微分方程习题答案

时间:2019-05-12 19:45:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《微分方程习题答案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《微分方程习题答案》。

第一篇:微分方程习题答案

微分方程习题答案

习题基本要求:微分方程的阶,判定一阶齐次(非齐次)微分方程,微分方程的通解及特解,可分离变量微分方程及其通解,二阶常系数微分方程的特征根及其三种不同形式的通解,选择题

下列方程哪些是一阶齐次微分方程? dyyy2x2dyyy(1)xyyyx0是齐次方程(21dxxdxxx2

2dyy2(2)xyy不是齐次方程dx1x22

dyx2y2dyxy(3)(xy)dxxydy0是齐次方程 dxxydxyx22

(4)(2xy4)dx(xy1)dy0不是齐次方程dy2xy4dxxy

1y2()dyydy22dyxy(5)yx是齐次方程dxdxdxxyx21x21、微分方程y“+(yˊ)4-y3=0的阶数是(B)

(A)1(B)2(C)3(D)

42、方程(y-3x)dx –(x+y)dy=0是(B)

(A)可分离变量微分方程(B)齐次方程

(C)一阶非齐次线性微分方程(D)一阶齐次线性微分方程

3、方程xdy+ydx=0的通解为(D)

(A)xy=1(B)xy=3(C)xy=-3(D)xy=C4、方程y”+ yˊ-2 y=0的通解为(C)

----(A)y=e2x+ex(B)y=Ce2x+ex(C)y=C1e2x+C2ex(D)y=e2x+Cex

填空题:

1、方程ydy+xdx=0的通解为22.通解为y=Cex的一阶微分方程为yˊ-y=0.2、满足条件y(0)=3的微分方程dy=2xydx的特解为y=3ex2.3、二阶常系数齐次线性微分方程y“+p yˊ+q y=0的特征方程为r2-

4、微分方程y”-4y=0的通解为2x2x.-

5、微分方程y“-4yˊ-5y=0的通解为x5x6、微分方程y”-4yˊ+13y=0的通解为

7、微分方程y“+2yˊ+y=0的通解解答题

1、求可分离变量微分方程dy=xydx的通解。

解:(1)显然y=0是微分方程的解;

(2)当y≠0时,方程可化为dydyxdx,两边分别积分xdx yy

12x12得方程的解为lnyxC1,即yCe2

212x2由(1)(2)可知微分方程的通解为yCe。

2、求微分方程ex-ydx=dy的通解。

解:方程可化为exdx=eydy,两边积分得∫exdx=∫eydy,于是微分方程的通解为ey = ex+C.3、求微分方程y”-2yˊ-3y=0的通解。

-解:所给微分方程的特征方程为r2-2r-3=0,其根为r1=-1,r2=3,因此所求通解为y=C1ex+C2e3x4、求微分方程y“-5yˊ+6y=0的通解。

解:所给微分方程的特征方程为r2-5r+6=0,其根为r1=2,r2=3.因此所求通解为y=C1e2x+C2e3x。

5、求微分方程y”+2yˊ+y=0的通解。

-解:所给微分方程的特征方程为r2+2r+1=0,其根为r1=r2=-1.因此所求通解为y=(C1+C2x)ex.6、求微分方程y“-4yˊ+4y=0的通解。

解:所给微分方程的特征方程为r2-4r+4=0,其根为r1=r2=2,因此所求通解为y=(C1+C2x)e2x.7、求微分方程y”-2 yˊ+5 y=0的通解。

解:所给方程的特征方程为r2-2r+5=0,其根为r

因此所求通解为y=ex(C1cos2x+C2sin2x)

8、求微分方程y"-4 yˊ+5 y=0的通解。

解:所给方程的特征方程为r2-2r+5=0,其根为r

因此所求通解为y=e2x(C1cosx+C2sinx).12i 2i

第二篇:微分方程教案

高等数学教案

第七章

微分方程

教学目的:

1.了解微分方程及其解、阶、通解,初始条件和特等概念。2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。

3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。4. 会用降阶法解下列微分方程:y(n)f(x),yf(x,y)和yf(y,y)5. 理解线性微分方程解的性质及解的结构定理。

6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。

8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。9.会解微分方程组(或方程组)解决一些简单的应用问题。教学重点:

1、可分离的微分方程及一阶线性微分方程的解法

(n)

2、可降阶的高阶微分方程yf(x),yf(x,y)和yf(y,y)

3、二阶常系数齐次线性微分方程;

4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;

教学难点:

1、齐次微分方程、伯努利方程和全微分方程;

2、线性微分方程解的性质及解的结构定理;

3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。

高等数学教案

§7 1 微分方程的基本概念

函数是客观事物的内部联系在数量方面的反映 利用函数关系又可以对客观事物的规律性进行研究 因此如何寻找出所需要的函数关系 在实践中具有重要意义 在许多问题中 往往不能直接找出所需要的函数关系 但是根据问题所提供的情况 有时可以列出含有要找的函数及其导数的关系式 这样的关系就是所谓微分方程 微分方程建立以后 对它进行研究 找出未知函数来 这就是解微分方程

例1 一曲线通过点(1 2) 且在该曲线上任一点M(x y)处的切线的斜率为2x 求这曲线的方程

解 设所求曲线的方程为yy(x) 根据导数的几何意义 可知未知函数yy(x)应满足关系式(称为微分方程)

dy2x

(1)

dx此外 未知函数yy(x)还应满足下列条件

x1时 y2 简记为y|x12

(2)把(1)式两端积分 得(称为微分方程的通解)

y2xdx 即yx2C

(3)其中C是任意常数

把条件“x1时 y2”代入(3)式 得

212C

由此定出C1 把C1代入(3)式 得所求曲线方程(称为微分方程满足条件y|x12的解)

yx21

例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶 当制动时列车获得加速度04m/s2 问开始制动后多少时间列车才能停住 以及列车在这段时间里行驶了多少路程?

解 设列车在开始制动后t秒时行驶了s米 根据题意 反映制动阶段列车运动规律的函数ss(t)应满足关系式 d2s0.

(4)dt2此外 未知函数ss(t)还应满足下列条件

t0时 s0 vds20 简记为s|=0 s|=20

(5)

t0t0dt高等数学教案

把(4)式两端积分一次 得

vds0.4tC

(6)1dt再积分一次 得

s02t2 C1t C2

(7)这里C1 C2都是任意常数

把条件v|t020代入(6)得

20C1

把条件s|t00代入(7)得0C2

把C1 C2的值代入(6)及(7)式得

v04t 20

(8)

s02t220t

(9)在(8)式中令v0 得到列车从开始制动到完全停住所需的时间

t2050(s)

0.4再把t50代入(9) 得到列车在制动阶段行驶的路程

s025022050500(m)

几个概念

微分方程 表示未知函数、未知函数的导数与自变量之间的关系的方程 叫微分方程

常微分方程 未知函数是一元函数的微分方程 叫常微分方程

偏微分方程 未知函数是多元函数的微分方程 叫偏微分方程

微分方程的阶 微分方程中所出现的未知函数的最高阶导数的阶数 叫微分方程的阶

x3 yx2 y4xy3x2 

y(4)4y10y12y5ysin2x

y(n)10

一般n阶微分方程

F(x y y

    y(n))0

y(n)f(x y y

    y(n1))

微分方程的解 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解 确切地说 设函数y(x)在区间I上有n阶连续导数 如果在区间I上

