小学五年级第五章整式的乘除单元自我评价

时间:2019-05-12 16:28:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学五年级第五章整式的乘除单元自我评价》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学五年级第五章整式的乘除单元自我评价》。

第一篇:小学五年级第五章整式的乘除单元自我评价

A.4yzB.8xyC.4yz+4xzD.8xz

12.如果a,b,c满足a2+2b2+2c2-2ab-2bc-6c+9=0,则abc等于()A.9B.27C.54D.81

二、填空题(10×3=30)

1、计算:3a + 2a = ______;3a·2a =______;3a ÷2a =______;

a3·a2 =______;a3 ÷a2 =______;(—3ab2)2 =______

2、计算:(2x + y)(2x — y)=____________;(2a —1)2= _________________。

3、计算:x3· x —3= ______;a 6÷a2·a3 =___________;2 0 + 21 =______。—

4、计算:()·3ab2 = 9ab5;-12a3 bc÷((4x2y-8x 3)÷4x 2 =___________。

5.利用平方差公式直接写出结果:50)= 4a2 b; 12×49=____________; 33

2利用完全平方公式直接写出结果:102=_____________

6、当x = 12,y = —,代数式:x2—2xy + y2—2的值等于___________。33

7.若(x+y+z)(x-y+z)=(A+B)(A-B),且B=y,则A=_________________.8.若(1+x)(2x2+mx+5)的计算结果中X2项的系数为-3,则m=________

9.已知(3x-2)0有意义,则x应满足的条件是_________________.10.利用平方差人计算(2+1)(22+1)(24+1)(28+1)+1=___________

三、解答题

1、化简或计算(4×4=16)

1

1、(2)0—+(-1)4

2

223、4x3 ÷(-2x)—(2x2-x)÷(1x)23、[(x-y)2—(x + y)2]÷(—4xy)

4、(a+3)2-2(a +3)(a-3)+(a-3)

25、化简求值(6分)

(2a +b)2—(a+1-b)(a+1 + b)+a1,其中a =21,b = —2

2四.拓展与提高(4×5=20)

1、已知xn5,yn3,求(1()x2y)2n(2)xy4n3n2、已知xya,用含a的代数式表示(xy)3(2x2y)3(3x3y)

33.已知(2-a)(3-a)=5 , 试求(a-2)2+(3-a)2的值

4.已知5a=5,5b=5-1,试求27a÷33b的值

参考答案

一、ADBCCABCADCB

二、1、5a6a21.5a5a9a2b4

2.4x2y24a24a1

3.1a71.5

4.3b3-3acy-2x

5.24998

910404

6.-1

7.x+y

8.-5

9.x

210.216

三、1、-22.-3x+23.14.四、1.(1)5625(2)125

2.216a9

3.11

4.729

五、(1)1222n2n(n1)(n2)

(2)204

六、略

365.4a22b24ab5

第二篇:《整式乘除100题》

整式乘除计算 100 题 使用说明:本专题的制作目的是提高学生在整式乘除这一部分的计算能力。

大致分了三个模块:①单项式与单项式(34

题);②单项式与多项式(33

题);③多项式与多项式(33

题); 共

题。

建议先仔细研究方法总结、易错总结和例题解析,再进行巩固练习。

模块一

单项式与单项式

方法总结:

单项式乘单项式:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中含有的字

母,则连同它的指数作为积的一个因式.单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连

同它的指数一起作为商的一个因式.

易错总结:

相同字母相乘,注意是字母不变,指数相加;

注意单项式相乘,他们的系数也是分别相乘,不是相加; 系数里的负号要注意不要忘掉

单独出现的字母最后要作为积的一个因式,不要遗漏

例题解析:

— ꅘ y 2 · 2ꅘ2 y 2 . 解:

— ꅘ y 2 · 2ꅘ2 y 2 =

— ꅘ y 2

· 4ꅘ4 y 2

=— 4ꅘ5 y 4 . ……【系数、相同字母分别相乘】

巩固练习:

1.计算:

