高一数学必修2空间几何部分公式定理总结

时间:2019-05-12 17:22:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高一数学必修2空间几何部分公式定理总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高一数学必修2空间几何部分公式定理总结》。

第一篇:高一数学必修2空间几何部分公式定理总结

必修2空间几何部分公式定理总结

河南省淮阳一高高一B段数学组 张明选

棱柱、棱锥、棱台的表面积

设圆柱的底面半径为,母线长为,则它的表面积等于圆柱的侧面积(矩形)加上底面积(两个圆),即

.设圆锥的底面半径为,母线长为,则它的表面积等于圆锥的侧面积(扇形)加上底面积(圆形),即

.设圆台的上、下底面半径分别为,母线长为,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即

.柱、锥、台的体积公式

柱体体积公式为:,(为底面积,为高)

锥体体积公式为:,(为底面积,为高)

台体体积公式为:

(球的体积和表面积

球的体积公式,分别为上、下底面面积,为高)

球的表面积公式

其中,为球的半径.显然,球的体积和表面积的大小只与半径

有关.公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2 过不在一条直线上的三点,有且只有一个平面.推论1 经过一条直线和直线外一点有且只有一个平面.推论2 经过两条相交的直线有且只有一个平面.推论3 经过两条平行的直线有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4(平行公理)平行于同一条直线的两条直线互相平行.定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.不同在任何一个平面内的两条直线叫做异面直线.空间两条直线的位置关系有且只有三种:

共面直线:相交直线(在同一平面内,有且只有一个公共点);平行直线(在同一平面内,没有公共点);异面直线:不同在任何一个平面内且没有公共点.空间中直线与平面位置关系有且只有三种: 直线在平面内——有无数个公共点

直线与平面相交——有且只有一个公共点 直线与平面平行——没有公共点

直线与平面相交或平行的情况统称为直线在平面外.两个平面的位置关系只有两种: 两个平面平行——没有公共点 两个平面相交——有一条公共直线 异面直线所成的角

已知两条异面直线,经过空间任一点

作直线

∥,∥,把

所成的锐角(或直角)叫做异面直线两条直线互相垂直,记作

所成的角(夹角).如果两条异面直线所成的角是直角,就说这.异面直线的判定定理

过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.直线与平面平行的判定定理

平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.直线与平面平行的性质定理

一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线都与该直线平行.两个平面平行的判定定理

一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.推论:一个平面内两条相交的直线分别平行于另一个平面内的两条直线,则这两个平面平行

.两个平面平行的性质定理

如果两个平行平面同时和第三个平面相交,那么它们的交线平行.两个平面平行,还有如下推论:

⑴如果两个平面平行,则一个平面内的任何直线都平行于另外一个平面; ⑵夹在两个平行平面内的所有平行线段的长度都相等;

⑶如果一条直线垂直于两个平行平面中的一个,那么这条直线也垂直于另一个平面.⑷如果一条直线和两个平行平面中的一个相交,那么它和另一个也相交.直线和平面垂直的概念

如果直线与平面.叫做垂线,内的任意一条直线都垂直,就说

直线与平面叫垂面,它们的交点

叫垂足.互相垂直,记做

直线和平面垂直的判定定理

一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.直线与平面所成的角

如图,直线斜足;,和平面

相交但不垂直,在平面

叫做平面的斜线,和平面的交点

叫做斜线上的射影.平面的一条斜线和它在平面上的射影

所成的锐角,叫这条直线和平面所成的角.直线垂直于平面,则它们所成的角是直角;直线和平面平行或在平面内,则它们所成的角是°角.两个平面垂直的判定定理

一个平面过另一个平面的垂线,则这两个平面垂直.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面.在二面角于棱的射线的棱上任取一点,则射线

和,以点

为垂足,在半平面

内分别作垂直

构成的叫做二面角的平面角.平面角是直角的二面角叫直二面角

.判断两平面垂直的方法:判定定理;求出二面角的平面角为直角.三垂线定理:

平面内的一条直线,如果和平面的一条斜线的射影垂直,那么它也和这条斜线垂直.如图:在平面

内的直线若垂直于直线,则就一定垂直于平面的斜线

.直线与平面垂直的性质定理

垂直于同一个平面的两条直线平行.平面与平面垂直的性质定理

两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.两个平面垂直的性质还有:

⑴如果两个平面互相垂直,那么经过一个平面内一点且垂直于另外一个平面的直线,必在这个平面内;

⑵如果两个相交平面都垂直于另一个平面,那么这两个平面的交线垂直于这个平面; ⑶三个两两垂直的平面,它们的交线也两两垂直.空间平行和垂直关系的转化

第二篇:高一物理必修2公式定理总结

高一物理公式总结

一、质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=S/t(定义式)2.有用推论Vt^2 –Vo^2=2as

3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t

7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0

8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差

9.主要物理量及单位:初速(Vo):m/s

加速度(a):m/s^2 末速度(Vt):m/s

时间(t):秒(s)位移(S):米(m)路程:米 速度单位换算:1m/s=3.6Km/h

注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/

2)自由落体

1.初速度Vo=0

2.末速度Vt=gt

3.下落高度h=gt^2/2(从Vo位置向下计算)4.推论Vt^2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

3)竖直上抛

1.位移S=Vot-gt^2/2 2.末速度Vt= Vo-gt(g=9.8≈10m/s2)

3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g(抛出点算起)

5.往返时间t=2Vo/g(从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同

点速度等值反向等。

二、质点的运动(2)----曲线运动 万有引力

1)平抛运动

1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt

3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/

25.运动时间t=(2Sy/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2

合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo

7.合位移S=(Sx^2+ Sy^2)1/2 ,位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo

注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。

(3)θ与β的关系为tgβ=2tgα。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R

5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位: 弧长(S):米(m)角度(Φ):弧度(rad)频率(f):赫(Hz)

周期(T):秒(s)转速(n):r/s 半径(R):米(m)线速度(V):m/s

角速度(ω):rad/s 向心加速度:m/s2

注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速

度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

3)万有引力

1.开普勒第三定律T2/R3=K(=4π^2/GM)R:轨道半径 T :周期 K:常量(与行星质量无关)

2.万有引力定律F=Gm1m2/r^2 G=6.67×10^-11N·m^2/kg^2方向在它们的连线上

3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m)

4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2

5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s

6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度

注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。

机械能

1.功

(1)做功的两个条件: 作用在物体上的力.物体在里的方向上通过的距离.(2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J)

1J=1N*m

当 0<= a <派/2 w>0 F做正功 F是动力

当 a=派/2 w=0(cos派/2=0)F不作功

当 派/2<= a <派 W<0 F做负功 F是阻力

(3)总功的求法:

W总=W1+W2+W3……Wn

W总=F合Scosa

2.功率

(1)定义:功跟完成这些功所用时间的比值.P=W/t 功率是标量 功率单位:瓦特(w)

此公式求的是平均功率

1w=1J/s 1000w=1kw

(2)功率的另一个表达式: P=Fvcosa

当F与v方向相同时, P=Fv.(此时cos0度=1)

此公式即可求平均功率,也可求瞬时功率

1)平均功率: 当v为平均速度时

2)瞬时功率: 当v为t时刻的瞬时速度

(3)额定功率: 指机器正常工作时最大输出功率

实际功率: 指机器在实际工作中的输出功率

正常工作时: 实际功率≤额定功率

(4)机车运动问题(前提:阻力f恒定)

P=Fv F=ma+f(由牛顿第二定律得)

汽车启动有两种模式

1)汽车以恒定功率启动(a在减小,一直到0)

P恒定 v在增加 F在减小 尤F=ma+f

当F减小=f时 v此时有最大值

2)汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)

a恒定 F不变(F=ma+f)V在增加 P实逐渐增加最大

此时的P为额定功率 即P一定

P恒定 v在增加 F在减小 尤F=ma+f

当F减小=f时 v此时有最大值

3.功和能

(1)功和能的关系: 做功的过程就是能量转化的过程

功是能量转化的量度

(2)功和能的区别: 能是物体运动状态决定的物理量,即过程量功是物体状态变化过程有关的物理量,即状态量

这是功和能的根本区别.4.动能.动能定理

(1)动能定义:物体由于运动而具有的能量.用Ek表示

表达式 Ek=1/2mv^2 能是标量 也是过程量

单位:焦耳(J)1kg*m^2/s^2 = 1J

(2)动能定理内容:合外力做的功等于物体动能的变化

表达式 W合=ΔEk=1/2mv^2-1/2mv0^2

适用范围:恒力做功,变力做功,分段做功,全程做功

5.重力势能

(1)定义:物体由于被举高而具有的能量.用Ep表示

表达式 Ep=mgh 是标量 单位:焦耳(J)