高等数学教案

F[x (x) (x)    (n)(x)]0

那么函数y(x)就叫做微分方程F(x y y    y(n))0在区间I上的解

通解 如果微分方程的解中含有任意常数 且任意常数的个数与微分方程的阶数相同 这样的解叫做微分方程的通解

初始条件 用于确定通解中任意常数的条件 称为初始条件 如

xx0 时 yy0  y y0 

一般写成



yxx0y0 yxx0y0

特解 确定了通解中的任意常数以后 就得到微分方程的特解 即不含任意常数的解

初值问题 求微分方程满足初始条件的解的问题称为初值问题

如求微分方程yf(x

y)满足初始条件yxx0y0的解的问题 记为

yf(x,y)

 yxx0y0

积分曲线 微分方程的解的图形是一条曲线 叫做微分方程的积分曲线

d2xk2x0

例3 验证 函数 xC1cos ktC2 sin kt是微分方程

的解

dt

2解 求所给函数的导数

dxkCsinktkCcoskt 12dtd2xk2Ccosktk2Csinktk2(CcosktCsinkt)

1212dt2d2x将2及x的表达式代入所给方程 得 dt

k2(C1cos ktC2sin kt) k2(C1cos ktC2sin kt)0

d2xk2x0

这表明函数xC1cosktC2sinkt 满足方程2 因此所给函数是所给方程的解

dtd2xk2x0

例4 已知函数xC1cosktC2sinkt(k0)是微分方程2的通解 求满足初始条件

dt

x| t0 A x| t0 0 的特解

高等数学教案

由条件x| t0 A及xC1 cos ktC2 sin kt 得

C1A

再由条件x| t0 0 及x(t)kC1sin ktkC2cos kt 得

C20

把C1、C2的值代入xC1cos ktC2sin kt中 得

xAcos kt

作业:P298:4

§7 2 可分离变量的微分方程

观察与分析

1 求微分方程y2x的通解 为此把方程两边积分 得 yx2C

一般地 方程yf(x)的通解为yf(x)dxC(此处积分后不再加任意常数)

2 求微分方程y2xy2 的通解

因为y是未知的 所以积分2xy2dx无法进行 方程两边直

接积分不能求出通解

为求通解可将方程变为

1dy2xdx 两边积分 得

y21x2C1  或y2yxC可以验证函数y1是原方程的通解

x2C

一般地 如果一阶微分方程y(x, y)能写成 g(y)dyf(x)dx

形式 则两边积分可得一个不含未知函数的导数的方程

高等数学教案

G(y)F(x)C

由方程G(y)F(x)C所确定的隐函数就是原方程的通解

对称形式的一阶微分方程

一阶微分方程有时也写成如下对称形式

P(x y)dxQ(x y)dy0 在这种方程中 变量x与y 是对称的

若把x看作自变量、y看作未知函数 则当Q(x,y)0时 有

dyP(x,y)

dxQ(x,y)dxQ(x,y)

dyP(x,y)若把y看作自变量、x看作未知函数 则当P(x,y)0时 有

可分离变量的微分方程

如果一个一阶微分方程能写成

g(y)dyf(x)dx(或写成y(x)(y))的形式 就是说 能把微分方程写成一端只含y的函数和dy 另一端只含x的函数和dx 那么原方程就称为可分离变量的微分方程

讨论 下列方程中哪些是可分离变量的微分方程?(1)y2xy

是 y1dy2xdx (2)3x25xy0

是 dy(3x25x)dx(3)(x2y2)dxxydy=0

不是

(4)y1xy2xy2 是 y(1x)(1y2)(5)y10xy

是 10ydy10xdx(6)yxy

不是 yx

可分离变量的微分方程的解法

第一步

分离变量 将方程写成g(y)dy f(x)dx的形式

第二步

两端积分g(y)dyf(x)dx 设积分后得G(y)F(x)C

第三步

求出由G(y)F(x)C所确定的隐函数y(x)或x(y)G(y)F(x)C  y(x)或x(y)都是方程的通解 其中G(y)F(x)C称为隐式(通)解 高等数学教案

例1 求微分方程dy2xy的通解

dx

此方程为可分离变量方程 分离变量后得

1dy2xdx

y1dy2xdx

y两边积分得

ln|y|x2C1

从而

yex2C1eC1ex 2因为eC1仍是任意常数 把它记作C 便得所给方程的通解

yCex

例2 铀的衰变速度与当时未衰变的原子的含量M成正比 已知t0时铀的含量为M0 求在衰变过程中铀含量M(t)随时间t变化的规律

解 铀的衰变速度就是M(t)对时间t的导数2dM

dtdMM

dtdM0

dt

由于铀的衰变速度与其含量成正比 故得微分方程其中(>0)是常数 前的曲面号表示当t增加时M单调减少 即由题意 初始条件为 M|t0M0

将方程分离变量得

两边积分 得dMdt

MdM()dt

M即

lnMtlnC 也即MCet

由初始条件 得M0Ce0C

所以铀含量M(t)随时间t变化的规律MM0et 

例3 设降落伞从跳伞塔下落后 所受空气阻力与速度成正比 并设降落伞离开跳伞塔时速度为零 求降落伞下落速度与时间的函数关系

设降落伞下落速度为v(t) 降落伞所受外力为Fmgkv(k为比例系数) 根据牛顿第二运

高等数学教案

动定律Fma 得函数v(t)应满足的方程为

mdvmgkv

dt初始条件为

v|t00

方程分离变量 得

dvdt

mgkvmdvdtmgkvm 两边积分 得

ln(mgkv)1ktC

m1kC1ktmgemCe即

v(C)

kkmg将初始条件v|t00代入通解得C

kktmg(1em)

于是降落伞下落速度与时间的函数关系为vkdy1xy2xy2的通解

例4 求微分方程dx

解 方程可化为

dy(1x)(1y2)

dx分离变量得

1dy(1x)dx

1y21dy(1x)dx 即1x2xC

arctany1y22两边积分得

于是原方程的通解为ytan(x2xC)

作业:P304:1(1)(2)(3)(7)(9)(10),2(2)(4),3 12高等数学教案

§7 3 齐次方程

齐次方程

如果一阶微分方程dyf(x,y)中的函数f(x, y)可写成 dxyy的函数 即f(x,y)() 则称这方程为齐次方程

xx

下列方程哪些是齐次方程?

dyyy2x2dyyy

(1)xyyyx0是齐次方程()21

dxxdxxx22dy1y

2(2)1xy1y不是齐次方程

dx1x222dyx2y2dyxy

(3)(xy)dxxydy0是齐次方程 dxxydxyx22

(4)(2xy4)dx(xy1)dy0不是齐次方程

(5)(2xshdy2xy4

dxxy1yyy3ych)dx3xchdy0是齐次方程

xxxyy2xsh3ychdyxxdy2thyy 

ydxdx3xx3xchx

齐次方程的解法

在齐次方程

ux分离变量 得

ydyy()中 令u 即yux 有 dxxxdu(u)

dxdudx (u)uxdudx(u)ux 两端积分 得

高等数学教案

求出积分后 再用y代替u 便得所给齐次方程的通解

xdydyxy

dxdx

例1 解方程y2x2

原方程可写成

y2()dyyx

2ydxxyx1x2因此原方程是齐次方程 令

yux 于是原方程变为

2duu

ux

dxu1yu 则 xdyuxdu

dxdx即

xduu

dxu1分离变量 得

(1)du1udx

x两边积分 得uln|u|Cln|x|

或写成ln|xu|uC

以y代上式中的u 便得所给方程的通解 x

ln|y|yC

x

例2 有旋转曲面形状的凹镜 假设由旋转轴上一点O发出的一切光线经此凹镜反射后都与旋转轴平行 求这旋转曲面的方程

解 设此凹镜是由xOy面上曲线L yy(x)(y>0)绕x轴旋转而成 光源在原点 在L上任取一点M(x, y) 作L的切线交x轴于A 点O发出的光线经点M反射后是一条平行于x轴射线 由光学及几何原理可以证明OAOM

