第一篇:物理化学(含结构化学)1996
北京大学1996年研究生入学考试试题
考试科目:物理化学(含结构化学)考试时间:
招生专业: 研究方向:
指导教师:
试 题:
单独考试者不答带“*”号的题
答案一律写在答案纸上,在试题纸上答题无效
物理化学部分(60分)
一. 回答下列问题(15分)
(1)一个含有K+、Na+、Cl-、NO3-的水溶液的平衡体系最多能有几相平衡共存?试写出一组在自由度最大时能描述该体系状态的力学变量。
(2)纯组分A和B能形成不稳定化合物AB,A的熔点比B低。试画出该体系在定压下的温度~成分示意图,并标明各相区的组成。
(3)298K,一种摩尔质量为120g·mol-1的液体A在水中溶解度为0.012g/100g水,设水在该液体中不溶解。试计算298K下该液体在水的饱和溶液中的活度和活度系数。已知水的摩尔质量为18g·mol-1。(请注明选择的标准态)
二.(12分)某气体的状态方程为(b为大于0的常数)
(1)该气体分别经焦耳实验和焦耳-汤姆逊实验后体系温度如何变化?(2)求此气体在T,P时的逸度。
(3)阐述常数b的物理意义。
三.(15分)
(1)某有机化合物A,在酸的催化下发生水解反应。在323KpH=5的溶液中水解时,半衰期为69.3分,在pH=4的溶液中水解时,半衰期为6.93分。已知在二个pH值各自条件下,半衰期与A的始浓度无关。该反应速率方程为。请求:α、β值及323K时的速率常数k。
(2)用波长436.5nm的光激发气相2,3-丁二烯,已知:φisc=0.97,φp=0.15,τf=24ns,τp=0.0015s。假设单线态只进行荧光和系间穿越,请求:系间穿越速率常数kisc;荧光速率常数kf;磷光速率常数kp;三线态的非辐射衰变速率常数kT´。
四.(10分)请将反应H2(Pθ)+Ag2O(s)=2Ag(s)+H2O(l)设计成可逆电池。已知298K时上述反应的恒容热效应为-252.79kJmol-1,测得所设计的可逆电池的电动势的温度系数为-5.044×10-4V·K-1。请求算298K时电极OH-(aq)|Ag2O+Ag的标准还原电极电势。(已知:298K时Kw=10-14)
五.(8分)
(1)请用统计方法求算298K,1molNO气体统计熵值。已知NO的θr=2.42K,θv=2690K,电子第一激发态与电子基态能级的波数差为121cm-1,电子基态与第一激发态的简并度均为2。
(2)求算298K时,1molN2理想气体在占据J=3能级上的最概然分子数。已知θr=2.86K
第二篇:结构化学小结
结构化学小结
1、结构化学小结
结束了一年的物理化学课程,终于迎来了传说中的专业课,这里面最难的据说就是结构化学。老师第一节课开场便是对上一年纪学生成绩的总结,给我们一个下马威似的警告:不学就肯定不会过。于是我们经历了从开始的将信将疑半信半疑到后来的深信不疑,对这片不曾涉足的微观领域以叹为观止的心态仰视,然后俯首自求多福似地祈求从字里行间寻出熟悉的味道,终于,在无机化学和物理化学的痕迹中逐渐认识了这位蛋白质似的先生,也了解到原来所谓的结构化学真的是化学的结构框架,从前的结论也找到了前因,在化学潜游中愈行越深愈行愈远。
都说结构化学课程在化学专业课程中具有重要的地位,它不仅有利于完善我们的化学专业知识结构,而且还可以培养我们探讨宏观世界,微观世界及其相对联系的思维能力。它主要是反映20世纪20年代以来,人们在研究物质微观体系得出的许多重要的化学知识和规律,而主要的核心内容是从微观的角度探讨物质的结构与性能间的关系。所以在学习过程中,既需要有严密的逻辑思维能力,还要有较好的空间想象能力,不仅要有一定的数学、物理基础,还要有与化学专业相关的基础知识,才能从化学的角度认识物质结构与性能的本质问题。这对我这样并不是十分聪明,基础功也不是那么扎实的学生来说,这无疑是一个巨大的挑战。
可是上课时候因为不懂或是懒惰造成的溜号还是终止于老师课堂提问这武器,为了不至于被低着头红着脸说不会得六十,我们还是应激出了复习并且上课认真听讲记笔记,这确实对课程的学习有很大的帮助,也渐渐养成了积极思考的习惯,虽然学习和理解还是会出现各种问题,但是习惯就是一辈子的财富,所以我们学着珍惜。
可是扪心自问我做的并不好,有很多弄不懂的地方没有及时疏通,复习也不是那么到位,期末的纠结证实了长期以来的忧虑,总也不能算是对得起老师对得起自己,不过一定会再接再厉,为化学学习填上重彩的一笔。
关于老师的教学授课,我似乎并没有什么发言权,毕竟进入大学伊始就被告知大学的老师授课都是很有个人风格的,而风格既是不分优劣,我们自然会在逐渐适应中找到自己的学习之道,慢慢地历练成长可能才是进入大学的真正目标,所以接受就是一切,评价也许并不十分需要我们的参与。但是关于这门课程,我确实认识到了它的“不好相处”,知识点细碎而且需要记忆的极多,对逻辑要求也并没有任何程度的降低,就像高中时候的文理小综合再综合了一下,是一整个知识体系的浓缩,而不仅仅是一门学科„„但是,困难总是会激起斗志,难题是进步的阶梯。
如果说对于结构的学习有什么样的期待的话,就是希望课时能多些,还是有很多内容被带过,虽然都是非重点,但是了解应该也会很有趣,自己看的话也不是很容易,所以就许下这个愿。
还有就是期待早日能看到老师编的书!