(2)重力做功和重力势能的关系

W重=-ΔEp

重力势能的变化由重力做功来量度

(3)重力做功的特点:只和初末位置有关,跟物体运动路径无关重力势能是相对性的,和参考平面有关,一般以地面为参考平面重力势能的变化是绝对的,和参考平面无关

(4)弹性势能:物体由于形变而具有的能量

弹性势能存在于发生弹性形变的物体中,跟形变的大小有关弹性势能的变化由弹力做功来量度

6.机械能守恒定律

(1)机械能:动能,重力势能,弹性势能的总称

总机械能:E=Ek+Ep 是标量 也具有相对性

机械能的变化,等于非重力做功(比如阻力做的功)

ΔE=W非重

机械能之间可以相互转化

(2)机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能发生相互转化,但机械能保持不变

表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功

第三篇:高一数学必修三公式定理总结

高一数学必修三公式定理总结

高一数学必修三公式定理总结

篇一:高一数学必修3公式总结以及例题 高一数学必修3公式总结以及例题 1 算法初步

? 秦九韶算法:通过一次式的反复计算逐步得出高次多项式的值,对于一个n次多 项式,只要作n次乘法和n次加法即可。表达式如下: anxn?an?1xn?1?...?a1?anx?an?1?x?an?2?x?...?x?a2?x?a1 例题:秦九韶算法计算多项式 3x6?4x5?5x4?6x3?7x2?8x?1 ,当 x?0.4 时, 需要做几次加法和乘法运算? 答案: 6,6 即: ?3x?4?x?5?x?6?x?7?x?8?x?1 ? 理解算法的含义:一般而言,对于一类问题的机械的、统一的求解方法称为算法,其意

义具有广泛的含义,如:广播操图解是广播操的算法,歌谱是一首歌的算法,空调说明书是空调

使用的算法„(algorithm)

1.描述算法有三种方式:自然语言,流程图,程序设计语言(本书指伪代码).2.算法的特征: ?有限性:算法执行的步骤总是有限的,不能无休止的进行下去

?确定性:算法的每一步操作内容和顺序必须含义确切,而且必须有输出,输出可以是 一个或多个。没有输出的算法是无意义的。

?可行性:算法的每一步都必须是可执行的,即每一步都可以通过手工或者机器在一定

时间内可以完成,在时间上有一个合理的限度

3.算法含有两大要素:?操作:算术运算,逻辑运算,函数运算,关系运算等?控制 结构:顺序结构,选择结构,循环结构

? 流程图:(flow chart): 是用一些规定的图形、连线及简单的文字说明表示算法及程 序结构的一种图形程序,它直观、清晰、易懂,便于检查及修改。

注意:1.画流程图的时候一定要清晰,用铅笔和直尺画,要养成有开始和结束的好习惯

2.拿不准的时候可以先根据结构特点画出大致的流程,反过来再检查,比如:遇到判断框时,往往临界的范围或者条件不好确定,就先给出一个临界条件,画好大致流程,然后检查这个条件是否正确,再考虑是否取等号的问题,这时候也就可以有几种书写方法了。

3.在输出结果时,如果有多个输出,一定要用流程线把所有的输出总结到一起,一起终结到结束框。直到型循环当型循环

?.顺序结构(sequence structure):是一种最简单最基本的结构它不存在条件判断、控制

转移和重复执行的操作,一个顺序结构的各部分是按照语句出现的先后顺序执行的。

?.选择结构(selection structure):或者称为分支结构。其中的判断框,书写时主要是注 意临界条件的确定。它有一个入口,两个出口,执行时只能执行一个语句,不能同时执行,其中的A,B两语句可以有一个为空,既不执行任何操作,只是表明在某条件成立时,执行某语句,至于不成立时,不执行该语句,也不执行其它语句。?.循环结构(cycle structure):它用来解决现实生活中的重复操作问题,分直到型(until)和当型(while)两种结构(见上图)。当事先不知道是否至少执行一次循环体时(即不知道循环次数时)用当型循环。