— 8a⺁

·

a 2 ⺁ . 4

22ꅘ 3 · — 져ꅘ y 3 . 4.计算:a 4 ·

— a 3÷ — a 2. 5.计算:— — ꅘ2 3 · — ꅘ 2 2 — ꅘ · — ꅘ 3 3 . 6.计算:

— ꅘ6

— — 3ꅘ 3 2 — [ — 2ꅘ 2 ] 3 . 7.计算:

— a 2 ·

— a 3

·

— a

+

— a 2—

— a 3. 8.计算:a —2 ⺁ 2 · a 2 ⺁ —2 —3 . 9.计算:

— 2ꅘ 2 ·(ꅘ2)3 · — ꅘ 2 . 10.计算:— 21ꅘ2 y 4 ÷ — 3ꅘ 2 y 3 . 11.计算:

2a 3 ⺁ 3

— 8a⺁ 2

÷ — 4a 4 ⺁ 3

. 12— a 2 · a 4 ÷ a 3 . 13.计算:12a⺁ 2

a⺁c 4 ÷ — 3a 2 ⺁ 3 c ÷ 2 a⺁c 3 . 17— a 3·

— a 2

18.计算:(2a)3 — a · a 2 + 3a 6 ÷ a 3 . 19.(a 5)2

·(a 2)2

—(a 2)4

·(a 3)2 . 20.ꅘ + 2ꅘ + 3ꅘ + ꅘ · ꅘ2 · ꅘ 3 + ꅘ 3 2 . 21.计算:ꅘm · ꅘ n 3 ÷ ꅘ m—1 · 2ꅘ n—1 . 22.计算:

— 2ꅘ2 y · 5ꅘ y 3 ·

— 3

ꅘ 3 y 2

. 5

23.ꅘ5 · ꅘ 져 + ꅘ 6 ·(— ꅘ 3)2 + 2(ꅘ 3)4 . 24.计算:

— 1

a⺁ 2

·

— 2a 3 ⺁c . 4

25.计算:— 2ꅘ — 3ꅘ2 y 2 3 · 1

y 2 + t ꅘ 져 y 8 . 32 3 4 14.计算:a 3 · a 5 · a 2 +

a 5

a 2· a 2 . 15.化简:(4ꅘ2 y)2 ÷ 8y 2 . / 服务内核部-初数教研

10.计算:6ꅘ y ·

ꅘ y — 1

y

+ 3ꅘ y2 . 2

11.计算:

8a 2 ⺁ — 4a⺁ 2

÷ — 1

a⺁ 2

服务内核部-初数教研

/ 28.— 2ꅘ2 y 2 3 · 3ꅘ y 4 . 29.计算:— 1

a 3 · — 6a⺁ 2 . 3

30.计算:2ꅘ3 y — 2ꅘ y + — 2ꅘ 2 y 2 . 312a 2 ⺁ ·

— 3⺁ 2 c ÷ 4a⺁ 3

. 32.计算:

— 3ꅘ2 y 3

·

— 2 ꅘ y 2

33.计算:

— 3a 2·a 2 ÷ — 1 a 2

2. 3 2 34.计算:(— 2ꅘm y n)2 ·(— ꅘ 2 y n)3 ·(— 3ꅘ y 2). 模块二

单项式与多项式

方法总结:

单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.

多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.

易错总结:

巩固练习:

1.化简:

— 져ꅘ2 y 2ꅘ 2 y — 3ꅘ y 3 + ꅘ y . 22ꅘ y 5ꅘ y 2 + 3ꅘ y — 1 . 3.计算:

— a 2 ⺁c + 2a⺁ 2 — 3 ac

·

— 2 ac 2 . 5 3 4.计算:— 2

ꅘ2 y — 3

ꅘ y + 3ꅘ 2 y 3 — 6ꅘ 3 . 3 2 5.计算:ꅘn+1 · ꅘ 2n — ꅘ n+1 + ꅘ 2 . 6.计算:2 2 3a 2 2— 1 . 7.计算:a⺁ 2 · 2a 2 ⺁ — 3a⺁ 2 . 2