2、结构化学小结
在没上这门课之前,就听说了一句化学界流传很广的话:学了有机化学才知道无机化学如此简单,学了物理化学才知道有机化学如此简单,学了结构化学,才知道物理化学如此简单,学了量子化学,才知道结构化学如此简单。
经过了这一年的学习,体验过后才发现这几句话是非常有道理的,和大多数人一样,起初都认为结构化学难学,难懂。可从第二大节课开始,自己就改变了看法,上课努力的去听,课后及时复习,就这样,自己第二节课懵懵懂懂的听懂了一些内容,再看看周围的同学,依然很困惑,由于自己天生对难的东西比较感兴趣,越难,宁可花费很长时间,也要弄懂,凭着这种不达目的不罢休的精神,第二节课我收获了很多,最主要的是听得懂老师讲课的时候,心里有种满足感,成就感。
时间过得真快,给我感触最深的是老师的一句话:结构化学要想弄懂,必须得多花时间,讲三节课,我们就得用7节课的时间去预习,甚至老师也要在给我们讲课前,花费好长时间提前看一遍书。这句话为什么我会印象这么深呢?因为我不仅听了,而且实践了,这句话带给我是结构化学学习效率成倍的增长,正因为这句话,使我真真的感受到了我付出一天,两天,去图书馆查找各种资料听懂了老师一节课的欣喜,也使我真真感受到书包里背着高数,量子化学,结构化学参考书,结构化学课本,结构化学课件满满一书包书,去自习室看几个小时,结果做出一道波函数求解题的快乐,;真是由于这句话让我学起结构化学很轻松,觉得不是很难,起初需要用一天甚至两天的时间去看结构化学,后来,几个小时,半天就可以弄懂大部分内容。
在本学期众多课程里面,个人觉得结构化学是最有魅力的。因为它带给我们是一个肉眼看不见的世界,我们可以尽情的发挥自己的想象力想象原子结构,电子的运动,在这个世界里,没有谁对谁错,在这个世界里,谁也不会质疑我们,因为我们在结构化学所学的一切要不就是前人的一些理论可以解释化学现象,要不就是仪器测定出来的数值。再者,这是空间想象力很强的一门学科,这是对思维的挑战,也是对自己学习知识能力最好的一种肯定,在这里,你可以想象七大晶系,可以想象在各种各样对称操作下分子的改变,可以想象金属的结构,可以想象电子围绕核是如何运动的,可以想象原子轨道杂化后各个轨道是如何发生变化的,对于我来说,只要想通其中的一些,自己就很满足,自己学习知识的能力也就得到了肯定。
学化学的人都知道,位,构,性三者相互联系,相互作用,用结构可以解释性质,用性质可以反推出物质的结构,通过结构和性质的学习,我们就可以制造出一些新结构,让它产生些人类所需要的性质。通过结构化学的学习才明白导体为什么能够导电,绝缘体为什么会绝缘,这是由于导体的轨道上存在单电子,给一定能量后,能发生电子跃迁,而绝缘体只存在满带和空带,另外满带和空带能级差很大,因此不能电子跃迁,也不能导电。也明白了什么是晶体,什么是无定型;也明白了为什么液体的沸点很高,为什么有些液体的沸点很低„„这些东西自从学了结构化学后,逐渐的便的清晰起来,也在自己的大脑里形成了知识网络。
学了结构化学感触最深的应该说是“基础”二字,我们现在所学的只能称为基础,只是皮毛而已,如果这些东西,我们都搞不懂,很难做大事。不论哪一个单元,学的都是基础,量子力学接触,原子光谱,分子光谱基础,晶体学基础,群论基础,金属结构基础,配位化学基础„„,私底下每一章自己都找过对应的系统的课本看过,就比如说晶体学基础,就拿我们所用的周公度版本的结构化学第五版和晶体学专业课本相比,才发现我们好多东西都没提到,而且晶体学并不像我们结构化学基础那么简单,230个空间群是如何的对于我们来说是不要求掌握的,晶轴,晶面,晶向,这些我们只是简单地提一下而已,而且我们只需要掌握最简单的立方晶系就可以了,所以,从课程的内容,我们需要掌握的程度来看,我们真的学的只是基础,不难!如果我们连这么一点点小挫折,都退缩,那我们的将来是可想而知的,每次上课的时候,听到老师说基础二字,就有很大一部分同学唉声叹气,或者惊叹,或者抱怨,可仔细想想,如果我们多花费一点游玩的时间用在结构化学上,或许不再认为老师说的基础二字是夸张。
学习结构化学,觉得方法特别的重要。尤其是上课认真听讲,因为课堂的内容有时候你用三倍的时间去补救,也不一定能补救回来,老师在课堂上用特别有限的时间将最重要的知识串成一个个知识点,而且为了让我们让一些难点掌握,更会讲一些课本上没有的东西,这些,在课下能补救得了吗?另外就是乘热打铁,意思就是说对老师讲过的知识在课下,尽量复习,这样能及时的巩固,更能将知识点串在一起。我们一般结构化学课程是在周五下午,如果那时候为了早吃一点饭,而不去再看一次课本,这样的机会一旦失去是不会再有的,在老师的讲课的话语,自己的灵感还没有消失之前,完成对结构化学的复习是最节省时间的,也是复习效率最高,最不容易遗忘的时候。一旦老师讲课的声音不再,灵感消失,要想达到同样的复习效率谈何容易。
最重要的一点,也是决定你结构化学能不能听的懂,学的好不好的最重要的因素就是能静得下心来看书,有不怕困难的勇气,和看不懂还能努力去看的毅力和耐心。记得刚开始上第一节课时,算符,波函数,态叠加原理。。听了三节课,完全没听懂一个字,更不知道老师在讲什么,只是很佩服老师对于如此难的内容可以讲的如此轻松。但心里还有另外一个想法,如果我连第一节课都听不懂,那将来的课程,我该如何?而且老师也是人,不是神,他能讲的条理分明,为何我连弄懂都做不到,为了明白这门课,背上了高数,无机化学,结构化学,量子化学,在图书馆苦战了一天后,终于了解了老师到底讲的是什么东西,后来,日复一日,自己也形成了这个习惯,每周都会抽取很大一部分时间去看特别有魅力的结构化学,就这样,自己的综合实力提高了,结构化学也不再是一件难事,而且自己得到了从其他课程没有得到的快乐,得到了从其他课程没有得到的成就感。
有付出可能收获很少,但是没付出肯定没收获。结构化学虽然学了很多伟人,例如poaling,Schrödinger,Heisenberg但我并不崇拜他们,因为他们的成就源于他们的付出,他们可以为了科学熬夜,不吃饭,也可以为了科学一直呆在实验室,更可以为了科学满满的验算,推论了几个草稿本,或者失败了n多次。我们没能付出这么多,所以我们才和伟人是有很大差距的,当然,不可否认他们特别聪明。但是我们可以这样想,虽然上天没有赐予我们聪慧的大脑,但是上天同样给予我们每个人四肢,勤劳的双手,可以思考的大脑,我们可以付出来缩小差距。因为我们别无选择,有付出不一定有收获,但没付出就一定没收获,我们虽然没有像结构化学伟人一样提出一个或多个举世瞩目的成就,但是我们至少可以认真完成自己的结构化学作业,能想得通结构化学课本上的内容,能够会做结构化学的习题。