因为

OAAPOPPMcotOPyx

y高等数学教案

OMx2y2

于是得微分方程yxx2y2 y整理得dxx(x)21 这是齐次方程

dyyydxx(x)21

dyyy

问题归结为解齐次方程

令即

yxvdvvv21 即xyv 得vy

ydydvv21

dy分离变量 得dvdy

v21yyy, (v)2v21, CC两边积分 得 ln(vv21)lnylnC, vv21y22yv1

C2C以yvx代入上式 得y22C(xC)

2这是以x轴为轴、焦点在原点的抛物线 它绕x轴旋转所得旋转曲面的方程为

y2z22C(xC) 2这就是所求的旋转曲面方程

例3 设一条河的两岸为平行直线 水流速度为a 有一鸭子从岸边点A游向正对岸点O 设鸭子的游速为b(b>a) 且鸭子游动方向始终朝着点O 已知OAh 求鸭子游过的迹线的方程

解 取O为坐标原点 河岸朝顺水方向为x轴 y 轴指向对岸 设在时刻t鸭子位于点P(x, y) 则鸭子运动速度

v(vx, vy)(dx, dy) 故有dxvx

dyvydtdt高等数学教案

另一方面 vab(a, 0)b(x, y) v(abx, by)

x2y2x2y2x2y2x2y2因此dxvxa(x)21x 即dxa(x)21x

dybyydyvybyydxa(x)21x

dybyy

问题归结为解齐次方程

yxu 即xyu 得 yduau21

dyb分离变量 得duady

u21by两边积分 得 arshu(lnylnC) bax1[(Cy)1b(Cy)1b]

将u代入上式并整理 得xy2C以x|yh0代入上式 得Caa1 故鸭子游过的轨迹方程为

haay1by1bh()] 0yh

x[()2hhb将ux代入arshu(lnylnC)后的整理过程

yaarshxb(lnylnC)

yaxshln(Cy)ax1[(Cy)a(Cy)a] yy2bbbbyax[(Cy)(Cy)a]x1[(Cy)1a(Cy)1a]

2C2bbb作业:P309:1(1)(3)(5),2

高等数学教案

§7.4 线性微分方程

一、线性方程

线性方程

方程dyP(x)yQ(x)叫做一阶线性微分方程 dxdydyP(x)y0叫做对应于非齐次线性方程P(x)yQ(x)的齐次线性方程

dxdxdydyy1y0是齐次线性方程 dxdxx2如果Q(x)0  则方程称为齐次线性方程 否则方程称为非齐次线性方程

方程

下列方程各是什么类型方程?

(1)(x2)

(2)3x25x5y0y3x25x  是非齐次线性方程

(3)yy cos xesin x  是非齐次线性方程

(4)dy10xy 不是线性方程 dx23dy3(y1)2dydxxx00或

(5)(y1) 不是线性方程

dxdydx(y1)2x

3齐次线性方程的解法

齐次线性方程

dyP(x)y0是变量可分离方程 分离变量后得 dxdyP(x)dx

y两边积分 得

ln|y|P(x)dxC1

P(x)dx(CeC1)

yCe这就是齐次线性方程的通解(积分中不再加任意常数)

1求方程(x2)dyy的通解

dx

这是齐次线性方程 分离变量得

高等数学教案

dydx

yx2两边积分得

ln|y|ln|x2|lnC

方程的通解为

yC(x2)

非齐次线性方程的解法

将齐次线性方程通解中的常数换成x的未知函数u(x) 把

P(x)dx

yu(x)e

设想成非齐次线性方程的通解 代入非齐次线性方程求得

P(x)dxP(x)dxP(x)dxu(x)eP(x)P(x)u(x)eQ(x)

u(x)e化简得

u(x)Q(x)eP(x)dx

u(x)Q(x)eP(x)dxdxC

于是非齐次线性方程的通解为

P(x)dxP(x)dx

ye[Q(x)edxC] P(x)dxP(x)dxP(x)dx或

yCeeQ(x)edx 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和

5dy2y(x1)2的通解

例2 求方程dxx1

这是一个非齐次线性方程

先求对应的齐次线性方程分离变量得

dy2y0的通解

dxx1dy2dx

yx1两边积分得

ln y2ln(x1)ln C

齐次线性方程的通解为

高等数学教案

yC(x1)2

用常数变易法 把C换成u 即令yu(x1)2 代入所给非齐次线性方程 得

52u(x1)2(x1)2

u(x1)2u(x1)x1 1u(x1)2

两边积分 得 u(x1)2C

3再把上式代入yu(x1)2中 即得所求方程的通解为 32

y(x1)[(x1)2C]

323

例3 有一个电路如图所示 其中电源电动势为EEmsint(Em、都是常数) 电阻R和电感L都是常量 求电流i(t)

由电学知道 当电流变化时 L上有感应电动势L

EL即

di 由回路电压定律得出

dtdiiR0

dtdiRiE

dtLLdiRiEmsin t

dtLL

把EEmsin t代入上式 得

初始条件为

i|t00

diRiEmsin t为非齐次线性方程 其中

dtLLER t

P(t) Q(t)msinLL

方程由通解公式 得

i(t)eP(t)dtdtdtEP(t)dt[Q(t)edtC]eL(msin teLdtC)

LRRRttEmReL(sinteLdtC)

L高等数学教案

RtEm(Rsin t Lcos t)CeL

222RL其中C为任意常数

将初始条件i|t00代入通解 得C因此 所求函数i(t)为

t LEmREmLe(Rsin t Lcos t)

i(t)222222RLRL LEm

R22L

2二、伯努利方程

伯努利方程 方程

dyP(x)yQ(x)yn(n0 1)dx叫做伯努利方程

下列方程是什么类型方程?