82a 2

3a⺁ 2 — 5a⺁ 3

. 9.计算:

— 4 a⺁ 2 ·

— t

a 2 ⺁ — 12a⺁ + 3

⺁ 2

. 3 2 4 12.化简3a 5 ⺁ 3 — a 4 ⺁ 2

÷ — a 2 ⺁ 2

13.计算:

2져ꅘ3 — 18ꅘ 2 + 3ꅘ ÷ — 3ꅘ . 14.计算:

45a 3 — 1

a 2 ⺁ + 3a

÷ — 1

a . 6 3 15.计算:

6m 2 n — 6m 2 n 2 — 3m 2

÷ — 3m 2

. 16.计算:

— ꅘ2 3 — 3ꅘ 2 ꅘ 4 + 2ꅘ — 2 . 17.计算:

— 1

ꅘ y 2 3 — 2ꅘ y ꅘ y — ꅘ2 y 5 . 3

18.计算:a⺁ 2 — 2a⺁ + 4

· 1

a⺁ —

a⺁ 2 . 3 3 2 2 19.计算:

— 2

a ⺁(6a ⺁

— 3

a + 3 ⺁).2 20.计算:2a a — 2a 3

— 3a 2. 21.化简 1

单项式乘多项式中的每一项时,注意不要漏掉前面的符号

注意多项式中的每一项都要和单项式相乘,不要漏项

例题解析:

计算:

— 2ꅘ y 2 2 ·

y 2 — 1

ꅘ2 — 3

ꅘ y . 4 2 2 解:原式= 4ꅘ2 y 4 · 1

y 2 — 1

ꅘ 2 — 3

ꅘ y 4 2 2 = ꅘ2 y 6 — 2 ꅘ 4 y 4 — 6 ꅘ 3 y 5 .

……【用单项式去乘多项式的每一项】

/ 服务内核部-初数教研

3ꅘ2 — y — 2

2ꅘ2 + y . 24.计算:(— 2ꅘ y 2)2 · 1

y 2 — 1

ꅘ2 — 3

ꅘ y . 4 2 2 25.计算:(3ꅘ y)2(ꅘ2 — y 2)—(4ꅘ 2 y 2)2 ÷ 8y 2 + t ꅘ 2 y 4 . 26.计算:

4a ⺁(2a 2 ⺁ 2 — a ⺁

+ 3)

27.计算:2ꅘ — ꅘ2 + 3ꅘ — 4 — 3ꅘ 2ꅘ + 1 . 2

28.计算:ꅘ ꅘ2 — ꅘ — 1 + 3 ꅘ 2 + ꅘ — 1

ꅘ 3ꅘ 2 + 6ꅘ . 3

29.化简:ꅘ 1

ꅘ + 1

— 3ꅘ 3

ꅘ — 2 . 2 2 30.求值:ꅘ2 3ꅘ — 5 — 3ꅘ ꅘ 2 + ꅘ — 3,其中 ꅘ = 1 . 2

31.先化简,再求值:

ꅘ2 — ꅘ — 1

+ 2 ꅘ2 + 2 — 1

ꅘ 3ꅘ 2 + 6ꅘ — 1,其中 ꅘ =— 3. 3

33.先化简,再求值:ꅘ — 2 1 — 3

ꅘ — 2

ꅘ 2 — ꅘ

,其中 ꅘ = 4. 2 3 2 模块三

多项式乘多项式

方法总结:

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.

易错总结:

在不引起歧义的情况下,单项式和其它单项式或多项式作运算时本身可以不加括号;

计算时注意符号变化,不要丢掉单独的字母或数字;

多项式与多项式相乘后如果出现同类项必须合并.