这样多多少少一点付出,总会让自己感到一点成就感的,有句话叫做量变决定质变,我们之所以没成为伟人,更是由于我们量的积累远远的还不够,如果我们连这些伟人的理论都看不懂,那将来如何推翻他们的理论,建立新的理论,有一句特别经典的话:要想呼吁和平,必须制止原子弹,要想制止原子弹,必须制造原子弹(这句话是在20世纪60年代毛泽东主席说过的),这句话同样适用于结构化学,也适用于其他领域,或许可以夸张的这么说:我们每个人都有成为伟人的机会,一些人因为毕生缺乏当伟人的梦想而失去资格,一些人因为量的积累不够而失去资格,一些人因为在成功的路上退缩了,放弃了而失去了资格。所以在这个大千世界中,只有少部分人成功了,少部分人成了伟人。
换个角度想想,如果我们树立在不久的将来做伟人的梦想,即使自己失败了,没有当成为伟人,但自己的付出,自己在追求伟人的路上拼搏所得到的才华,经验已足够让你在整个社会立足,这也未尝不是理想的结果。poaling,Schrödinger,Heisenberg总结他们成功的原因,总有一点是相同的,他们比平常人努力白倍,千倍,发疯的追求科学真理,才换来他们的成功,也换来人类文明史上小小的一步。
总而言之,成功离我们并不遥远,结构化学虽然难,但是用心学,有像伟人一样发疯的追求的勇气,和科学的学习方法,我们最终会体会到成就感,满足感。这些是其他课程不能带给我们的。
3、《结构化学》课程模拟教学小结
《结构化学》是一门化学专业的必修课,也是材料等专业的重要基础课,已成为从事化学、材料和物理专业深入研究材料特性的一把钥匙。但由于该门课是从微观结构研究原子、分子和晶体的结构及其与性能的关系,与宏观世界对物质的认识有很大差异,进而使学生感觉该门课抽象、复杂甚至混乱。因此,本文将主要对该门课的特点及其存在的问题进行教学方式、方法上的探讨。
一、课程特点及难点
《结构化学》课程包含两个核心内容:一是描述微观粒子运动规律的波函数,即原子轨道和分子轨道,通过轨道的相互作用了解化学键的本质;二是分子和晶体中原子的空间排布,了解分子和晶体的立体结构。与其它化学课程不同,该门课看物质的角度不同,涵盖的相关知识多,内容涉及面广,如需具备高等数学、无机化学、有机化学、物理化学及量子力学等知识,同时包含的新概念比较多,如波函数,杂化轨道,点阵。
在教学过程中发现,学生普遍感到这门课很难,有的同学在学习过程中很快跟不上老师讲解的速度,相当一部分学生死记硬背,甚至有个别学生由于太难太抽象而放弃对该门课程的继续学习。事实上,这个问题的源头在于学生对该门课基础知识理解的不足,具体来讲,很多学生不明白什么是波函数,什么是晶体。因此,如何更好地理解与数学和量子力学有关的波函数概念和不同于分子的固体的晶体结构成为学生学习的两大难点。
二、教学中存在的问题
(一)学生学习兴趣低
造成学生学习兴趣低的原因很多。从学生角度来看,部分学生学习态度不端正,学习的目的只是为了应付考试,并且由于课程本身的特点造成学生对该门课产生误解,从心理上学生觉得该门课抽象、难学、难懂,导致学习非常被动,最终学习效果较差;从教师的角度看,教学方法必须要求多元化,如果不同的教学内容使用同一种教学方式,尤其对该门课难懂的波函数,如果使用文字的方法来讲解,势必会使教学效果差,学生学习兴趣低下。如何提高学生学习的积极性和主动性,是值得授课老师深入思考和探讨的重要课题。
(二)教学方法
目前,对该门课的教学方法主要使用板书和多媒体形式讲解。这些方法有如下几个缺点:
1、缺少学生的参与,课题气氛呆板;
2、对具有立体空间结构的可观性差,学生理解受到限制;
3、对数字化的波函数缺乏形象化的表示,成为学习该门课其它知识的瓶颈。这些将阻碍学生学习的积极性和对所学知识的理解。因此,授课教师需要在教学方法上根据课程内容进行个性化的调整。
三、解决措施
该门课不像有机和分析等化学课程,没有实验教学部分,因此,学生对所学知识的理解消化受到很大限制。为了提高教学质量,提高学生的综合素质,提出以下措施。
(一)引入实验教学
由于高等教育教学改革的不断深化,该门课程的课时数明显减少,即使采取板书、多媒体和演示相结合的讲述方式完成该课程系统的教学也已经变得较为困难。因此,在教学方式上,我们需要做进一步的改进。通过教学,发现采用一种新型方法,即类似实验教学的方式对该门课的教学效果能达到事半功倍的效果。为了清晰地阐述这一方法,本文通过举例的方式来说明。现以二氧化碳分子中存在的两个离域π键为例来说明。在使用板书或多媒体教学中,老师的分析可能如下:
假设二氧化碳分子在直角坐标系的x轴上,碳原子有4个价电子,氧原子有6个价电子,分子中的两个氧原子分别表示为O1和O2。碳和氧原子采用spx杂化,碳和每个氧原子形成σ键,每个氧原子的另一个spx杂化轨道被其上的一对孤对电子占据。碳原子剩余的两个电子,分别占据在py和pz轨道上。
氧原子剩余的三个电子中,如果O1原子中一对孤对电子占据在py轨道上,另一个电子必将占据在pz轨道上,它的pz电子将会与碳原子的pz电子形成πz键,那么碳原子的另一个py电子必将与O2原子的一个py电子形成πy键,此时,在O2原子中pz轨道上必须安排一对孤对电子,那么,O2中由孤对电子占据的pz轨道将会与碳和O1原子形成的πz轨道重叠,形成π4z3离域键,O1中由孤对电子占据的py轨道将会与碳和O2原子形成的πy轨道重叠,形成π4y3离域键。
此时老师可能会将这两个离域π键的图片放在多媒体中。但大部分学生听完之后,由于不能看到一个三维的直观图像,而且讲起来描述语言颇多,最终教学效果不佳。
如果我们利用一种软件,如Chem3D和Dmol3,通过计算得到二氧化碳分子的各个σ和离域π键的三维空间构象,通过空间旋转可以让学生清晰看到碳与氧原子之间的σ键和两个不同方向的离域π键,且通过查看计算结果文件得到这些轨道的波函数。在这里学生还可以学到如下几点:
1、通过简单的类实验计算,学生获得来自书本上与波函数、杂化轨道和分子轨道等相关理论知识;
2、能获得由原子轨道波函数线性组合成分子轨道波函数的明确数学表达式,并能与轨道图一一对应,解决了学生关于分子轨道理论复杂的薛定谔方程,能从图像上理解书本上的纯理论内容,进而达到实践教学的效果;
3、对杂化轨道理论,很多学生从书本上仅仅知道杂化的原因、目的和杂化后的原子轨道,但大多不明白杂化后这些轨道形成什么样的键。通过这个实验的教学,学生可以从轨道上清晰看到碳和氧原子的sp杂化轨道相互重叠形成的π键,同时也能看到氧原子的一对孤对电子占据在氧的2p轨道上的分子轨道图。
通过比较上面两种教学方法,我们发现,由于该门课的教学内容偏重纯理论,学生经常感觉晕晕乎乎,似懂非懂,因此,引入类实验教学部分,可通过一个简单的实验例子,让学生深刻理解来自书本的较多知识点,同时,可以让学生清楚各个知识点间的区别和联系,从而对教学达到较好的效果。
(二)提高学生的学习兴趣