(1)

(2)dy1y1(12x)y4 是伯努利方程 dx33dydyyxy5 yxy5 是伯努利方程 dxdxxy

1(3)y yyxy1 是伯努利方程 yxx

(4)dy2xy4x 是线性方程 不是伯努利方程 dxdyP(x)y1nQ(x)dx

伯努利方程的解法 以yn除方程的两边 得

yn令z y1n  得线性方程

dz(1n)P(x)z(1n)Q(x)

dxdyya(lnx)y2的通解

例4 求方程dxx

解 以y2除方程的两端 得

y2dy11yalnx

dxxd(y1)11yalnx

dxx高等数学教案

令zy1 则上述方程成为

dz1zalnx

dxxa2这是一个线性方程 它的通解为

zx[C(lnx)2]

以y1代z  得所求方程的通解为

yx[C(lnx)2]1

经过变量代换 某些方程可以化为变量可分离的方程 或化为已知其求解方法的方程

5解方程a2dy1

dxxy

若把所给方程变形为

dxxy

dy即为一阶线性方程 则按一阶线性方程的解法可求得通解 但这里用变量代换来解所给方程

令xyu 则原方程化为

du11 即duu1

dxudxuududx

u1分离变量 得

两端积分得

uln|u1|xln|C|

以uxy代入上式 得

yln|xy1|ln|C| 或xCeyy1

作业:P315:1(1)(3)(5)(7)(9),2(1)(3)(5),7(1)(2)

§7 5可降阶的高阶微分方程

高等数学教案

一、y(n)f(x)型的微分方程

解法 积分n 次

y(n1)f(x)dxC1 

y(n2)[f(x)dxC1]dxC2 

  

例1 求微分方程ye2xcos x 的通解

解 对所给方程接连积分三次 得

ye2xsinxC1

ye2xcosxC1xC2

ye2xsinxC1x2C2xC3

这就是所给方程的通解

ye2xsinx2C1

ye2xcosx2C1xC2

ye2xsinxC1x2C2xC3

这就是所给方程的通解

例2 质量为m的质点受力F的作用沿Ox轴作直线运动 设力F仅是时间t的函数FF(t) 在开始时刻t0时F(0)F0 随着时间t的增大 此力F均匀地减小 直到tT时 F(T)0 如果开始时质点位于原点 且初速度为零 求这质点的运动规律

解 设xx(t)表示在时刻t时质点的位置 根据牛顿第二定律 质点运动的微分方程为

m12141812121418d2xF(t)

2dt由题设 力F(t)随t增大而均匀地减小 且t0时 F(0)F0 所以F(t)F0kt 又当tT时 F(T)0 从而

F(t)F0(1)

于是质点运动的微分方程又写为 tTd2xF0(1t)

Tdt2m高等数学教案

其初始条件为x|t00 dx|0

dtt0

把微分方程两边积分 得

dxF0(tt2)C

1

dtm2T再积分一次 得

F012t x(t)C1tC2

m26T由初始条件x|t00 得C1C20

于是所求质点的运动规律为 dx|0

dtt0F012t3

x(t) 0tT

m26T

二、y f(x y)型的微分方程

解法 设yp则方程化为

pf(x p)

设pf(x p)的通解为p(xC1) 则

dy(x,C1)

dx原方程的通解为

y(x,C1)dxC2

例3 求微分方程

(1x2)y2xy 满足初始条件

y|x01 y|x03 的特解

解 所给方程是yf(x y)型的 设yp 代入方程并分离变量后 有

dp2xdx

p1x2两边积分 得

ln|p|ln(1x2)C

pyC1(1x2)(C1eC)

由条件y|x03 得C13

所以

y3(1x2)

高等数学教案

两边再积分 得 yx33xC2

又由条件y|x01 得C21

于是所求的特解为

yx33x1

例4 设有一均匀、柔软的绳索 两端固定 绳索仅受重力的作用而下垂 试问该绳索在平衡状态时是怎样的曲线?

三、yf(y y)型的微分方程

解法 设yp有

y原方程化为 dpdpdydpp

dxdydxdydpf(y,p)

dydpf(y,p)的通解为yp(y C1) 则原方程的通解为 设方程pdy

p

dy(y,C1)xC2

dp

dy

例5 求微分yyy20的通解

解 设yp 则yp代入方程 得

ypdp2p0

dy

在y0、p0时 约去p并分离变量 得

dpdy

py两边积分得

ln|p|ln|y|lnc

pCy或yCy(Cc)

再分离变量并两边积分 便得原方程的通解为

ln|y|Cxlnc1

yC1eCx(C1c1)

作业:P323:1(1)(3)(5)(7)(9),2(1)(3)(5)

高等数学教案

§7 6 高阶线性微分方程 一、二阶线性微分方程举例

例1 设有一个弹簧 上端固定 下端挂一个质量为m 的物体 取x 轴铅直向下 并取物体的平衡位置为坐标原点

给物体一个初始速度v00后 物体在平衡位置附近作上下振动 在振动过程中 物体的位置x是t的函数 xx(t)

设弹簧的弹性系数为c 则恢复力fcx

又设物体在运动过程中受到的阻力的大小与速度成正比 比例系数为 则

Rdx

dt

由牛顿第二定律得

2dxdx

m2cx

dtdt

移项 并记2nc k2

mmd2x2ndxk2x0则上式化为

dtdt2这就是在有阻尼的情况下 物体自由振动的微分方程

如果振动物体还受到铅直扰力

FHsin pt 的作用 则有

d2x2ndxk2xhsinpt

dtdt2H其中h 这就是强迫振动的微分方程

m

例2 设有一个由电阻R、自感L、电容C和电源E串联组成的电路 其中R、L、及C为常

高等数学教案

数 电源电动势是时间t的函数 EEmsint 这里Em及也是常数

设电路中的电流为i(t) 电容器极板上的电量为q(t) 两极板间的电压为uc 自感电动势为EL  由电学知道

iqdqdi uc ELL

CdtdtdiqRi0

dtC根据回路电压定律 得

ELd2ucducRCucEmsint

LCdtdt2或写成

d2ucducEm22usint

0c2dtLCdtR 1 这就是串联电路的振荡方程 其中02LLC

如果电容器经充电后撤去外电源(E0) 则上述成为

d2ucduc220uc0

2dtdt

二阶线性微分方程 二阶线性微分方程的一般形式为

yP(x)yQ(x)yf(x)

若方程右端f(x)0时 方程称为齐次的 否则称为非齐次的

二、线性微分方程的解的结构

先讨论二阶齐次线性方程

d2ydyQ(x)y0

yP(x)yQ(x)y0 即2P(x)dxdx

定理

1如果函数y1(x)与y2(x)是方程

yP(x)yQ(x)y0的两个解 那么

yC1y1(x)C2y2(x)也是方程的解 其中C1、C2是任意常数

齐次线性方程的这个性质表明它的解符合叠加原理

证明 [C1y1C2y2]C1 y1C2 y2

高等数学教案

[C1y1C2y2]C1 y1C2 y2

因为y1与y2是方程yP(x)yQ(x)y0 所以有

y1P(x)y1Q(x)y10及y2P(x)y2Q(x)y20

从而

[C1y1C2y2]P(x)[ C1y1C2y2]Q(x)[ C1y1C2y2]

C1[y1P(x)y1Q(x)y1]C2[y2P(x)y2Q(x)y2]000

这就证明了yC1y1(x)C2y2(x)也是方程yP(x)yQ(x)y0的解

函数的线性相关与线性无关

设y1(x) y2(x)     yn(x)为定义在区间I上的n个函数 如果存在n个不全为零的常数k1 k2     kn 使得当xI 时有恒等式

k1y1(x)k2y2(x)

    knyn(x)0 成立 那么称这n个函数在区间I上线性相关 否则称为线性无关

判别两个函数线性相关性的方法

对于两个函数 它们线性相关与否 只要看它们的比是否为常数 如果比为常数 那么它们就线性相关 否则就线性无关

例如 1 cos2x  sin2x 在整个数轴上是线性相关的 函数1 x x2在任何区间(a, b)内是线性无关的

定理2 如果如果函数y1(x)与y2(x)是方程

yP(x)yQ(x)y0 的两个线性无关的解 那么

yC1y1(x)C2y2(x)(C1、C2是任意常数)是方程的通解

例3 验证y1cos x与y2sin x是方程yy0的线性无关解 并写出其通解

解 因为

y1y1cos xcos x0

y2y2sin xsin x0

所以y1cos x与y2sin x都是方程的解

因为对于任意两个常数k1、k2 要使

k1cos xk2sin x0

只有k1k20 所以cos x与sin x在(, )内是线性无关的

因此y1cos x与y2sin x是方程yy0的线性无关解

高等数学教案

方程的通解为yC1cos xC2sin x

例4 验证y1x与y2ex是方程(x1)yxyy0的线性无关解 并写出其通解

解 因为

(x1)y1xy1y10xx0

(x1)y2xy2y2(x1)exxexex0

所以y1x与y2ex都是方程的解

因为比值e x/x 不恒为常数 所以y1x与y2ex在(, )内是线性无关的

因此y1x 与y2ex是方程(x1)yxyy0的线性无关解

方程的通解为yC1xC2e x

推论 如果y1(x) y2(x)    yn(x)是方程

y(n)a1(x)y(n1)    an1(x)y an(x)y0 的n个线性无关的解 那么 此方程的通解为

yC1y1(x)C2y2(x)     Cnyn(x)

