体走管内,因为更换管束的代价比更换壳体要低,且如将腐蚀性强的流体置于壳侧,被腐蚀的不仅是壳体,还有管子;(3)温度低的流体置于壳侧,这样可以减小换热器散热损失;(4)压力大的流体置于管内,因为管侧耐压高,且低压流体置于壳侧时有利于减小阻力损;(5)流量大的流体放在管外,横向冲刷管束可使表面传热系数增加;(6)粘度大的流体放在管外,可使管外侧表面传热系数增加。

二、计算题

(一)计算题解题方略

1、稳态导热问题

(1)截面直肋肋片的传热量和肋端温度的求解。

(1)

(2)

(3)

(4)

(5)

(6)

(2)单层及多层平壁在第三类边界条件

(7)

(8)

(9)

下导热问题的计算,(3)单层及多层圆筒壁在第三类边界条件下导热

每米供热管道的散热损失。

2、非稳态导热问题

(1)集总参数法求解任意形状物体(如热电偶)的瞬态冷却或加热问题。

(2)公式法或诺谟图法求解任意形状物体(如热电偶或平板)的瞬态冷却或加热问题。

3、对流换热问题

(1)外掠平板或管内强制对流换热问题在不同流态下的换热分析及计算。

(2)横掠单管或管束的自然或强制对流换热问题的计算。

4、辐射换热问题

(1)两个和三个非凹面组成的封闭腔体,各个表面之间的辐射换热问题的计算,(2)两个平行平板之间的辐射换热问题的计算。

5、注意事项

(1)

对流换热问题中,当流体为气流时,有时需要同时考虑对流和辐射换热;

(2)

对于长直的园管换热问题,往往要计算单位管长的换热量;

(3)

对于管内强迫对流换热问题,应注意层流和紊流时的实验关联式的选取,而且流体定性温度的在不同边界条件下(如常壁温和常热流边界条件)确定方法有两种:算数平均法和对数平均法。

(4)

注意多个非凹面组成的封闭腔体,各个表面之间的辐射换热问题的计算中的某个表面的净辐射热量与任意两个表面之间的辐射换热量的区别与联系。

(二)计算题例题

1、室内一根水平放置的无限长的蒸汽管道,其保温层外径d=583

mm,外表面实测平均温度及空气温度分别为,此时空气与管道外表面间的自然对流换热的表面传热系数h=3.42

W

/(m2

K),墙壁的温度近似取为室内空气的温度,保温层外表面的发射率

问:(1)

此管道外壁的换热必须考虑哪些热量传递方式;

(2)计算每米长度管道外壁的总散热量。(12分)

解:

(1)此管道外壁的换热有辐射换热和自然对流换热两种方式。

(2)把管道每米长度上的散热量记为

当仅考虑自然对流时,单位长度上的自然对流散热

近似地取墙壁的温度为室内空气温度,于是每米长度管道外表面与室内物体及墙壁之间的辐射为:

总的散热量为

x

t

O2、如图所示的墙壁,其导热系数为50W/(m·K),厚度为50mm,在稳态情况下的墙壁内的一维温度分布为:t=200-2000x2,式中t的单位为0C,x单位为m。试求:

(1)墙壁两侧表面的热流密度;

(2)墙壁内单位体积的内热源生成的热量。

解:(1)由傅立叶定律:

所以墙壁两侧的热流密度:

(3)

由导热微分方程得:

3、一根直径为1mm的铜导线,每米的电阻为。导线外包有厚度为0.5mm,导热系数为0.15W/(m·K)的绝缘层。限定绝缘层的最高温度为650C,绝缘层的外表面温度受环境影响,假设为400C。试确定该导线的最大允许电流为多少?

解:(1)以长度为L的导线为例,导线通电后生成的热量为,其中的一部分热量用于导线的升温,其热量为:一部分热量通过绝热层的导热传到大气中,其热量为:。

根据能量守恒定律知:

(2)当导线达到最高温度时,导线处于稳态导热,,4、解:以长度为L的导线为例,通电后生成的热量为I2RL。所生成的热量,一部分通过绝缘层以导热方式传递到大气中,另一部分热量则用于导线温度的升高。

(1)

导热热量

(2)

温度的升高所需要的热量

(3)根据能量守恒定律有:

(4)当时,导线处于最高温度。于是,即

4、初温为250C的热电偶被置于温度为2500C的气流中,设热电偶节点可以近似看成球形,要使其时间常数,问热节点的直径为多大?忽略热电偶引线的影响,且热节点与气流间的表面传热系数为h=300W

/(m2

K),热节点材料的物性参数为:导热系数为20W/(m·K),如果气流与热节点间存在着辐射换热,且保持热电偶时间常数不变,则对所需热节点直径大小有和影响?