兴趣是最好的老师,因此,在教学中怎样提高学生的学习兴趣是每个教学工作者一直思考的问题。就该门课的课堂教学来说,将教学内容与其它化学课程及日常生活现象相结合,让化学专业学生感到该门课非常有意思或对学生学好其它课程起到重要作用,如有机化学和物理化学中,关于乙烯加氢气反应活化能大或反应速率慢等现象,离不开该门课关于前线轨道理论知识的理解。再如,在实践中,我们看到的物体表面总是一个宏观的结构,如果额外引入晶体表面结构的教学内容,学生将了解到肉眼看到或感觉光滑的物体表面其实有很多原子缺陷,让学生对常规认识有新的视觉和认识,进而提高了学生的好奇感,激发了学生的求知欲望。
(三)改革考核方式
在考核方面,采用多种考核方式综合评定学生的最终成绩,有助于促进学生注重过程学习,进而提高了学生分析问题和解决问题能力的培养。目前,该门课常用的考核是由平时成绩+期末考试成绩构成,其中,平时成绩主要来自出勤、书面作业和期中考试。如果在平时成绩中引入课外作业,学生通过查阅资料或类似于实验设计的材料模拟,不仅能加深学生对理论部分的理解,而且也能提高学生应用所学知识解决实际问题的能力。
四、结语
在《结构化学》课程教学中,针对“教”与“学”双方存在的不足,在教学方式、方法及教学手段上主要引入实验教学部分,以期提高教学质量。在今后的教学过程中,作为教学主体的教师应结合课程特点和实际教学,充分研究教学中的方式方法手段的最佳组合,以获得更好的教学效果。
4、结构化学小结
大三下半学期的课要结束了,这学期学习的科目中要数结构化学这门课让我受益良多。之前看到结构化学这本书还不是太明白,翻开书本看到一堆的公式和图画,更是晕头转向。就问教我们的老师最严厉,但是备受学生欢迎。经过一学期的学习我终于了解学姐所说的话。
结构化学是在原子-分子水平上研究物质分子构型与组成的相互关系以及结构和各种运动的相互影响的化学分支学科。它又是阐述物质的微观结构与其宏观性能的相互关系的基础学科。
结构化学首先是一门直接应用多种近代实验手段测定分子静态、动态结构和静态、动态性能的实验科学。
另一方面,从结构化学的角度还能阐明物质的各种宏观化学性能(包括化学反应性能)和各种宏观非化学性能(包括各种物理性质和许多新技术应用中的技术性能等)与微观结构之间的关系及其规律性。
由于课时的安排,我们这学期只学习了三章的内容,但是就是这三章让我们了解到化学世界的奇妙以及分子、原子的复杂构造及其运动规律。第一章量子力学基础研究物质结构的理论工具是量子力学,它是研究微观粒子运动规律的科学,是结构化学的理论基础。波函数和概率密度,态叠加原理,本证方程与本征值等基本假设是量子力学的基础。
第一章中最重要的公式就是一维势阱中粒子的薛定谔方程及其解的意义。
第二章原子结构与性质
主要讲的是单电子原子的薛定谔方程及其解。求解单电子原子的薛定谔方程,的到其波函数、能量和量子数。
第二章还包括中心立场模型、以及保理原理和洪特规则等一些关于原子的相关知识第三章双原子分子结构
主要讲离子键和共价键的形成及其相关要点。
通过一学期的对结构化学的学习,让我收获颇多。学习结构化学让我充分了解了原子和分子的运动状态及其结构,还了解了他们之间的规律。并且通过对结构化学的学习,让我对其他学科的一些不怎么了解的地方也有了理解。而且学完真门课我终于了解了学姐们所说的话。结构化学这门课不仅培养了我独立思考的能力还锻炼了我快速思维的能力。因为课时紧,所以上课是老师教授的内容较多,所以我们上课时需要认真听讲,及时做笔记,下课时及时复习,深入理解。
老师为了锻炼我们,会在每堂课前把上节课的知识通过问答的形式帮助我们复习,而且在课堂上老师也会随机的让我们回答问题并要求我们把所学知识转化为自己的语言,还利用加分的方法鼓励同学多回答,多思考。让我们从各个方面提高能力,这些都是我们在其它课堂上学不到的。通过这一学期,我发现自己的独立思考能力、语言组织能力以及口语表达能力都有了很大的提高,这些能力将使我受用一生。最后,我想说:谢谢您老师,您辛苦了!
第三篇:结构化学-教学大纲
《结构化学》课程教学大纲
(供应用化学专业使用)
一、课程性质
结构化学是应用化学的专业基础课。本课程是在学生已经学过高等数学、物理学、无机化学、分析化学、有机化学和物理化学的基础上,在进一步从原子、分子的水平上研究物质微观结构以及结构与性能间的关系的学科。要求学生系统地掌握结构化学的基本原理、基本方法与基本技能,通过各个教学环节培养学生独立思考、独立分析和创新的能力,使之具有一定的分析和解决化学方面实际问题的能力,从而为进一步学好专业课程及今后从事科学研究,奠定良好的化学理论基础。
考虑到应用化学专业的培养方向,本课程在内容的选材上突出了基础和实用性。选择了化学键理论,原子结构,晶体化学等为主要内容,使学生通过对化学键理论的学习,为深入学习有关的知识打下基础,通过对晶体组成结构与性能之间关系的学习,为材料科学的学习打下基础。
本课程理论讲授共54学时,3学分。理论教学主要通过课堂讲授,多媒体影视课件、习题课(或课堂讨论)、演算习题、自学及实验等教学形式,达到学习本课程的目的。
二、教学内容与要求 量子力学基础和原子结构。这部分内容在第一~三章中讲授。要求了解量子力学的基本假设,掌握氢原子的薛定谔方程及求解要点,提高对原子结构的认识,深入理解原子轨道的意义、性质和空间图象。了解多电子原子中心力场近似法及He原子的变分法处理,了解核外电子排布的依据,了解角动量的偶合及原子光谱的意义。化学键理论和分子结构。这部分内容主要在第五章中讲授。要求重点掌握化学键的三个基本理论:分子轨道理论、价键理论和配位场理论。要求掌握价键理论在多原子分子结构中的应用,了解S-P杂化轨道的组成及键角公式。掌握HMO方法及其在共轭分子中的应用,了解前线轨道理论。要求掌握配位场理论在配合物结构中的应用,以及s-p 配键配合物和多原子p 键配合物的结构。
点阵理论和晶体结构。这部分内容主要在第四、六、七章中讲授。要求掌握晶体周期性结构的特点及由此特点决定晶体的各种性质。了解单晶、多晶衍射法的基本原理,了解金属、离子化合物、分子化合物等各类晶体结构的基本型式及规律。
绪论
结构化学课程的任务、内容、在现代化学各学科中的应用及学习方法(1学时)
第一章 量子力学基础知识 教学要点: 从黑体辐射、光电效应、电子衍射三个基本实验事实出发,得出了光和实物微粒具有波粒二象性这一基本特性。由微观粒子的波动性获得测不准关系式,它表明微观粒子没有同时确定的坐标和动量,要用波动力学来描述,根据微观粒子能量量子化和波动性,在许多科学家大量工作总结的基础上,提出了作为量子力学理论基础的若干基本假设,在此基础上以一维势箱粒子为实例,介绍了量子力学解决问题的途径和方法。本章许多基本概念抽象难懂,但它是后面原子结构和分子结构各章学习的基础,必须重视。不少学生对结构化学的学习感到困难与量子力学基础中一些基本概念,特别是几个基本假设没有深入理解很有关系,建议同学们在基本概念的理解上多花点功夫。教学时数: 课堂讲授8学时 教学内容: 1-1 实物微粒的波粒二象性