其中C1 C2    Cn为任意常数

二阶非齐次线性方程解的结构

我们把方程

yP(x)yQ(x)y0 叫做与非齐次方程

yP(x)yQ(x)yf(x)对应的齐次方程

定理3 设y*(x)是二阶非齐次线性方程

yP(x)yQ(x)yf(x)的一个特解 Y(x)是对应的齐次方程的通解 那么

yY(x)y*(x)是二阶非齐次线性微分方程的通解

证明提示 [Y(x)y*(x)]P(x)[ Y(x)y*(x)]Q(x)[ Y(x)y*(x)]

 [Y P(x)Y Q(x)Y ][ y* P(x)y* Q(x)y*]

0 f(x) f(x)

例如 YC1cos xC2sin x 是齐次方程yy0的通解 y*x22是yyx2 的一个特解 因此

yC1cos xC2sin xx22

高等数学教案

是方程yyx2的通解

定理4 设非齐次线性微分方程 yP(x)yQ(x)yf(x)的右端f(x)几个函数之和 如

yP(x)yQ(x)yf1(x) f2(x)

而y1*(x)与y2*(x)分别是方程

yP(x)yQ(x)yf1(x)与yP(x)yQ(x)yf2(x)的特解 那么y1*(x)y2*(x)就是原方程的特解

证明提示

[y1y2*]P(x)[ y1*y2*]Q(x)[ y1*y2*]

[ y1*P(x)y1*Q(x)y1*][ y2*P(x)y2*Q(x)y2*]

f1(x)f2(x)

作业:P331:1(1)(3)(5)(7),4(1)(3)(5)

§7 7 二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程 方程 ypyqy0 称为二阶常系数齐次线性微分方程 其中p、q均为常数

如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解 那么yC1y1C2y2就是它的通解

我们看看

能否适当选取r 使yerx

满足二阶常系数齐次线性微分方程 为此将yerx代入方程

ypyqy0 得

(r 2prq)erx 0

由此可见 只要r满足代数方程r2prq0 函数yerx就是微分方程的解

特征方程 方程r2prq0叫做微分方程ypyqy0的特征方程 特征方程的两个根r1、r2可用公式

pp24q

r 1,22高等数学教案

求出

特征方程的根与通解的关系

(1)特征方程有两个不相等的实根r1、r2时 函数y1er1x、y2er2x是方程的两个线性无关的解

这是因为

函数y1e因此方程的通解为

yC1er1xC2er2x

(2)特征方程有两个相等的实根r1r2时 函数y1er1x、y2xer1x是二阶常系数齐次线性微分方程的两个线性无关的解

这是因为 y1er1x是方程的解 又

r1xr1x2r1x

(xer1x)p(xer1x)q(xer1x)(2r1xr1xr1)ep(1)eqxe r1x

2er1x(2r1p)xe(r1pr1q)0 r1x、y2er2xy1er1x(r1r2)x是方程的解 又不是常数

ey2er2xy2xer1xx不是常数

所以y2xe也是方程的解 且y1er1xr1x

因此方程的通解为

yC1er1xC2xer1x

(3)特征方程有一对共轭复根r1, 2i时 函数ye(i)x、ye(i)x是微分方程的两个线性无关的复数形式的解 函数yexcosx、yexsinx是微分方程的两个线性无关的实数形式的解

函数y1e(i)x和y2e(i)x都是方程的解 而由欧拉公式 得

y1e(i)xex(cosxisinx)

y2e(i)xex(cosxisinx)

1y1y22excosx excosx(y1y2)

2高等数学教案

1y1y22iexsinx exsinx(y1y2)

2i故excosx、y2exsinx也是方程解

可以验证 y1excosx、y2exsinx是方程的线性无关解

因此方程的通解为

yex(C1cosxC2sinx)

求二阶常系数齐次线性微分方程ypyqy0的通解的步骤为

第一步

写出微分方程的特征方程

r2prq0 第二步

求出特征方程的两个根r1、r2

第三步

根据特征方程的两个根的不同情况 写出微分方程的通解

例1 求微分方程y2y3y0的通解

解 所给微分方程的特征方程为

r22r30 即(r1)(r3)0

其根r11 r23是两个不相等的实根 因此所求通解为

yC1exC2e3x

例2 求方程y2yy0满足初始条件y|x0

4、y| x02的特解

解 所给方程的特征方程为

r22r10 即(r1)20

其根r1r21是两个相等的实根 因此所给微分方程的通解为

y(C1C2x)ex

将条件y|x04代入通解 得C14 从而

y(4C2x)ex

将上式对x求导 得

y(C24C2x)ex

再把条件y|x02代入上式 得C22 于是所求特解为

x(42x)ex

例 3 求微分方程y2y5y 0的通解

解 所给方程的特征方程为

r22r50

高等数学教案

特征方程的根为r112i r212i 是一对共轭复根

因此所求通解为

yex(C1cos2xC2sin2x)

n 阶常系数齐次线性微分方程 方程

y(n)p1y(n1)p2 y(n2)     pn1ypny0

称为n 阶常系数齐次线性微分方程 其中 p1

p2      pn1 pn都是常数

二阶常系数齐次线性微分方程所用的方法以及方程的通解形式 可推广到n 阶常系数齐次线性微分方程上去

引入微分算子D 及微分算子的n次多项式

L(D)=Dn p1Dn1p2 Dn2      pn1Dpn 则n阶常系数齐次线性微分方程可记作

(Dn p1Dn1p2 Dn2      pn1Dpn)y0或L(D)y0 注 D叫做微分算子D0yy Dyy D2yy D3yy   Dnyy(n)

分析 令yerx 则

L(D)yL(D)erx(rn p1rn1p2 rn2      pn1rpn)erxL(r)erx

因此如果r是多项式L(r)的根 则yerx是微分方程L(D)y0的解

n 阶常系数齐次线性微分方程的特征方程

L(r)rn p1rn1p2 rn2      pn1rpn0 称为微分方程L(D)y0的特征方程

特征方程的根与通解中项的对应

单实根r 对应于一项 Cerx 

一对单复根r1 2 i 对应于两项 ex(C1cosxC2sinx)

k重实根r对应于k项 erx(C1C2x    Ck xk1)

一对k 重复根r1 2 i 对应于2k项

ex[(C1C2x    Ck xk1)cosx(D1D2x    Dk xk1)sinx]