? 基本算法语句:本书中指的是伪代码(pseudo code),且是使用 BASIC语言编 写的,是介于自然语言和机器语言之间的文字和符号,是表达算法的简单而实用的好方法。伪代码没有统一的格式,只要书写清楚,易于理解即可,但也要注意符号要相对统一,避免引起混淆。如:赋值语句中可以用x?y,也可以 用 x?y;表示两变量相乘时可以用“*”,也可以用“?”

?.赋值语句(assignment statement):用 ? 表示,如:x?y,表示将y的值赋给x,其中x是一个变量,y是一个与x同类型的变量或者表达式.一般格式:“变量?表达式”,有时在伪代码的书写时也可以用 “x?y”,但 此时的 “ = ”不是数学运算中的等号,而应理解为一个赋值号。注: 1.赋值号左边只能是变量,不能是常数或者表达式,右边可以是常数或者表达式。“ = ”具有计算功能。如: 3 = a ,b + 6 = a ,都是错误的,而a = 3*5 – 1 , a = 2a + 3 都是正确的。2.一个赋值语句一次只能给一个变量赋值。如:a = b = c = 2 , a , b , c =2 都是错误的,而 a = 3 是正确的.例题:将x和y的值交换 p?x x?y , 同样的如果交换三个变量x,y,z的值 : y?p p?xx?yy?zz?p ?.输入语句(input statement): Read a ,b 表示输入的数一次送给 a ,b 输出语句(outstatement):Print x ,y 表示一次输出 运算结果x ,y 注:1.支持多个输入和输出,但是中间要用逗号隔开~2.Read 语句输入的只能是变量而不是表达式 3.Print 语句不能起赋值语句,意旨不能在Print 语句中用 “ = ”4.Print语句可以

输出常量和表达式的值.5.有多个语句在一行书写时用 “;”隔开.例题:当x等于5时,Print “x = ”;x 在屏幕上输出的结果是x = 5 ?.条件语句(conditional statement): 1.行If语句:If A Then B 注:没有 EndIf 2.块If语句: 注:?不要忘记结束语句EndIf,当有If语句嵌套使用时,有几个If,就必须要有几个End If ?.Else If 是对上一个条件的否定,即已经不属于上面的条件,另外Else If 后面也要有EndIf? 注意每个条件的临界性,即某个值是属于上一个条件里,还是属于下一个条件。? 为了使得书写清晰易懂,应缩进书写。格式如下: 例题: 用条件语句写出求三个数种最大数的一个算法.或者

注:1.同样的你可以写出求三个数中最小的数。2.也可以类似的求出四个数中最小、大的数

?.循环语句(cycle statement): ? 当事先知道循环次数时用 For 循环,即使是 N次也是已知次数的循环 ? 当循环次数不确定时用While循环 ? Do 循环有两种表达形式,与循环结构的两种循环相对应.While循环是前测试型的,即满足什么条件才进入循环,其实质是当型循环,一般在解决有关问题时,可以写成While循环,较为简单,因为它的条件相对好判断.2.凡是能

用While循环书写的循环都能用For 循环书写 3.While循环和Do循环可以相互转化 4.Do 循环的两种形式也可以相互转化,转化时条件要相应变化 5.注意临界条件的判定.例题: 设计计算1?3?5?...?99 的一个算法.(见课本P21)S?1 S?1 For I From 3 To99Step 2S?S?IEnd ForPrintS S?1I?1 While I?99 I?1 While I?97 I?I?2 S?S?IEnd While PrintS S?S?I I?I?2End While PrintS ? ? ? S?1S?1I?1I?1 Do S?S?I Do I?I?2I?I?2S?S?I Loop Until I ?99Loop UntilI ?100(或者 I ?99)PrintSPrintS ?? S?1S?1I?1I?1 Do WhileI ?99(或者I ?100)S?S?I I?I?2LoopPrintS ? Do WhileI ?97(或者I ?99)I?I?2 S?S?I LoopPrintS ? 颜老师友情提醒:1.一定要看清题意,看题目让你干什么,有的只要写出算法,有的只要求写出伪代码,而有的题目则是既写出算法画出流程还要写出伪代码。2.在具体做题时,可能好多的同学感觉先画流程图较为简单,但也有的算法伪代码比较好写,你也可以在草稿纸上按照你自己的思路先做出来,然后根据题目要求作答。一般是先写算法,后画流程图,最后写伪代码。