1-2 微观粒子的运动状态及其运动规律 1-3 量子力学基本假设
1-4势箱中运动的粒子—共轭分子的自由电子模型 考核要求: 了解:黑体辐射,光电效应,氢原子光谱的基本现象; Planck量子假设,Einstein光子学说和Bhor原子结构理论的基本内容;测不准原理的涵义并能用于判断客体运动符合量子力学还是经典力学。理解:波函数的基本涵义和性质,及态叠加原理的意义;Schrodinger方程的建立过程及其物理涵义;量子力学用于微观体系的一般步骤;量子力学处理一维势箱粒子(能量量子化现象,零点能效应,节点现象,隧道效应)。
掌握:微观粒子波粒二象形的本质及其统计解释;算符的基本概念;本征函数,本征值和本征态的概念;力学量平均值计算,量子力学的基本假设。
第二章 原子的结构和性质
教学要点: 求解薛定谔方程初学者往往感到数学复杂,实际上结构化学这门课并不要求对该方程完整求解,关键在于搞清解的基本思路就可以了。按势能函数→球极坐标Laplace算符→Schrodidger方程→变量分离得常微分方程→解方程得n、l、m量子数,能级表达式和波函数这样的思路进行理解。量子数的物理意义与用量子数求相应物理量有关,物理量各表式来源子量子力学,主要在于理解物理意义。应多花功夫深入理解波函数ψ和电子云ψ2的图形,特别是经向分布图和原子轨道等值线图和角度分布图的作图方法和图形的物理意义,其余部分主要在于理解基本概念和量子力学基本假设有关的各种计算 教学时数: 课堂讲授10学时 教学内容: 2-1 单电子原子的薛定谔方程及其解 2-2 量子数及其意义 2-3 波函数和电子云的图形 2-4 多电子原子的结构 2-5 原子光谱 考核要求: 了解:自洽场方法的基本思想;Zeemann效应;中心立场近似和屏蔽模型的物理意义。
理解:氢原子的Schrodinger方程的求解过程;能量状态和Virial定理;原子状态和角动量加和规则的物理涵义;原子光谱选律及其在碱金属原子中的应用;正确理解元素周期律的本质和核外电子排布规律。掌握:量子力学讨论微观体系的方法和步骤;氢原子Schrodinger方程解的物理意义(量子数n,l,m,原子轨道及其表示方法,波函数和电子云的图象及其特征);电子自旋假设的基本涵义,Pauli原理的物理意义,单电子假设的基本思想及其在处理多电子体系中的作用;正确书写原子光谱项的方法。
第三章 双原子分子的结构和性质
教学要点: 由分子体系中Schrodinger方程解得的波函数ψ,反映了分子体系中单电子的运动状态,称ψ为分子轨道,本章讨论的许多内容均与该概念有关,因此必须结合量子力学基本假设进一步深入理解分子轨道概念,同时还应把分子轨道与变分原理结合理解。变分法用原子轨道线性组合近似表示分子轨道,利用求极值方法调节组合系数,求得能量最低时对应的波函数(分子轨道)和相应的能量表达式,对线性变分原理有完整正确的理解,才能对分子轨道理论的由来有正确的理解,因为这部分内容较抽象难懂,学习过程中应细心领会,每学一节,首先想一想,它要回答什么问题,分子轨道的分布特点和分类,要认真分析分子轨道示意图的特点以及它与各种化学键之间的联系。教学时数: 课堂讲授8学时 教学内容: 3-1 H2+的结构和共价键的本质 3-2 分子轨道理论 3-3双原子分子的结构 考核要求:
理解:Born-ppnheimer近似的物理意义;线性变分法对双原子分子的应用。
掌握:分子轨道理论处理H2+分子的基本假设(变分函数的构成)和主要结论(Haa,Hbb,Sab的物理意义,体系能量曲线,电子云分布);分子轨道理论的基本要点(单电子近似,LCAO-MO方法,成键三原则);分子轨道的类型,符号能级次序及电子的排布规则;分子轨道理论处理双原子分子结构的一般过程和重要结论;能正确给出分子键级、磁性等;学会利用分子光谱光和电子能谱的信息判断分子结构及成键性质。
第四章 分子的对称性
教学要点: 要确定分子的点群,首先必须知道分子的空间结构,再根据空间结构找出分子全部独立的对称元素。对于较复杂的分子,根据空间结构确定对称元素,要凭空间想象来进行,具有一定的困难,往往是独立的对称元素找不完全。为了克服学习中的困难,学习过程中应当借助分子结构模型来确定对称元素,注意掌握各类点群对称元素的特点。
教学时数: 课堂讲授4学时 教学内容: 4-1 对称操作和对称元素 4-2 对称操作群与对称元素的组合 4-3 分子的点群
4-4 分子对称性与偶极矩和旋光性的关系 考核要求:
理解:对称操作的组合规则和对易规则,熟悉群的基本概念;分子对称性和分子物理性质之间的关系(偶极距,旋光性)。
掌握:对称元素和对称操作的基本概念(恒等,旋转,反映,象转,反演);分子点群的分类方法。
第五章 多原子分子的结构和性质
教学要点: 多原子分子的结构和性质与双原子结构和性质两章之间有较紧密的联系,学习本章必须对第三章中线性变分原理和分子轨道理论的基本要点有完整的理解,在此基础上就容易深入领会HMO法的基本假定和处理方法,掌握共轭分子体系的结构和性质。教学时数: 课堂讲授10学时 教学内容: 5-1简单分子轨道理论 5-2 价键理论简介 5-3 杂化轨道理论 5-4离域分子轨道理论 5-5配位场理论
5-6 分子轨道的对称性及反应机理 考核要求:
理解:杂化轨道波函数的构造方法,Huckle处理共扼有机分子时引进的假设等
掌握:杂化轨道理论的基本要点,以及等性和不等性杂化轨道的计算方法;Huckle分子轨道理论的基本要点及对共扼有机分子和简单无机分子的处理方法;大P 键的概念,类型及形成条件;用Huckle分子轨道理论计算分子图的方法和分子图中各数据的物理意义。
第六 章 晶体结构
基本要求:
掌握晶体结构的点阵理论和晶体对称性的知识,了解X射线衍射法的原理及应用。掌握解金属晶体,离子晶体,共价晶体,分子型晶体的结构和性质,掌握常见而重要的若干晶体的结构和性质。教学要点:
1.晶体结构的周期性和点阵。2.晶体的对称元素和对称操作。3.晶胞的定义。4.7个晶系。5.晶体学点群。
6.点阵点指标、晶棱指标、晶面指标。教学时数: 课堂讲授10学时 教学内容与考核要求: 6-1晶体结构的周期性 6-2 晶体的宏观对称性 6-3 晶体的定向和晶面符号 6-4晶体的微观对称性 6-5 晶体的230个空间群 6-6 离子晶体
6-7共价晶体、分子晶体、和混合键型晶体 6-8 共价半径、原子半径、离子半径
第七章 物质结构分析方法简介
教学要点: 了解测定分子和晶体结构的实验方法。着重了解分子光谱、X射线衍射等方法所依据的基本原理,以及这些方法在测定结构中的作用和应用范围,为了解与掌握现代化学中的重要实验方法打下初步的基础。
教学时数: 课堂讲授4学时 教学内容: 7-1 X射线衍射分析 7-2 分子光谱 考核要求:
理解:分子光谱、X射线衍射等方法所依据的基本原理。掌握:一些简单光谱实验的应用。
三、教学时数分配
本课程总学时为54学时
——————————————————————————————————————
课程内容..................................................学时
——————————————————————————————————————
绪论...........................................................1 第 一 章 量子力学基础知识......................................8 第 二 章 原子的结构和性质......................................10 第 三 章 双原子分子的结构和性质................................8 第 四 章 分子的对称性..........................................4 第 五 章 多原子分子的结构和性质................................10 第 六 章 晶体结构.............................................10 第 七 章 物质结构分析方法.....................................3 ——————————————————————————————————————
四、教学方式
采用多媒体教学与传统教学相结合的方式;以课堂讲授为主,并配合模型实习、课堂讨论等形式。讲授过程中插入练习或思考题、使学生不会因信息量太大而难于接受。在课堂讲授、作业、习题课、辅导答疑、考试等教学的各个环节,把最新的科研成果纳入教学内容之中;着力改革教学方法,既教学生知识又教学生获取知识的方法,培养和锻炼学生科学的思维方法,提高学生的科学思维能力,帮助和启发学生勤奋学习,刻苦锻炼,提高分析问题和解决问题的能力。
五、考核方式
期末闭卷考试
参考书目:
1.周公度,段连运《结构化学基础》(第四版),北京大学出版社2008 2.林梦海等编,《结构化学》(第二版),北京: 科学出版社,2008 3.李炳瑞编著,《结构化学》,北京:.高等教育出版社,2004 4.李奇等主编《结构化学》),北京师范大学出版社2008
5.东北师范大学等编,《结构化学》,北京: 高等教育出版社,2003 6.潘道恺 等《物质结构》(第二版),高等教育出版社1989 7.唐作华《基础结构化学》,四川大学出版社1994 8.郭用猷《结构化学》,山东大学出版社1998 9.江元生《结构化学》,高等教育出版社1997 12.徐光宪《物质结构》(第二版),高等教育出版社1987 13.范康年,邓景发《物理化学》(第2版),高等教育出版社2005年 14.范康年《物理化学学习指导》,复旦大学出版社1996 15.周公度《结构化学习基础题解析》(第三版),北京大学出版社2002
第四篇:《结构化学》教学大纲
《结构化学》教学大纲
课程中文名称:结构化学
课程英文名称: STRUCTURE CHEMISTRY
总学时: 60 讲课学时: 60习题课学时:0 实验学时:0 上机学时: 0 授课对象: 理学院应用化学系应用化学专业、材料化学专业本科生 先修课程:高等数学、大学物理、物理化学
一、课程教学目的
结构化学是研究原子、分子和晶体结构,以及结构与性能关系的一门基础科学,是在物理化学解决反应方向、限度和速率问题的基础上,解决反应本质问题的科学,是培养跨世纪化学、化工、生命科学高素质专门人才知识结构和能力的重要组成部分。本课程旨在培养学生树立“结构化学”的观点,了解结构化学研究和解决问题的方法,并掌握结构化学的基础理论和基本知识,从而为以后的学习和工作打下必要的结构基础。
二、教学内容及基本要求 第0章 绪论(2学时)
教学内容:结构化学的研究对象;学习目的;学习内容;学习方法;课程安排及要求;主要参考书。
教学要求:了解结构化学的研究对象和具体的学习内容,明确结构化学在了解反应本质,发现、合成和提取符合人类一定需要的新物质,以及推动化学学科发展等多方面的作用。并注重理论联系实际,摆脱宏观现象和传统观念的束缚,学会抽象思维和数学工具的应用。第1章 量子力学基础知识(4学时)
教学内容:微观粒子的波粒二象性及其特点;测不准关系及其应用;量子力学基本假设(波函数与几率,力学量与算符,薛定谔方程,态叠加原理,电子自旋);波函数的合格条件;量子力学处理问题的一般步骤;一维势箱中粒子的运动状态的描述及其具体的处理方法。
教学要求:了解微粒子(主要是电子)的运动特点,用波函数描述电子运动状态的原因及波函数的物理意义。掌握能量算符的写法,理解波函数的合格条件,熟练掌握用量子力学处理一维势箱粒子的方法,并熟记其结论。
第2章 原子结构和性质(16学时)
教学内容:类氢离子体系的薛定谔方程及其简单求解(坐标变换,分离变量,方程求解),波函数有关图形;角动量及量子数的物理含义;多电子原子结构;屏蔽效应与钻穿效应,基态原子核外电子排布规律,原子光谱项。
教学要求:理解薛定谔方程求解的基本思路,掌握归一化处理方法,了解复函数与实函数解的关系,明确四个量子数的来历、合理组合及物理含义,熟悉波函数角度分布图、电子云角度分布图、电子云图、径向向布函数图等图形的画法和所能说明的问题。了解多电子原子薛定谔方程各项的含义;多电子波函数与单电子波函数的不同;屏蔽效应,钻导效应及其结果;原子光谱项的意义及表示方法。掌握多电子原子核外电子的排布规律以及原子结构与周期系的关系。第3章 分子轨道理论(12学时)
教学内容:氢分子离子的薛定谔方程及其线性变分法处理;分子轨道理论基本要求;分子轨道的类型、符号和能级顺序;双原子分子的结构和性质。休克尔分子轨道理论,电荷密度、键级、自由价、分子图及反应活性;离域键的形成条件;原子轨道对称守恒原理。
教学要求:掌握氢分子离子的线性变分法处理。了解分子轨道理论的基本要求,了解轨道类型、符号和能级顺序,学会用休分子轨道法处理离域键,并掌握求算电荷密度、自由价、键级的方法及分子图表示和分子图的应用。了解分子轨道对称守恒原理的基本要点以及对反应机理的说明。
第4章 价键理论(2学时)
教学内容:价键理论基本要点以及对简单分子的应用;杂化轨道理论;价电子对互斥理论。
教学要求:理解价键理论的基本要点,掌握用价键理论处理简单分子的方法。理解杂化轨道理论的基本思想,了解Sp3、Sp2、Sp杂化轨道的组成、空间取向以及成键能力的大小,学会判断等性杂化和不等性杂化,并掌握用价电子对互斥理论判断一般分子几何构型的方法。第5章 配合物的化学键理论(4学时)