例4 求方程y(4)2y5y0 的通解

这里的特征方程为

r42r35r20 即r2(r22r5)0

它的根是r1r20和r3 412i

因此所给微分方程的通解为

高等数学教案

yC1C2xex(C3cos2xC4sin2x)

例5 求方程y(4) 4y0的通解 其中0

这里的特征方程为

r4 40

它的根为r1,22(1i) r3,42(1i)

因此所给微分方程的通解为

ye2x(C1cos2xC2sin2x)e 2x(C3cos2xC4sin2x)

作业:P340:1(1)(3)(2)(4)(5)(6)(8),2(2)(4)(6)

§7 8 二阶常系数非齐次线性微分方程

二阶常系数非齐次线性微分方程 方程

ypyqyf(x)称为二阶常系数非齐次线性微分方程 其中p、q是常数

二阶常系数非齐次线性微分方程的通解是对应的齐次方程 的通解yY(x)与非齐次方程本身的一个特解yy*(x)之和

yY(x) y*(x)

当f(x)为两种特殊形式时 方程的特解的求法

一、f(x)Pm(x)ex 型

当f(x)Pm(x)ex时 可以猜想 方程的特解也应具有这种形式 因此 设特解形式为y*Q(x)ex 将其代入方程 得等式

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

(1)如果不是特征方程r2prq0 的根 则2pq0 要使上式成立 Q(x)应设为m 次多项式

高等数学教案

Qm(x)b0xmb1xm1    bm1xbm 

通过比较等式两边同次项系数 可确定b0 b1     bm 并得所求特解

y*Qm(x)ex

(2)如果是特征方程 r2prq0 的单根 则2pq0 但2p0 要使等式

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

成立 Q(x)应设为m1 次多项式

Q(x)xQm(x)

Qm(x)b0xm b1xm1   

bm1xbm 

通过比较等式两边同次项系数 可确定b0 b1   

 bm 并得所求特解

y*xQm(x)ex

(3)如果是特征方程 r2prq0的二重根 则2pq0 2p0 要使等式

Q(x)(2p)Q(x)(2pq)Q(x)Pm(x)

成立 Q(x)应设为m2次多项式

Q(x)x2Qm(x)

Qm(x)b0xmb1xm1    bm1xbm 

通过比较等式两边同次项系数 可确定b0 b1     bm  并得所求特解

y*x2Qm(x)ex

综上所述 我们有如下结论 如果f(x)Pm(x)ex 则二阶常系数非齐次线性微分方程ypyqy f(x)有形如

y*xk Qm(x)ex 的特解 其中Qm(x)是与Pm(x)同次的多项式 而k 按不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2

例1 求微分方程y2y3y3x1的一个特解

解 这是二阶常系数非齐次线性微分方程 且函数f(x)是Pm(x)ex型(其中Pm(x)3x1 0)

与所给方程对应的齐次方程为

y2y3y0

它的特征方程为

r22r30

由于这里0不是特征方程的根 所以应设特解为

y*b0xb1

高等数学教案

把它代入所给方程 得

3b0x2b03b13x1

比较两端x同次幂的系数 得

3b03 3b03 2b03b11 2b3b101由此求得b01 b1 于是求得所给方程的一个特解为

y*x

例2 求微分方程y5y6yxe2x的通解

解 所给方程是二阶常系数非齐次线性微分方程 且f(x)是Pm(x)ex型(其中Pm(x)x 2)

与所给方程对应的齐次方程为

y5y6y0

它的特征方程为

r25r 60

特征方程有两个实根r12 r23 于是所给方程对应的齐次方程的通解为

YC1e2xC2e3x 

由于2是特征方程的单根 所以应设方程的特解为

y*x(b0xb1)e2x

把它代入所给方程 得

2b0x2b0b1x

比较两端x同次幂的系数 得

13132b01 2b01 2b0b10 2bb001由此求得b0 b11 于是求得所给方程的一个特解为

y*x(x1)e2x

从而所给方程的通解为

yC1e2xC2e3x(x22x)e2x 121212高等数学教案

提示

y*x(b0xb1)e2x(b0x2b1x)e2x

[(b0x2b1x)e2x][(2b0xb1)(b0x2b1x)2]e2x

[(b0x2b1x)e2x][2b02(2b0xb1)2(b0x2b1x)22]e2x

y*5y*6y*[(b0x2b1x)e2x]5[(b0x2b1x)e2x]6[(b0x2b1x)e2x] [2b02(2b0xb1)2(b0x2b1x)22]e2x5[(2b0xb1)(b0x2b1x)2]e2x6(b0x2b1x)e2x [2b04(2b0xb1)5(2b0xb1)]e2x[2b0x2b0b1]e2x

方程ypyqyex[Pl(x)cosxPn(x)sinx]的特解形式

应用欧拉公式可得

ex[Pl(x)cosxPn(x)sinx]

ex[P(x)eli xei xP(x)ei xei x] n22i

[Pe(i)x[Pe(i)x

l(x)iPn(x)]l(x)iPn(x)]

P(x)e(i)xP(x)e(i)x

其中P(x)(PlPni) P(x)(PlPni) 而mmax{l n}

设方程ypyqyP(x)e(i)x的特解为y1*xkQm(x)e(i)x

则y1*xkQm(x)e(i)必是方程ypyqyP(x)e(i)的特解

其中k按i不是特征方程的根或是特征方程的根依次取0或1

于是方程ypyqyex[Pl(x)cosxPn(x)sinx]的特解为

y*xkQm(x)e(i)xxkQm(x)e(i)x

xkex[Qm(x)(cosxisinx)Qm(x)(cosxisinx)

xk ex[R(1)m(x)cosxR(2)m(x)sinx]

综上所述 我们有如下结论

如果f(x)ex [Pl(x)cosxPn(x)sinx] 则二阶常系数非齐次线性微分方程 12121212高等数学教案

ypyqyf(x)的特解可设为

y*xk ex[R(1)m(x)cosxR(2)m(x)sinx]

其中R(1)m(x)、R(2)m(x)是m次多项式 mmax{l n} 而k 按i(或i)不是特征方程的根或是特征方程的单根依次取0或1

例3 求微分方程yyxcos2x的一个特解

解 所给方程是二阶常系数非齐次线性微分方程

且f(x)属于ex[Pl(x)cosxPn(x)sinx]型(其中0 2 Pl(x)x Pn(x)0)

与所给方程对应的齐次方程为

yy0

它的特征方程为

r210

由于这里i2i 不是特征方程的根 所以应设特解为

y*(axb)cos2x(cxd)sin2x

把它代入所给方程 得

(3ax3b4c)cos2x(3cx3d4a)sin2xxcos2x

比较两端同类项的系数 得 a b0 c0 d于是求得一个特解为 y*xcos2xsin2x

提示

y*(axb)cos2x(cxd)sin2x

y*acos2x2(axb)sin2xcsin2x2(cxd)cos2x

(2cxa2d)cos2x(2ax2bc)sin2x

y*2ccos2x2(2cxa2d)sin2x2asin2x2(2ax2bc)cos2x

(4ax4b4c)cos2x(4cx4a4d)sin2x

y* y*(3ax3b4c)cos2x(3cx4a3d)sin2x 134

91349高等数学教案

3a13b4c014由 得a b0 c0 d 3c0394a3d0作业:P347:1(1)(2)(5)(9)2(2)(3)(4)

第三篇:习题答案

第一章

1、心理的本质是什么?

答:(1)心理是大脑的机(2)心理是大脑对客观现实的反映。

2、什么是心理发展?