合并同类项时,可以在同类项下边标上相同的符号,避免引起错误.例题解析:

计算:

ꅘ — a

ꅘ2 + aꅘ + a 2

解:

ꅘ — a

ꅘ2 + aꅘ + a 2

= ꅘ3 + aꅘ 2 + a 2 ꅘ — aꅘ 2 — a 2 ꅘ — a 3 ……【用一个多项式的每一项乘另一个多项式的每一项】

= ꅘ3 — a 3 . 巩固练习:

12ꅘ + 5y

3ꅘ — 2y . 2a — 2⺁(a + ⺁). 33

2ꅘ — 1 . 6ꅘ + y

ꅘ — 2y . 72ꅘ + 3y

3ꅘ — 2y . 8— 1

ꅘ + — 3ꅘ ꅘ + 3 . 9.计算:

ꅘ 1

ꅘ — 2 . 10a + 3

2a + 5

. 11m + 2

2m — 3 . 12ꅘ — 3

2ꅘ + 5 . 13.计算:

4ꅘ2 y — 5ꅘ y 2

· 져ꅘ 2 y — 4ꅘ y 2 . 14.计算:

ꅘm — 2y n

3ꅘ m + y n

. 15.计算:

ꅘ — 1

ꅘ2 + ꅘ + 1 . 18.计算:

ꅘ — a

ꅘ2 + aꅘ + a 2

.19.计算:

ꅘ + y

ꅘ2 — ꅘ y + y 2

. 203

ꅘ + 1

ꅘ — 3 . 21ꅘ + y — 2

ꅘ — y . 22.计算:

2a — ⺁ + c

2a — ⺁ — c . 23.— ꅘ3 + 2ꅘ 2 — 5

2ꅘ 2 — 3ꅘ + 1 . 24.计算:

ꅘ + 5

2ꅘ — 3 — 2ꅘ ꅘ2 — 2ꅘ + 3 . 25.计算:

ꅘ2 — 2ꅘ + 3

ꅘ — 1

ꅘ + 1 . 26ꅘ 4ꅘ — 3 — 2 ꅘ — 3

ꅘ + 1 . 272ꅘ — 3

ꅘ + 4

ꅘ — 1

ꅘ + 1 . 30— 1

ꅘ + 2

ꅘ ꅘ + 3 . 31ꅘ + 3

ꅘ — 5

— 3 ꅘ — 1

ꅘ + 6 . 325ꅘ + 3y

3y — 5ꅘ

4ꅘ — y

4y + ꅘ . 33.计算:a⺁ a + ⺁

a — ⺁

a 2 + ⺁ 2

. 4.计算:

2ꅘ + 3y

ꅘ — 2y . 5.计算:(ꅘ2 y 3 — ꅘ 3 y 2)·(ꅘ 2 — y 2). / 服务内核部-初数教研2 3 4 16.计算:(2m + n 2)(4m 2 — 2mn 2 + n 4). 17.化简:

3ꅘ2 + 2ꅘ + 1

3ꅘ — 1 . 服务内核部-初数教研

/ 服务内核部-初数教研

/

第三篇:第六章整式的乘除单元教学计划

第六章——整式的乘除

单元教学计划

一、教学目标:

1、经历探索整式乘、除运算法则的过程,理解整式乘、除运算的算理,积累数学活动经验。

2、了解整数指数幂的意义和整数指数幂的运算性质,会进行简单的整式乘、除运算(整式的除法只要求到整式除以单项式且结果是整式)

3、进一步用科学记数法表示小于1的正数,能用生活中的实例体会这些数的意义,发展数感。

4、能推导乘法公式:(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2,并能利用公式进行简单计算;了解公式的几何背景,发展几何直观。

5、进一步学习用类比、归纳、转化等方法进行思考与运算,发展运算能力,并进一步体会字母表示数的意义,发展符号意识。

6、在整式乘、除的学习过程中,发展勇于探究、质疑及合作交流的精神。

二、教学重点: 整式乘、除法则的应用

三、教学难点

整式乘、除法则的灵活应用,平方差公式及完全平方公式的应用。

四、课时安排

1、同底数幂的乘法

1课时

2、幂的乘方与积的乘方

2课时

3、同底数幂的除法

1课时

4、零指数幂与负整数指数幂

3课时

5、整式的乘法

4课时

6、平方差公式

7、完全平方公式

8、整式的除法

回顾与思考

单元过关及试卷讲评

2课时 2课时 2课时 2课时 2课时

第四篇:整式的乘除与因式分解全单元教案

整式的乘除与因式分解全单元教案

本资料为woRD文档,请点击下载地址下载全文下载地址

件www.xiexiebang.com 第十五章整式的乘除与因式分解

§15.1.1

整式

教学目标

.单项式、单项式的定义.