教学内容:配合物的价链理论;晶体场理论(中心离子d轨道的分裂,配合物的紫外可见光谱;中心离子d离子的排布;晶体场稳定化能;姜-泰勒效应)。
教学要求:理解配合物价键理论,掌握晶体场理论,能够判断在不同晶体场中d轨道的分裂情况和d电子的排布情况,并学会计算晶体场稳定比能的方法。
第6章
分子对称性与群(16学时)
教学内容:群的定义;同构与同态;共轭元素和类;对称操作群;群的表示;群论在分子轨道理论和杂化轨道理论中的应用
教学要求:掌握对称操作群的定义、分类,会判断分子所属点群;了解群的表示;学会群论在分子轨道理论和杂化轨道理论中的应用 第7章
晶体结构(4学时)
教学内容:空间点阵与晶体;晶胞中的微粒;晶棱和晶面指标;晶体的宏观对称性;晶体学点群;晶体的微观对称性;实际晶体的缺陷。教学要求:了解直线、平面和空间点阵结构,晶体中微粒的分数坐标,晶体的宏观对称操作,三大晶族,七大品系,32个点群,230个空间群。掌握布拉格方程应用。
三、考试权重
平时成绩:5-10%;期中考试:5-10%;期末笔试:80-90%
第五篇:结构化学教学大纲
甘肃民族师范学院化学专业课程教学大纲
结构化学
一、说明
(一)课程性质
结构化学是四年制化学本科专业的必修基础理论课程。结构化学主要研究原子、分子及晶体的结构以及它们与物质的物理、化学性质的关系。
(二)教学目的
使学生掌握微观物质运动的基本规律,获得原子、分子及晶体结构的基本理论、基础知识,了解物质的结构与性能关系,了解研究分子和晶体结构的近代物理方法的基本原理,加深对前修课程,如无机化学、有机化学等的有关内容的理解,为后续课程的学习打下必要的基础;通过本课程的学习,培养学生能从结构化学与物质性质(性能)相互关系的基本规律出发,分析和解决问题。从而提高学生运用结构化学的原理和方法来分析问题解决问题的能力,进一步培养他们的辩证唯物主义世界观,以期能更好的完成中学化学的教学任务以及更好的从事科学研究。
(三)教学内容
第0章 绪论
第1章 量子力学基础和原子结构 第2章 共价键理论与分子结构 第3章 配位场理论和络合物结构
第4章 分子结构测定方法的原理及应用 第5章 晶体结构
(四)教学时数
60学时
(五)教学方式
主要采用课堂教学、习题课教学、课外辅导,以及测试、考查、考试等方法。并尽可能地充分利用图表、模型等形象化和电化教具,务使讲授具体、直观、生动,但应注意防止引起某些片面性和科学性的错误。
二、本文
第0章 绪论
教学要点:
量子力学发展简史及学习方法 教学时数: 学时 教学内容:
第一节 本课程的地位和作用、主要内容 第二节 量子力学发展简史及学习方法 考核要求:
了解量子力学发展史
第一章 量子力学基础和原子结构
教学要点:
1、以一维势箱模型、类氢离子体系为例,重点讲解量子力学处理微观体系的思想、模型和方法
2、类氢体系波函数、量子数及其应用
教学时数:
14学时 教学内容:
第一节 经典物理学的困难、量子力学的诞生、微观粒子运动特征
1、三个著名实验解释微观粒子运动特征——量子论诞生
2、实物微粒运动状态的波粒二象性、德布罗意关系式和物质波及统计解释
3、不确定关系(测不准原理)
第二节 量子力学基本假设、微观粒子运动状态的表示方法及薛定谔方程
1、波函数和微观粒子的状态
2、算符和力学量
3、本征值、本征函数和本征方程
4、薛定谔方程的算符表达式
5、态叠加原理
第三节 一维势箱粒子的薛定谔方程及解
1、一维势箱模型、体系薛定谔方程及解
2、一维势箱粒子薛定谔方程解的讨论
3、一维势箱体系结论的应用
第四节 氢原子与类氢离子的定态薛定谔方程及解
1、氢原子与类氢离子的定态薛定谔方程(直角坐标、球坐标)
2、氢原子与类氢离子的定态薛定谔方程的解(变量分离法、基态解、一般解)
3、氢原子与类氢离子的定态薛定谔方程解的讨论(量子数、波函数)第五节 波函数与电子云的图形表示法
界面图、等值图、径向分布图和角度分布图
第六节 多电子原子结构理论的轨道近似模型——原子轨道
1、多电子原子体系的薛定谔方程
2、轨道近似、中心力场近似模型、半经验处理——屏蔽模型
3、方程解的讨论 第七节 电子自旋
1、自旋问题的提出
2、自旋波函数、自旋-轨道、完全波函数概念
3、行列式波函数和保里原理 第八节 原子整体的状态与原子光谱项
1、原子整体状态的描述(原子的量子数、角动量的耦合)
2、原子光谱与原子光谱项(原子光谱、原子光谱项推求、原子光谱项对应能级的相对大小、光谱选律)第九节 核外电子排布与元素周期律(自学)教学要求:
1、了解微观粒子运动的特点,量子力学处理微观体系的基本方法和步骤
2、理解量子力学基本假设中的概念和假设的内容、基本概念、解一维势箱体系、类氢体系薛定谔方程的数学方法
3、掌握德·布罗意关系式;一维势箱体系薛定谔方程解、解的意义及应用 类氢体系量子数的取值和意义,能量、角动量及其分量的计算,波函数与电子云的各种图示法,中心力场近似模型的思想,原子轨道和电子自旋的概念,行列式波函数
考核要求:
1、掌握德·布罗意关系式;一维势箱体系薛定谔方程解、解的意义及应用
2、掌握类氢体系量子数的取值和意义,能量、角动量及其分量的计算,波函数与电子云的各种图示法,中心力场近似模型的思想,原子轨道和电子自旋的概念,行列式波函数
第二章 共价键理论与分子结构
教学要点:
1、线性变分法处理氢分子离子体系
2、同核双原子分子的结构
3、HMO理论的基本要点
4、分子对称性与分子点群 教学时数:
14学时 教学内容:
+第一节 H2的分子轨道和共价键的本质
1、氢分子离子的薛定谔方程(定核近似与势能曲线)
2、氢分子离子的量子力学近似处理——线性变分法
3、氢分子离子薛定谔方程解的讨论(三个积分、能量曲线)
4、氢分子离子波函数、分子轨道概念、共价键的本质 第二节 分子轨道理论
1、分子轨道理论的要点
2、原子轨道线性组合为分子轨道法(LCAO-MO)
3、分子轨道的类型、符号和能级顺序 第三节 双原子分子结构
1、同核双原子分子
2、异核双原子分子 第四节 杂化轨道理论
1、杂化轨道理论内容
2、sp、sp2、sp3、dsp3、d2sp3简介
3、杂化轨道理论应用
第五节 离域π键与共轭分子结构
1、HMO理论的基本要点和休克尔行列式
2、共轭体系的HMO处理
3、电荷密度,键级、自由价、分子图及应用
4、无机共轭分子
5、离域π键形成的条件和类型
第六节 多中心键与缺电子分子结构(自学)第七节 分子对称性与分子点群
1、对称操作与对称元素
2、分子点群
3、分子点群的确定
4、分子点群和分子的物理性质(分子的旋光性和偶极矩)
教学要求:
1、了解线性变分法,分子体系的薛定谔方程
2、理解杂化轨道理论,离域π键形成的条件和类型,分子点群和分子的物理性质