答:心理发展是指个体从胚胎开始经历各个年龄阶段(儿童、少年、青年、中年、老年)一直到死亡的生命全程中心理的发展变化。

3、大学生心理发展的一般特点有那些?

答:(1)心理发展的过渡性(2)心理发展的可塑性(3)心理活动的两极性(4)心理发展的阶段性

4、实验法与非实验法的区别是什么?

5、测验法与问卷法的区别是什么?

第二章

1、大学生心理健康的标准什么?

答:(1)能保持对学习的浓厚兴趣和强烈的求知欲望(2)情绪协调,心境良好.(3)意志健全,热爱生活,乐于工作(4)人格完整,悦纳自我.2.影响大学生心理健康的因素有哪些?

答:影响大学生心理健康的因素是多方面的,其中主要原因有心理因素,个人因素,家庭因素,学校因素,社会因素等.3.大学生心理健康教育应遵循哪些原则?

答:从大学生心理健康指导思想出发,大学生心理健康应遵循以下原则:

(1)教育性原则(2)主体性原则(3)全体性和整体性原则(4)民主,平等的原则

(5)预防、发展重于矫治的原则

4.大学生心理健康教育的主要任务和内容是什么?41页

答:

5.大学生心理健康教育开展的途径和方法有哪些?

答:大学生心理健康教育要以课堂教学、课外教育指导为主要渠道和基本环节,形成课内与课外、教育与指导、咨询与自助紧密结合的心理健康工作的网络和体系。可采取以下具体形式:(1)在思想道德修养课中,科学安排有关心理健康教育的内容。

(2)开设大学生心理健康教育的选修课或专题讲座、报告。

(3)结合教学工作过程,渗透对学生进行心理健康教育的内容。

(4)开展大学生心理辅导或咨询工作。(包括:个体咨询面谈;团体咨询;角色扮演)

(5)开展心理测评,建立心理档案。

(6)加强校园文化建设,通过第二课堂活动,广泛宣传、普及心理健康知识,促进学生全面发展和健康成长。

6.大学生心理健康的预警机制由哪些层面工作来保证?

答:大学生健康预警是靠完整、严密的机制为保证而得以实现的,其工作重点是“及时发现”。

(1)定期普查(2)班级监控(3)院系参与(4)专业人员介入(5)学校统筹

7.如何发现大学生群体中易于发生心理危机的高危个体?52页

8.如何促进和维护大学生心理健康?

答:我们认为,大学生心理健康水平和以下四个方面因素关系密切:个体所承受的压力、自我的强度、应付压力的技能、社会支持系统。一次,可以从四个方面因素着手,维护、促进大学生心理健康水平。

(1)调整认知,正确对待压力与挫折。(2)营造积极的自我概念。(3)掌握有效的应对技能。(4)营造有力的社会支持系统。

9.大学生心理健康教育管理体系包括哪些方面

答:大学生心理健康教育管理体系要做到组织严密、职责分明、运转良好,应主要包括管理机构组成、教育队伍建设、教育教学设置、教育实施途径、心理危机干预、管理制度建设和经验交流与研讨等几个组成部分。

第三章

1.学习的三要素包括哪些?63页

2.简述学习理论(行为主义和认知学派至少各三种)?

3.如何理解学习策略?大学生学习策略不同于中学生学习策略的特点有哪些?

答:首先,学习策略是内隐的学习规则系统。第二,学习策略是具体的学习方法或技能。第三,学习策略是学习活动过程或步骤。第四,学习策略时学习的调控过程。第五,学习策略时学习方法和学习调控的有机统一。

与中小学生相比,大学生的自我意识提高,运用学习策略的能力增强,相应地在学习策略上表现出与中小学生不同的特点。(1)自主性选择(2)个性化77页

4.大学生常用的学习策略有哪些?

答:(1)阅读策略----SQ3R法(分别代表浏览、提问、阅读、背诵、复习);PQ4R法(分别代表预习、提问、阅读、反思、背诵、复习)(2)问题解决的IDEAL策略---识别、界定、探索、实施、审查

5、如何培养认知策略?80

6.什么是学习动机?说明学习动机与学习的关系?87--88

7.如何培养与激发大学生的学习动机?

第一,大学生学习动机的培养:

(1)明确学习目的,提升学习自主性。(2)帮助学生确立学习目标。(3)培养学生学习兴趣,增强内在学习动机。(4)利用原有动机的迁移,使学生产生学习的需要。(5)培养学生的积极归因。

第二,大学生学习动机的激发

(1)创设问题情境,激发求知欲。(2)充分利用学习结果的反馈与评价作用。(3)开展学习竞赛活动。

8.大学生常见的学习心理问题有哪些?如何进行调适?93--98

第四章

1.谈谈你对智力含义的看法?为什么难以形成统一的智力定义?101--10

22.列举几种常用的智力测验?

答:(1)比奈智力量表(2)韦氏智力量表(3)考夫曼智力量表(4)武德库克—约翰逊任职能力测验。

3.简述皮亚杰、加德纳、斯滕伯格智力理论的主要内容?105--107

4.简述大学生智力发展的主要特点。

答:(1)流体智力达到高峰,晶体智力继续上升

有研究者对大学生智力发展特征进行过以下描述

1)注意力集中,注意分配能力好。

2)观察具有目的性和自觉性

3)记忆具有鲜明的个性色彩

4)思维的独创性和想象的创造性显著增强。

(2)辩证思维逐渐成熟

5谈谈你对大学生智力培养的看法?110

6.谈谈你对创造力含义的看法?113

7.列举几种常用的创造力测验?

创造力的测量主要从创造性思维和创造性人格两个方面进行的。

(1)创造性思维测验有:托兰斯创造性思维测验;南加利福尼亚大学测验;芝加哥大学创造力测验;沃利奇—凯根测验

(2)创造性人格测验有:自我陈述法和投射技术测验法

8.简述吉尔福特创造力理论的主要内容。118

9.简述大学生创造力发展的主要特点。

答:(1)处在创造心理的大觉醒时期,对创造充满渴望和憧憬。

(2)传统的习惯力束缚较少,敢想敢说敢做,不被权威名人所吓倒,有一种“初生牛犊不怕虎”的精神

(3)创新意识强,敢于标新立异,思维活跃,心灵手巧,富有创造性,灵感丰富。

(4)在创造中已展露头脚,孕育着更大的创造性。

不足:(1)想象丰富,但有时会脱离实际。

(2)思维敏捷,但不善于掌握创造性思维的方式,不能灵活的、全面的、辩证地看待问题,易钻牛角尖。

(3)灵感迸发快,但不善于捕捉有价值的想法。

(4)具有创新的勇气,但不善于利用周围有利的条件,以注重自我的想法而忽视向他人求教,只重书本知识而忽视实践经验。

10.谈谈你对大学生创造力培养的看法。

答:(1)忠实自己的信念,不迷信权威

(2)激发热情,尊重真理

(3)提供包容和民主的环境,培养自主性

(4)拓展教学内容,改善教学方法

(5)积极培养创造思维能力。

第五章

1、什么是情绪、情感?情绪与情感有什么异同?131

2.情绪与情感具有哪些功能?

答:适应的功能;动机的功能;组织的功能;信号的功能

3.人的情绪状态一般分为哪几种?

答:心境;激情;应激

4大学生的情绪、情感发展有什么特点?