解:(1)

解:由于热电偶的直径较小,一般满足集总参数条件,时间常数为,故热电偶直径:

验证毕渥数Bi是否满足集总参数法:

满足集总参数法条件。

(2)若热节点与气流间存在辐射换热,则总的表面传热系数h(包括对流和辐射)将增加,由知,要保持不变,可以使增加,即热节点的直径增加。

5、空气以10m/s速度外掠0.8m长的平板,故热电偶的直径:

验证Bi数是否满足集总参数法:

说明上述假设是正确的。

5、空气以10m/s速度外掠0.8m的长平板,,,计算该平板在临界雷诺数下的、全板平均表面传热系数以及换热量。(层流时平板表面局部努塞尔数,紊流时平板表面局部努塞尔数,板宽为1m,已知,定性温度时的物性参数为:,)

解:(1)根据临界雷诺数求解由层流转变到紊流时的临界长度,此时空气得物性参数为:,由于板长是0.8m,所以,整个平板表面的边界层的流态皆为层流

(2)板长为0.8m时,整个平板表面的边界层的雷诺数为:

解:临界长度

由于板长为0.8m,所以整个平板表面的流动边界层流态皆为层流。此时

当平板长度为0.8m时,雷诺数

全板平均表面传热系数:

全板平均表面换热量

6、一厚度为2δ的无限大平壁,导热系数λ为常量,壁内具有均匀的内热源Φ(单位为W/m3),边界条件为x=0,t=tw1;x=2δ,t=tw2;tw1>tw2。试求平壁内的稳态温度分布t(x)及最高温度的位置xtmax,并画出温度分布的示意图。

解建立数学描述如下:,,据可得最高温度的位置xtmax,即。

温度分布的示意图见图。

7、金属实心长棒通电加热,单位长度的热功率等于Φl(单位是W/m),材料的导热系数λ,表面发射率ε、周围气体温度为tf,辐射环境温度为Tsur,表面传热系数h均已知,棒的初始温度为t0。试给出此导热问题的数学描述。

解:此导热问题的数学描述

8、热处理工艺中,常用银球来测定淬火介质的冷却能力。今有两个直径均为20mm的银球,加热到650℃后分别置于20℃的静止水和20℃的循环水容器中。当两个银球中心温度均由650℃变化到450℃时,用热电偶分别测得两种情况下的降温速率分别为180℃/s及360℃/s。在上述温度范围内银的物性参数ρ=10

500

kg/m3,c=2.62×102J/(kg·K),=360w/(m·K)。试求两种情况下银球与水之间的表面传热系数。

解:本题表面传热系数未知,即Bi数为未知参数,所以无法判断是否满足集总参数法条件。为此.先假定满足集总参数法条件,然后验算。

(1)对静止水情形,由

且,故:

验算Bi数:

满足集总参数条件。

(2)对循环水情形,同理,验算,不满足集总参数法条件。改用诺谟图。

此时。

查图得,故:

9、初始温度为300℃,直径为12cm,高为12cm的短钢柱体,被置于温度为30℃的大油槽中,其全部表面均可受到油的冷却,冷却过程中钢柱体与油的表面传热系数为300w/(m2·K)。钢柱体的导热系数=48W/(m·K),热扩散率a=1×10-5

m2/s。试确定5min后钢柱体中的最大温差。

解:本题属二维非稳态导热问题,可采用相应的无限长圆柱体和无限大平板的乘积解求解。显然,圆柱体内最高温度位于柱体中心,最低温度位于柱体的上、下边角处。

对无限长圆柱:,查教材附录2图l,得:,由附录2图2,得:,其中表示表面过于温度。

所以:

对无限大平板:

由教材图3—6得:,由教材图3—7得:

所以

所以短圆柱中的最低温度:

即:℃

短圆柱中最高温度:

故5min后钢柱体中最大温差:℃

10、温度为50℃,压力为1.01325×105Pa的空气,平行掠过一块表面温度为100℃的平板上表面,平板下表面绝热。平板沿流动方向长度为0.2m,宽度为0.1m。按平板长度计算的Re数为4×l04。试确定:

(1)平板表面与空气间的表面传热系数和传热量;

(2)如果空气流速增加一倍,压力增加到10.1325×105Pa,平板表面与空气的表面传热系数和传热量。

解:本题为空气外掠平板强制对流换热问题。

(1)由于Re=4×104<5×105,属层流状态。故:

空气定性温度:℃

空气的物性参数为,Pr=0.70

故:

W/(m2.K)

散热量W

(2)若流速增加一倍,压力,则,而:,故:

所以:,属湍流。

据教材式(5—42b)=961

W/(m2·K)

散热量:W11、用热线风速仪测定气流速度的试验中.将直径为0.1mm的电热丝与来流方向垂直放置,来流温度为25℃,电热丝温度为55℃,测得电加热功率为20W/m。假定除对流外其他热损失可忽略不计。试确定此时的来流速度。

解本题为空气外掠圆柱体强制对流换热问题。

由题意,=20

W/m,由牛顿冷却公式

W/(m2·K)

定性温度:℃

空气的物性值:,m2/s,由此得:

假设Re数之值范围在40-4000,有:,其中C=0.683,n=0.466

即:,得Re=233.12符合上述假设范围。

故:m/s12、一所平顶屋,屋面材料厚δ=0.2m,导热系数λw=0.6W/(m·K),屋面两侧的材料发射率ε均为0.9。冬初,室内温度维持tf1=18℃,室内四周墙壁亦为18℃,且它的面积远大于顶棚面积。天空有效辐射温度为-60℃。室内顶棚表面对流表面传热系数h1=0.529W/(m2·K),屋顶对流表面传热系数h2=21.1W/(m2·K),问当室外气温降到多少度时,屋面即开始结霜(tw2=0℃),此时室内顶棚温度为多少?此题是否可算出复合换热表面传热系数及其传热系数?