2.多项式、多项式的次数.

3、理解整式概念.

教学重点

单项式及多项式的有关概念.

教学难点

单项式及多项式的有关概念.

教学过程

Ⅰ.提出问题,创设情境

在七年级,我们已经学习了用字母可以表示数,思考下列问题

.要表示△ABc的周长需要什么条件?要表示它的面积呢?

2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?

结论:、要表示△ABc的周长,需要知道它的各边边长.要表示△ABc•的面积需要知道一条边长和这条边上的高.如果设Bc=a,Ac=b,AB=c.AB边上的高为h,•那么△ABc的周长可以表示为a+b+c;△ABc的面积可以表示为•c•h.

2.小王的平均速度是.

问题:这些式子有什么特征呢?

(1)有数字、有表示数字的字母.

(2)数字与字母、字母与字母之间还有运算符号连接.

归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.

判断上面得到的三个式子:a+b+c、ch、是不是代数式?(是)

代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.

Ⅱ.明确和巩固整式有关概念

(出示投影)

结论:(1)正方形的周长:4x.

(2)汽车走过的路程:vt.

(3)正方体有六个面,每个面都是正方形,这六个正方形全等,•所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.

(4)n的相反数是-n.

分析这四个数的特征.

它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.

请同学们阅读课本P160~P161单项式有关概念.

根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.

结论:4x、vt、6a2、a3、-n、ch是单项式.它们的系数分别是4、1、6、1、-

1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、•ch都是二次单项式;a3是三次单项式.

问题:vt中v和t的指数都是1,它不是一次单项式吗?

结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.

生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?

写出下列式子(出示投影)

结论:(1)t-5.(2)3x+5y+2z.

(3)三角尺的面积应是直角三角形的面积减去圆的面积,即ab-3.12r2.

(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.

我们可以观察下列代数式:

a+b+c、t-

5、3x+5y+2z、ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?

这样推理合情合理.请看投影,熟悉下列概念.

根据定义,我们不难得出a+b+c、t-

5、3x+5y+2z、ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.

a+b+c的项分别是a、b、c.

t-5的项分别是t、-5,其中-5是常数项.

3x+5y+2z的项分别是3x、5y、2z.

ab-3.12r2的项分别是ab、-3.12r2.

x2+2x+18的项分别是x2、2x、18.

找多项式的次数应抓住两条,一是找准每个项的次数,•二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.

这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也体会到符号的魅力所在.我们把单项式与多项式统称为整式.

Ⅲ.随堂练习

.课本P162练习

Ⅳ.课时小结

通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,•发展符号感.

Ⅴ.课后作业

.课本P165~P166习题15.1─1、5、8、9题.

2.预习“整式的加减”.

课后作业:《课堂感悟与探究》

§15.1.2整式的加减(1)

教学目的:

、解字母表示数量关系的过程,发展符号感。

2、会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。

教学重点:

会进行整式加减的运算,并能说明其中的算理。

教学难点:

正确地去括号、合并同类项,及符号的正确处理。

教学过程:

一、课前练习:

、填空:整式包括

2、单项式的系数是

、次数是

3、多项式是

项式,其中二次项

系数是

一次项是

,常数项是

4、下列各式,是同类项的一组是()

(A)与

(B)与

(c)与

5、去括号后合并同类项:

二、探索练习:、如果用a、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为

交换这个两位数的十位数字和个位数字后得到的两位数为

这两个两位数的和为

2、如果用a、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为

交换这个三位数的百位数字和个位数字后得到的三位数为

这两个三位数的差为

●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?

说说你是如何运算的?