3.书写程序时一定要规范化,使用统一的符号,最好与教材一致,由于是新教材的原因,再加上各种版本,可能同学会看到各种参考书上的书写格式不一样,而且有时还会碰到我们没有见过的语言,希望大家能以课本为依据,不要被铺天盖地的资料所淹没~ Ex: 1.对于任意给定的N ,一定存在自然数n , 使得1?2.用循环语句写出求1? 111 ??...??N 23n 1111 ??...?的一个算法.234100 3.设计一个计算1? ReadNS?0n?0While S? N 111 ??...?的一个算法,并画出流程图,写出伪代码.23100S?0a?1 For I From 1to 100 算法:S1S?0S2I?1 a 答案:1 n?n?1 2.S?S? I 1a?a??-1? S?S?nEndFor EndWhlie Print S 3.S如果 I ?100 则 3 1 S?S?I?I?1转 S3 I 否则输出 S 篇二:【强烈推荐】高一数学必修3公式总结以及例题 高一数学必修3公式总结以及例题 1 算法初步

? 秦九韶算法:通过一次式的反复计算逐步得出高次多项式的值,对于一个 多项式,只要作n次乘法和n次加法即可。表达式如下: anx?an?1x n n?1 n次 ?...?a1? anx?an?1?x?an?2?x?...?x?a2?x?a1 例题:秦九韶算法计算多项式 3x6?4x5?5x4?6x3?7x2?8x?1 ,当 x?0.4 时, 需要做几次加法和乘法 运算? 答案: 6,6 即: ?3x?4?x?5?x?6?x?7?x?8?x?1 ? 理解算法的含义:一般而言,对于一类问题的机械的、统一的求解方法称为算法,其意

义具有广泛的含义,如:广播操图解是广播操的算法,歌谱是一首歌的算法,空调说明书是空调使用的算法„(algorithm)

1.描述算法有三种方式:自然语言,流程图,程序设计语言(本书指伪代码).2.算法的特征: ?有限性:算法执行的步骤总是有限的,不能无休止的进行下去

?确定性:算法的每一步操作内容和顺序必须含义确切,而且必须有输出,输出可以是

一个或多个。没有输出的算法是无意义的。

?可行性:算法的每一步都必须是可执行的,即每一步都可以通过手工或者机器在一定

时间内可以完成,在时间上有一个合理的限度

3.算法含有两大要素:?操作:算术运算,逻辑运算,函数运算,关系运算等?控制结 构:顺序结构,选择结构,循环结构

? 流程图:(flow chart): 是用一些规定的图形、连线及简单的文字说明表示算法及程序

结构的一种图形程序,它直观、清晰、易懂,便于检查及修改。

注意:1.画流程图的时候一定要清晰,用铅笔和直尺画,要养成有开始和结束的好习惯

2.拿不准的时候可以先根据结构特点画出大致的流程,反过来 再检查,比如:遇到判断框时,往往临界的范围或者条件不好确定,就先给出一个临界条件,画好大致流程,然后检查这个条件是否正确,再考虑是否取等号的问题,这时候也就可以有几种书写方法了。3.在输出结果时,如果有多个输出,一定要用流程线把所有的输出总结到一起,一起终结到结束框。直到型循环当型循环

?.顺序结构(sequence structure):是一种最简单最基本的结构它不存在条件判断、控制

转移和重复执行的操作,一个顺序结构的各部分是按照语句出现的先后顺序执行的。

?.选择结构(selection structure):或者称为分支结构。其中的判断框,书写时主要是注

意临界条件的确定。它有一个入口,两个出口,执行时只能执行一个语句,不能同时执行,其中的A,B两语句可以有一个为空,既不执行任何操作,只是表明在某条件成立时,执行

某语句,至于不成立时,不执行该语句,也不执行其它语句。

?.循环结构(cycle structure):它用来解决现实生活中的重复操作问题,分直到型(until)和当型(while)两种结构(见上图)。当事先不知道是否至少执行一次循环体时(即不知道循