解:⑴求室内顶棚温度tw1

稳态时由热平衡,应有如下关系式成立:

室内复合换热量Φ’=导热量Φ=室内复合换热量Φ”;

因Φ’=Φ,且结霜时℃,可得:,即

解得:℃。

⑵求室外气温tf2

因Φ”=Φ,可得:,即:

⑶注意到传热方向,可以求出复合换热系数hf1、hf2

依据,得

依据,得

⑷求传热系数K13、一蒸汽冷凝器,内侧为ts=110℃的干饱和蒸汽,汽化潜热r=2230,外侧为冷却水,进出口水温分别为30℃和80℃,已知内外侧换热系数分别为104,及3000,该冷凝器面积A=2m2,现为了强化传热在外侧加肋,肋壁面积为原面积的4倍,肋壁总效率η=0.9,若忽略冷凝器本身导热热阻,求单位时间冷凝蒸汽量。

解:对数平均温差:℃,℃

传热系数

单位时间冷凝蒸汽量:

14、一台逆流套管式换热器在下列条件下运行,传热系数保持不变,冷流体质流量0.125kg/s,定压比热为4200J/kg℃,入口温度40℃,出口温度95℃。热流体质流量0.125kg/s,定压比热为2100J/kg℃,入口温度210℃,(1)该换热器最大可能的传热量及效能分别是多少?(2)若冷、热流体侧的对流换热系数及污垢热阻分别为2000W/m2℃、0.0004m2℃/W、120W/m2℃、0.0001m2℃/W,且可忽略管壁的导热热阻,试利用对数平均温差法确定该套管式换热器的换热面积。

解:(1)确定换热器最大可能的传热量:

确定换热器的效能:

根据热平衡方程式确定热流体出口温度,即:

确定换热器的面积:

对数平均温差:℃,℃

1.热交换器的总传热系数与传热方程:。

能量守恒方程(不计散热损失):

该式与一般传热方程的区别在于传热温差是沿程变化的。

2.对数平均温差是在若干简化假设条件下得出的换热器沿程传热温差的积分平均值。对各种不同流动布置形式的换热器有,ε△t称为温差修正系数。

下载传热学2章稳态导热总结问答题及答案word格式文档
下载传热学2章稳态导热总结问答题及答案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    物理实验报告-稳态法导热系数测定实验

    稳态法导热系数测定实验 一、实验目的 1、通过实验使学生加深对傅立叶导热定律的认识。 2、通过实验,掌握在稳定热流情况下利用稳态平板法测定材料导热系数的方法。 3、确定......

    稳态作业4及答案

    第四次作业 1、电力系统潮流计算中为什么采用节点电压方程,而不采用回路电流方程? 2、高斯-塞德尔潮流计算法和牛顿-拉夫逊潮流计算法各有什么特点? 3、电力系统节点可以分为那几......

    问答题及答案

    试述游泳教学具有哪些特点: 答:1、安全是首要问题,2、重视熟悉水性的教学,3、呼吸是教学重点,4、重新建立条件反射,5、用力习惯不一样,6、无视觉和听觉的帮助,只能依靠本体感觉,7、体......

    雨后问答题题目答案大总结

    雨后问答题题目答案大总结.txt43风帆,不挂在桅杆上,是一块无用的布;桅杆,不挂上风帆,是一根平常的柱;理想,不付诸行动是虚无缥缈的雾;行动,而没有理想,是徒走没有尽头的路。44成功的门......

    桥梁工程问答题及答案

    1、公路桥梁设计荷载有哪几类,荷载组合方式有哪几种,试说明。 永久荷载,可变荷载,偶然荷载 承载能力极限状态:基本组合,偶然组合 正常使用极限状态:短期效应组合,长期效应组合 2、公......

    桥梁工程问答题答案(★)

    1、公路桥梁设计荷载有哪几类,荷载组合方式有哪几种,试说明。 永久荷载,可变荷载,偶然荷载 承载能力极限状态:基本组合,偶然组合 正常使用极限状态:短期效应组合,长期效应组合 30公......

    马克思问答题答案

    41、简述马克思主义的科学内涵以及学习马克思主义的根本方法。(小P5,10)答:内涵1.马克思主义是马克思,恩格斯共同创立的。 2.马克思主义不仅包括它的创始人马克思、恩格斯的理论......

    就业指导问答题答案

    就业指导上课问答题解 971.现阶段的毕业生就业机制是什么?(5);答:市场导向,政府调控,学校推荐,学生与用人单位;2.某公司与毕业生不签订《就业协议书》,只同意出;这个算签约;3.某......