▲整式的加减运算实质就是

运算的结果是一个多项式或单项式。

三、巩固练习:、填空:(1)与的差是

(2)、单项式、、、的和为

(3)如图所示,下面为由棋子所组成的三角形,一个三角形需六个棋子,三个三角形需

()个棋子,n个三角形需

个棋子

2、计算:

(1)

(2)

(3)

3、(1)求与的和

求与的差

4、先化简,再求值:

其中

四、提高练习:

、若A是五次多项式,B是三次多项式,则A+B一定是

(A)

五次整式

(B)八次多项式

(c)三次多项式

(D)次数不能确定

2、足球比赛中,如果胜一场记3a分,平一场记a分,负一场

记0分,那么某队在比赛胜5场,平3场,负2场,共积多

少分?

3、一个两位数与把它的数字对调所成的数的和,一定能被14

整除,请证明这个结论。

4、如果关于字母x的二次多项式的值与x的取值无关,试求m、n的值。

五、小结:整式的加减运算实质就是去括号和合并同类项。

六、作业:第8页习题1、2、3

15.1.2整式的加减(2)

教学目标:1.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。

2.通过探索规律的问题,进一步体会符号表示的意义,发展符号感,发展推理能力。

教学重点:整式加减的运算。

教学难点:探索规律的猜想。

教学方法:尝试练习法,讨论法,归纳法。

教学用具:投影仪

教学过程:

I探索练习:

摆第1个“小屋子”需要5枚棋子,摆第2个需要

枚棋子,摆第3个需要

枚棋子。按照这样的方式继续摆下去。

(1)摆第10个这样的“小屋子”需要

枚棋子

(2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?小组讨论。

二、例题讲解:

三、巩固练习:

、计算:

(1)(14x3-2x2)+2(x3-x2)

(2)(3a2+2a-6)-3(a2-1)

(3)x-(1-2x+x2)+(-1-x2)(4)(8xy-3x2)-5xy-2(3xy-2x2)

2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A

(2)A-3B

3、列方程解应用题:三角形三个内角的和等于180°,如果三角形中第一个角等于第二个角的3倍,而第三个角比第二个角大15°,那么

(1)第一个角是多少度?

(2)其他两个角各是多少度?

四、提高练习:

、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+c=0,问c是什么样的多项式?

2、设A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+

(y+3)2=0,且B-2A=a,求A的值。

3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:

试化简:│a│-│a+b│+│c-a│+│b+c│

结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

业:课本P14习题1.3:1(2)、(3)、(6),2。

《课堂感悟与探究》

件www.xiexiebang.com

第五篇:整式的乘除与因式分解单元测试卷及答案

选择题(每小题4分,共24分)

1.(4分)下列计算正确的是()

A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6

2.(4分)(x﹣a)(x2+ax+a2)的计算结果是()

A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a

33.(4分)下面是某同学在一次检测中的计算摘录:

①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a

2其中正确的个数有()

A.1个B.2个C.3个D.4个

4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是()

A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+

15.(4分)下列分解因式正确的是()

A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)

6.(4分)(2003常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为()

A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab

答案:

1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。1923992

分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.

解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;

B、应为a4÷a=a3,故本选项错误;

C、应为a3a2=a5,故本选项错误;

D、(﹣a2)3=﹣a6,正确.

故选D.

点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.

2.考点:多项式乘多项式。192399

2分析:根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,计算即可.

解答:解:(x﹣a)(x2+ax+a2),=x3+ax2+a2x﹣ax2﹣a2x﹣a3,=x3﹣a3.

故选B.

点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.

3.考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;整式的除法。1923992

分析:根据单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的性质,同底数幂的除法的性质,对各选项计算后利用排除法求解.

解答:解:①3x3(﹣2x2)=﹣6x5,正确;

②4a3b÷(﹣2a2b)=﹣2a,正确;

③应为(a3)2=a6,故本选项错误;

④应为(﹣a)3÷(﹣a)=(﹣a)2=a2,故本选项错误.

所以①②两项正确.

故选B.

点评:本题考查了单项式乘单项式,单项式除单项式,幂的乘方,同底数幂的除法,注意掌握各运算法则.