环次数时)用当型循环。

? 基本算法语句:本书中指的是伪代码(pseudo code),且 是使用 BASIC 语言 编写的,是介于自然语言和机器语言之间的文字和符号,是表达算法的简单而实用的好方法。伪代码没有统一的格式,只要书写清楚,易于理解即可,但也要注意符号要相对统一,避免引起混淆。如:赋值语句中可以用x?y,也可以 用 x?y;表示两变量相乘时可以用“*”,也可以用“?”

?.赋值语句(assignment statement):用 ? 表示,如:x?y,表示将y的值赋给x,其中x是一个变量,y是一个与x同类型的变量或者表达式.一般格式:“变量?表达式”,有时在伪代码的书写时也可以用 “x?y”,但 此时的 “ = ”不是数学运算中的等号,而应理解为一个赋值号。注: 1.赋值号左边只能是变量,不能是常数或者表达式,右边可以是常数或者表达式。“ = ”具有计算功能。如: 3 = a ,b + 6 = a ,都是错误的,而a = 3*5 – 1 , a = 2a + 3 都是正确的。2.一个赋值语句一次只能给一个变量赋值。如:a = b = c = 2 , a , b , c =2 都是错误的,而 a = 3 是正确的.例题:将x和y的值交换 p?x p?x x?y , 同样的如果交换三个变量x,y,z的值 : y?p x?yy?zz?p ?.输入语句(input statement): Read a ,b 表示输入的数一次送给 a ,b 输出语句(outstatement):Print x ,y 表示一次输出 运算结果x ,y 注:1.支持多个输入和输出,但是中间要用逗号隔开~2.Read 语句输入的只能是变量而不是表达式 3.Print 语句不能起赋值语句,意旨不能在Print 语句中用 “ = ”4.Print语句可以输出常量和表达式的值.5.有多个语句在一行书写时用 “;”隔开.例题:当x等于5时,Print “x = ”;x 在屏幕上输出的结果是x = 5 ?.条件语句(conditional statement): 1.行If语句:If A Then B 注:没有 EndIf ?EndIf,当有If语句嵌套使用时,有几个If,就必须要有几个End If ?.Else If 是对上一个条件的否定,即已经不属于上面的条件,另外Else If 后面也要有EndIf? 注意每个条件的临界性,即某个值是属于上一个条件里,还是属于下一个条件。? 为了使得书写清晰易懂,应缩进书写。格式如下: 例题: 用条件语句写出求三个数种最大数的一个算法.或者

注:1.同样的你可以写出求三个数中最小的数。2.也可以类似的求出四个数中最小、大的数

?.循环语句(cycle statement): ? 当事先知道循环次数时用 For 循环,即使是 N次也是已知次数的循环

? 当循环次数不确定时用While循环 ? Do 循环有两种表达形式,与循环结构的两种循环相对应.While循环是前测试型的,即满足什么条件才进入循环,其实质是当型循环,一般在解决有关问题时,可以写成While循环,较为简单,因为它的条件相对好判断.2.凡是能

While循环书写的循环都能用For 循环书写While循环和Do循环可以相互转化 Do 循环的两种形式也可以相互转化,转化时条件要相应变化 5.注意临界条件的判定.例题: 设计计算1?3?5?...?99 的一个算法.(见课本P21)S?1 S?1I?1 While I?99 S?1 For I From 3 To99Step 2S?S?IEnd ForPrintS I?1 While I?97 I?I?2 S?S?IEnd While PrintS S?S?I I?I?2End While PrintS S?1I?1Do ? ? ? S?1I?1Do S?S?I I?I?2 Loop UntilI ?100(或者 I ?99)PrintSS?1I?1 Do WhileI ?99(或者I ?100)S?S?I I?I?2LoopPrintS I?I?2 S?S?I Loop Until I ?99PrintSS?1I?1 ?? Do WhileI ?97(或者I ?99)I?I?2 S?S?I LoopPrintS ? ? 颜老师友情提醒:1.一定要看清题意,看题目让你干什么,有的只要写出算法,有的只要求写出伪代码,而有的题目则是既写出算法画出流程还要写出伪代码。2.在具体做题时,可能好多的同学感觉先画流程图较为简单,但也有的算法伪代码比较好写,你也可以在草稿纸上按照你自己的思路先做出来,然后根据题目要求作答。一般是先写算法,后画流程图,最后写伪代码。3.书写程序时一定要规范化,使用统一的符号,最好与教材一