3、掌握分子轨道的类型、符号和能级顺序,同核双原子分子的结构,分子图的计算与应用,分子点群的确定,判断分子的杂化态及几何构型,离域分子轨道和定域分子轨道区别及应用,根据分子骨架写出休克尔行列式,一些离域分子的成键情况及对性质的影响
考核要求:
1、掌握分子轨道的类型、符号和能级顺序
2、同核双原子分子的结构,分子图的计算与应用
3、分子点群的确定
4、判断分子的杂化态及几何构型,离域分子轨道和定域分子轨道区别及应用,根据分子骨架写出休克尔行列式,一些离域分子的成键情况及对性质的影响
第三章 配位场理论和络合物结构
教学要点:
1、晶体场中d轨道能级分裂
2、晶体场稳定化能 教学时数:
12学时 教学内容:
第一节 有关络合物的几个概念
1、电价配键与电价络合物
2、共价配键和共价络合物 第二节 晶体场理论
1、晶体场模型
2、晶体场中d轨道能级分裂
3、d轨道中电子的排布—高自旋态和低自旋态(分裂能Δ和成对能P)
4、晶体场稳定化能——CFSE
5、晶体场理论的应用(络合物的稳定性、颜色、水和热、姜-泰勒效应)第三节 络合物的分子轨道理论简介
6、络合物的分子轨道理论要点
7、正八面体络合物中的σ轨道和π轨道
8、羰基络合物和氮分子络合物
第四节 晶体场理论与分子轨道理论的比较及配位场理论
1、晶体场理论与分子轨道理论的比较
2、配位场理论
第五节 原子簇化合物的结构简介(自学)教学要求:
1、了解络合物价键理论,姜-泰勒效应,原子簇化合物的结构
2、理解络合物的分子轨道理论的基本思想,配位场理论
3、掌握晶体场中d轨道能级分裂,d轨道中电子的排布—高自旋态和低自旋态,晶体场稳定化能的计算,晶体场理论的应用,络合物的几何构型羰基络合物和氮分子络合物的结构特点
考核要求:
1、理解络合物的分子轨道理论的基本思想,配位场理论
2、掌握晶体场中d轨道能级分裂,d轨道中电子的排布—高自旋态和低自旋态,晶体场稳定化能的计算,晶体场理论的应用,络合物的几何构型羰基络合物和氮分子络合物的结构特点
第四章 分子结构测定方法的原理及应用
教学要点:
1、双原子分子的转动光谱
2、双原子分子的振动光谱 教学时数:
12学时 教学内容:
第一节 分子光谱
1、分子光谱的产生与分类
2、双原子分子的转动光谱(刚性转子模型和非刚性转子模型)
3、双原子分子的振动光谱(谐振子模型和非谐振子模型)
4、双原子分子振—转光谱
5、多原子分子的振动 第二节 分子的磁性和磁共振谱
1、分子的磁性
2、核磁共振谱(NMR)
3、电子自旋共振谱(ESR)第三节 光电子能谱(PES)
1、X光电子能谱(XPS)
2、紫外光电子能谱(UPS)教学要求:
1、了解分子光谱的产生与分类,双原子分子振—转光谱,核磁共振谱(NMR),电子自旋共振谱(ESR),X光电子能谱(XPS),紫外光电子能谱(UPS)
2、理解基本概念
3、掌握双原子分子的转动能级和谱线的分布特点,利用转动光谱求解分子的结构参数,双原子分子的振动能级和谱线的分布特点,利用振动光谱求解分子的结构参数,影响化学位移的因素,简单的图谱分析
考核要求:
1、掌握双原子分子的转动能级和谱线的分布特点
2、利用转动光谱求解分子的结构参数,双原子分子的振动能级和谱线的分布特点
3、利用振动光谱求解分子的结构参数,影响化学位移的因素,简单的图谱分析
第五章 晶体结构
教学要点:
1、晶体的点阵理论,晶体的宏观对称性
2、金属晶体的堆积型式和金属原子半径
3、晶体结构的能带理论,离子键及离子半径,X-射线晶体结构分析原理
教学时数: 学时 教学内容:
第一节 晶体的点阵理论
1、晶体的点阵理论
2、晶胞及晶胞的二个基本要素
3、晶面和晶面指标
4、晶体的特点和晶体的缺陷 第二节 晶体的对称性
1、晶体的宏观对称性
2、晶体的微观对称性 第三节 金属晶体结构
1、晶体结构的密堆积原理
2、金属晶体的堆积型式和金属原子半径
3、晶体结构的能带理论
4、金属键的本质和金属的一般性质 第四节 离子晶体和离子键
1、离子键及典型离子化合物
2、离子键理论
3、复杂离子化合物及其结构简介 第五节 共价键型晶体和混合键型晶体
1、共价型原子晶体
2、混合键型晶体
第六节 分子型晶体和分子间作用力
1、分子型晶体
2、氢键和氢键型晶体 第七节 X-射线晶体结构分析
1、X射线在晶体中的衍射
2、衍射方向与晶胞参数
3、衍射强度与晶胞中原子的分布
4、晶体结构分析方法简介
教学要求:
1、了解复杂离子化合物结构,氢键和氢键型晶体,晶体结构分析方法
2、理解基本概念,晶体的微观对称性,晶体结构的密堆积原理,离子键理论
3、掌握晶胞及晶胞的二个基本要素,晶面和晶面指标,金属晶体的堆积型式和金属原子半径,离子的堆积型式和离子半径,利用劳埃方程和布拉格方程求晶胞参数,晶体的系统消光规律
考核要求:
1、掌握晶胞及晶胞的二个基本要素,晶面和晶面指标.2、金属晶体的堆积型式和金属原子半径,离子的堆积型式和离子半径,利用劳埃方程和布拉格方程求晶胞参数,晶体的系统消光规律
三、参考书目
1、潘道皑等,《结构化学》,高等教育出版社, 1989年第二版。
2、徐光宪,《结构化学》,人民教育出版社,1979年。
3、周公度、段连运,《结构化学基础》,北京大学出版社,1997年第二版。
4、谢有畅、邵美成,《结构化学》,人民教育出版社,1979年。
四、本课程使用教具和现代教育技术的指导性意见
本课程采用课堂讲授为主,讨论、多媒体教学、模型和实践相结合的多种手段开展教学。
五、课外学习
(一)课外读书
1、目标
通过课外书籍的阅读,巩固和拓展所学知识,以便更深入的理解、掌握微观物质运动的基本规律,获得原子、分子及晶体结构的基本理论、基础知识,了解物质的结构与性能关系知识,并能合理地解释一些实际问题。
2、阅读书目
1、徐光宪,《结构化学》,人民教育出版社,1979年。
2、周公度,《结构化学基础》,北京大学出版社,1997年第二版。
3、学习要求
拓展知识面,进一步巩固和理解所学知识点
4、时间安排
课程结束后两个月内完成
5、评价方式
结果评价
(二)课外讨论
1、目标
进一步提高学生对所学知识的掌握和理解能力
2、讨论内容
学习结构化学的体会及其在实际中的应用
3、讨论要求
准确理解所学知识,句子通顺、流利,表达清晰。
4、时间安排
期中和期末的周末
5、评价方式
结果与过程相结合
(三)实践活动
1、目标
锻炼学生对知识点在实际中应用的能力
2、实践内容
运用所学知识点解释实际现象
3、实践要求
知识点的描述正确,解释合理
4、时间安排
期中和期末的周末
5、评价方式
结果与过程相结合
(四)课外作业
1、目标
进一步巩固和提高学生对所学知识的掌握和理解能力
2、作业内容
对几个典型实际现象,进行解释理解
3、作业要求
解释合理、透彻,知识点描述正确
4、时间安排
与课外讨论同时进行
5、评价方式
结果评价