4考点:完全平方公式。1923992

专题:计算题。

分析:首先找到它后面那个整数x+1,然后根据完全平方公式解答.

解答:解:x2是一个正整数的平方,它后面一个整数是x+1,∴它后面一个整数的平方是:(x+1)2=x2+2x+1.

故选C.

点评:本题主要考查完全平方公式,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.

5,考点:因式分解-十字相乘法等;因式分解的意义。1923992

分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.

解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误;

B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;

C、是整式的乘法,不是分解因式,故本选项错误;

D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.

故选B.

点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.

6考点:因式分解-十字相乘法等;因式分解的意义。192399

2分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.

解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误;

B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;

C、是整式的乘法,不是分解因式,故本选项错误;

D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.

故选B.

点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.

6.考点:列代数式。1923992

专题:应用题。

分析:可绿化部分的面积为=S长方形ABCD﹣S矩形LMPQ﹣S?RSTK+S重合部分.

解答:解:∵长方形的面积为ab,矩形道路LMPQ面积为bc,平行四边形道路RSTK面积为ac,矩形和平行四边形重合部分面积为c2.

∴可绿化部分的面积为ab﹣bc﹣ac+c2.

故选C.

点评:此题要注意的是路面重合的部分是面积为c2的平行四边形.

用字母表示数时,要注意写法:

①在代数式中出现的乘号,通常简写做“”或者省略不写,数字与数字相乘一般仍用“×”号;

②在代数式中出现除法运算时,一般按照分数的写法来写;

③数字通常写在字母的前面;

④带分数的要写成假分数的形式.

以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工作。

下载小学五年级第五章整式的乘除单元自我评价word格式文档
下载小学五年级第五章整式的乘除单元自我评价.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    第一章 整式的乘除单元测试

    第一章整式的乘除单元测试(时间120分钟,满分150分)A卷(100分)一、选择题:本大题共10小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各题中计算错误......

    整式的乘除主题单元教学设计[优秀范文5篇]

    整式的乘除 主题单元教学设计模板 (填写说明:文档内所有斜体字均为提示信息,在填写后请删除提示信息) 主题单元标 题 作者姓名 整式的乘除 学科领域(在学科名称后打√ 表示......

    初中数学复习整式的乘除

    专题01整式的乘除阅读与思考指数运算律是整式乘除的基础,有以下5个公式:,,,,,.学习指数运算律应注意:1.运算律成立的条件;2.运算律中字母的意义:既可以表示一个数,也可以表示一个单项式或......

    整式乘除与因式分解复习教案

    整式的乘除与因式分解复习菱湖五中 教学内容 复习整式乘除的基本运算规律和法则,因式分解的概念、方法以及两者之间的关系。通过练习,熟悉常规题型的运算,并能灵活运用。 教学......

    整式的乘除导学案设计

    整式的乘除导学案设计 【】教案是教师对教学内容,教学步骤,教学方法等进行具体的安排和设计的一种实用性教学文书,都要经过周密考虑,精心设计而确定下来,体现着很强的计划性。在......

    第八单元自我评价

    第八单元自我评价 姓名成绩 一、看拼音写词语 bā wànɡnà mânwâi dàochōnɡ jīlànɡ fâishíjīɡuān jiàn()() ()() ()()() pínɡ lǐzàn xǔpàn wànɡhónɡ rùnfǎnɡ......

    第六单元自我评价

    第六单元自我评价 一、看拼音,写词语 jiān dìnɡɡâ kâdī chãnsī háobǔ shācōnɡ lǜtâ yìtí fánɡ() () ()()()()() ()chuán rǎnxuâ pōcí àifǔ mōrù shãnfù záq......

    五年级期末自我评价[精选合集]

    本人在校热爱祖国,尊敬师长,团结同学,乐于助人,是老师的好帮手,同学的好朋友。我学习勤奋,积极向上,喜欢和同学讨论并解决问题,经常参加班级学校组织的各种课内外活动。在家尊老爱幼......