致,由于是新教材的原因,再加上各种版本,可能同学会看到各种参考书上的书写格式不一样,而且有时还会碰到我们没有见过的语言,希望大家能以课本为依据,不要被铺天盖地的资料所淹没~ Ex: 1.对于任意给定的 N ,一定存在自然数 1? 12?13?14...? n , 使得1?1100 12 ? 13 ?...? 1n ?N 2.用循环语句写出求的一个算法.3.设计一个计算1? ReadNS?0n?0While S? N 12?13?...? 1100 的一个算法 ,并画出流程图 ,写出伪代码.S?0a?1 For I From 1to 100 aI 算法:S1S?0S2I?1 答案:1 n?n?1 2.S?S? S?S?EndWhlie1n 3.S3如果 I ?100 则 1 S?S?I?I?1转 S3 I 否则输出 S a?a??-1?EndForPrint S 篇三:高中数学必修3知识点总结 高中数学必修3知识点 第一章 算法初步 1.1.1 算法的概念

1、算法概念: 在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之

后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图

1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用

学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:

1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否” 两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

5、在图形符号内描述的语言要非常简练清楚。(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

顺序结构在程序框图中的体现就是用流程线将程序框自上而 下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B 框是依次执行的,只有在执行完A框指定的操作后,才能接着执 行B框所指定的操作。

2、条件结构: 条件结构是指在算法中通过对条件的判断 根据条件是否成立而选择不同流向的算法结构。

条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。

3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:(1)、一类是当型循环结构,如下左图所示,它的功能是当给 定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执

行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。(2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。当型循环结构 直到型循环结构

注意:1循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构,但不允许“死循环”。2在循环结构中都有一个计数变量和累加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步((((((执行的,累加一次,计数一次。1.2.1 输入、输出语句和赋值语句

1、输入语句

(1)输入语句的一般格式

(2)输入语句的作用是实现算法的输入信息功能;(3)“提示内容”提示用户输入什么样的信息,变量是指程序在运行时其值是可以变化的量;(4)输入语句要求输入的值只能是具体的常数,不能是函数、变量或表达式;(5)提示内容与变量之间用分号“;”隔开,若输入多个变量,变量与变量之间用逗号“,”隔开。

2、输出语句

(1)输出语句的一般格式

(2)输出语句的作用是实现算法的输出结果功能;(3)“提示内容”提示用户输入什么样的信息,表达式是指程序要输出的数据;(4)输出语句可以输出常量、变量或表达式的值以及 字符。

3、赋值语句(1)赋值语句的一般格式

(2)赋值语句的作用是将表达式所代表的值赋给变量;(3)赋值语句中的“,”称作赋值号,与数学中的等号的意义是不同的。赋值号的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以多次赋值。

注意:?赋值号左边只能是变量名字,而不能是表达式。如:2=X是错误的。?赋值号左右不能对换。如“A=B”“B=A”的含义运行结果是不同的。?不能利用赋值语句进行代数式的演算。(如化简、因式分解、解方程等)?赋值号“=”与数学中的等号意义不同。1(2(2条件语句

1、条件语句的一般格式有两种:(1)IF—THEN—ELSE语句;(2)IF—THEN语句。

2、IF—THEN—ELSE语句

IF—THEN—ELSE语句的一般格式为图1,对应的程序框图为图2。图1 图2 分析:在IF—THEN—ELSE语句中,“条件”表示判断的条件,“语句1”表示满足条件时执行的操作内容;“语句2”表示不满足条件时执行的操作内容;END IF表示条件语句的结束。计算机在执行时,首先对IF后的条件进行判断,如果条件符合,则执行THEN后面的语句1;若条件不符合,则执行ELSE后面的语句2。

3、IF—THEN语句

IF—THEN语句的一般格式为图3,对应的程序框图为图4 注意:“条件”表示判断的条件;“语句”表示满足条件时作内容,条件不满足时,结束程序;END IF表示条件语句的结束。计算机在执行时首先

对IF后的条件进行判断,如果条件符合就执行THEN后边的语句,若条件不符合则直接结束该条件语句,转而执行其它语句。1(2(3循环语句

循环结构是由循环语句来实现的。对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(UNTIL型)两种语句结构。即WHILE语句和UNTIL语句。

1、WHILE语句

(1)WHILE语句的一般格式是

(2)当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与WEND之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行

WEND之后的语句。因此,当型循环有时也称为“前测试型”循环。

2、UNTIL语句

(1)UNTIL语句的一般格式是 对应的程序框图是

(2)直到型循环又称为“后测试型”循环,从UNTIL时,先执行一次循环体,然后进行条件的判断,如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL语句后执行其他语句,是先执行循环体后进行条件判断的循环语句。分析:当型循环与直到型循环的区别:(先由学生讨论再归纳)(1)当型循环先判断后执行,直到型循环先执行后判断;在WHILE语句中,是当条件满足时执行循环体,在UNTIL语句中,是当条件不满足时执行循环

1.3.1辗转相除法与更相减损术

1、辗转相除法。也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下:(1):用较大的数m除以较小的数n得到一个商 RS0和一个余数R0;(2):若0,0,则n

第四篇:初中数学几何公式、定理(二)

初中数学几何公式、定理汇编(二)全等三角形的对应边、对应角相等

22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等边边边公理(SSS)有三边对应相等的两个三角形全等斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)

推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

推论1 三个角都相等的三角形是等边三角形

推论 2 有一个角等于60°的等腰三角形是等边三角形

在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半

定理 线段垂直平分线上的点和这条线段两个端点的距离相等

逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

第五篇:数学初二 几何定理总结(推荐)

几何公式和定理(初2)1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS)有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

下载高一数学必修2空间几何部分公式定理总结word格式文档
下载高一数学必修2空间几何部分公式定理总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2021年初中数学几何定理总结

    2021年初中数学几何定理总结撰写人:___________日期:___________2021年初中数学几何定理总结、过两点有且只有一条直线、两点之间线段最短3、同角或等角的补角相等4、同角或等......

    小学数学各种公式定理大全资料总结

    基本概念 第一章 数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。 2 自然数我们在数物体的时候,用来表示物体个数的1,2,3„„叫做自然数。 一个物体也没有,用0表示。0......

    高一数学必修3公式总结及例题(精选五篇)

    高一数学必修3公式总结及例题 §1 算法初步 秦九韶算法:通过一次式的反复计算逐步得出高次多项式的值,对于一个n次多项式,只要作n次乘法和n次加法即可。表达式如下: 例题:秦九韶......

    高一数学必修2知识点总结

    高中数学必修2知识点三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几......

    高一数学必修2教案

    高一数学必修2教案:柱、锥、台、球的结构特征一、教学目标1.知识与技能:(1)通过实物操作,增强学生的直观感知。(2)能根据几何结构特征对空间物体进行分类。(3)会用语言概述棱柱、棱锥......

    2021年初中数学几何证明定理总结

    2021年初中数学几何证明定理总结撰写人:___________日期:___________2021年初中数学几何证明定理总结几何证明题的思路很多几何证明题的思路往往是填加辅助线,分析已知、求证与......

    高一必修2正弦定理和余弦定理测试题及答案

    正弦定理和余弦定理测试题及答案第1题. 直角△ABC的斜边AB2,内切圆半径为r,则r的最大值是A.B.1C2D答案:D第2题. 在△ABC中,若sinBsinCcos2A.等边三角形B.等腰三角形C.直角三角形D. 等腰......

    2013江苏高一数学增效减负学案:2:正弦定理(必修1)

    正弦定理一、设计思想:定理教学中有一种简陋的处理方式:简单直接的定理呈现、照本宣科的定理证明,然后是大剂量的“复制例题”式的应用练习。本课采用实验探究、自主学习、合作......