答:丰富性和复杂性;波动性和两极性;冲动性和爆发性;外显性和内隐性。

5什么是情绪、情感教育?情绪、情感教育的目的是什么?143

6.情绪健康的标准有哪些?1427、大学生常见的情绪、情感问题有哪些?

答:常见的情绪问题有:焦虑、抑郁、愤怒、嫉妒。

常见的情感问题有:冷漠、社会责任感淡化、审美观错位

8、大学生常见的情绪、情感问题产生的原因是什么?

(1)外在的客观原因:社会环境的影响;学校环境的影响;家庭因素的影响。

(2)自身原因:不能正确地认识自己;人际交际受挫;性和恋爱引起的情绪波动;重要的丧失。

9、什么是情商?情商与智商有什么关联?152--15310、情商的高低与大学生的发展有什么关系?153--15411、什么是情绪调节?

答:我们认为情绪调节是指个体完成目标对情绪、情绪相关的行为、情绪诱发的情境进行的监控,评估、修正等调整过程,以适应外界情境和人际关系的需要。

12.大学生的情绪调节方式有哪些?156

13.大学生的情感教育应从哪些方面着手?

(1)教育学生做一个快乐的自己(2)激发大学生的积极情感(3)加强高级社会性情感的培养。

第六章

1、什么是品德? 比较品德和道德的联系与区别?162—1632、简述品德的心理结构?

答:品德的心理结构是指品德这种个体心理现象的组成成分,品德包含道德认识,道德情感、道德意识和道德行为几种心理成分。品德具有整体性,品德结构中的道德认识,道德情感、道德意识和道德行为之间是相辅相成的、相互影响、相互作用的。道德情感是在道德认识的基础上产生的,反过来又影响着道德认识的形成,道德认识和道德情感共同促成了道德动机的产生,并引发了一定的道德行为。道德意志对道德行为起调控作用。

3、简述柯尔伯格的道德发展理论?1674、简述当代大学生品德心理的发展特点?

答:(1)道德认识能力不断增强(2)道德情感具有易感性和两极性(3)道德意志逐步增强。(4)道德行为习惯逐渐养成。

5、谈谈你对大学生品德培养的看法?181—188

第七章

l怎样理解自我和自我意识?192

答:严格的“自我”定义尚不存在,目前心理学可供参考的观点:自我既是个人特征的集合,又是一定社会关系的反应,是个人生活历程的写照。狭义自我是指个体对自己心里活动的认识与控制;广义自我指一切个体能够称之“我的”之总和。既包括个体的躯体、生理活动,也包括所有与个体有关的存在物,如事业、成就、名誉、地位、财产、权力等。

2.试分析自我意识的结构。

答:自我认识结构即自我认识、自我体验和自我控制。其中自我认识是最基础的部分,决定着自我体验的主导心境以及自我控制的主要内容;自我体验又强化着自我认识,决定了自我控制的行为力度;自我控制则是自我完善的实际途径,对自我认识、自我体验都有着调节作用。三方面整合一致,便形成了完整的自我意识。

3、试分析自我意识的内容。

答:无论是“主观我”还是“客观我”,都是围绕着自我的具体方面形成和存在的,这些方面共同构成了自我意识的内容。

(1)生理自我、心理自我和社会自我(2)现实自我、镜中自我和理想自我4、试论述大学生自我意识的发展特点。

答:大学生自我意识体现了特殊性、矛盾性、复杂性和可评估等特点。

大学生自我意识的特殊性体现在了时间上的特殊性,空间上的特殊性。大学生自我意识的矛盾性体现在独立意向的矛盾性,自我评价的矛盾性,自我体验的矛盾性,自我控制的矛盾性。大学生自我意识的复杂性体现在自我认识内容广泛;自我认识途径多样;自我认识差异较大。

5.试分析大学生自我意识的完善途径。

答:(1)正确的自我认知(2)客观的自我评价(3)积极的自我提升(4)不断的自我成长

6.大学生常见自我意识欠缺有哪些?如何调适?218—221

第八章

1、. 什么是人格?人格有哪些特征?

答:心理学上的不同人格内涵很多,但基本包含两方面的意义:一是人们可以观察到外显的行为和品质,即个体在人生舞台上所表现出的种种言行及其遵循的社会准则;另一是内隐的人格成分,即个体内在心理特征。一般认为人格是构成一个人的思想、情感及行为的特有综合模式,这个独特模式包含了一个人区别于他人的稳定而统一的心理品质。

2、气质和性格有哪些学说 ?试分别叙述。224—2273、试述大学生人格发展的特点。2384、健全人格有哪些模式?

答:有“成熟者”模式;“机能健全着”模式;“创发者”模式;“综合”模式;中国模式

5、试述大学生健全人格培养与塑造的途径?

答:(1)了解自己的人格类型与特点(2)学会自我教育(3)增强挫折承受力(4)积极参与社会实践,培养良好习惯;(5)扩大社会交往,建立良好的人际关系(6)其他途径:在业余爱好中培养健全的人格;求助心理咨询。

6、大学生常见人格问题有哪些?如何矫正?251

第四篇:习题答案

1.冰心原名_________,是著名的_________、_________、________、__________。2.冰心于l923年发表的两部诗集是______、________,创作上受到印度诗人___________的影响,其诗歌作品,在当时吸引了很多青年的模仿。

3.“五四”以后进行新诗创作取得较高成就的除冰心之外,还有____ ___、_ __等,他们的代表作分别有《________》、《_________ 》等。

4.冰心的诗有丰富而深刻的哲理,并恰当地运用对比,如:“言论的花开得愈大,_____________。”

5.冰心早年艺术上,追求“___________”的境界,她的诗也具有这些特点。

6.“春江水暖鸭先知”是_______ 朝______________的诗句,在冰心笔下有着同样的诗句:“人 在廊下,书在膝上,_____________。”

7.冰心在《繁星》里回忆童年的美好:“童年啊,_________,___________,__________。” 8.冰心的《繁星》诗中发人深省的格言式小诗触目皆是,如“成功的花,_________!然而当初她的芽儿,___________,洒遍了牺牲的血雨。”

9.冰心的诗中洋溢着_________ 的哲学。

10.冰心的早期小说创作以“问题”小说为主,如_______、_________等。我们教材中学过冰心写于

二十个世纪五六十年代的小说_____________。

11.冰心的著名散文有_____________、__________、__________等。

12.冰心是________派的代表诗人,这些诗特点是___________、__________、_________。

13.冰心是福建长乐人,出生于福州一个具有________、________ 的海军军官家庭。14.作者以“冰心”为笔名,在《__________》一文中,作了说明:一来是_______ ;二来是________。

15.冰心的小诗创作源于印度诗人_______的《____________》。

16.《繁星》是冰心的第 部诗集,诗集收入诗人________ 至_________所写小诗_________首,最初发于北京的《__________》。

17.冰心的主要作品有:诗集《__________》、《__________》,短篇小说集《_________》、《________》,散文集《________》、《________》、《________ 》等。

18.《春水》收入诗人在________至________所写的小诗________首。

19.《繁星》、《春水》中的诗篇表现出诗人对于________、________、________的见解。

20.诗集《繁星》、《春水》的名字的内涵是什么?

21.冰心,中国现代文学史上第一位著名女作家,她一步人文坛,便以宣扬“____ ____” 著称。

22.冰心的诗集《繁星》、《春水》是人们公认的小诗最高成就,被茅盾称为

“________”、“_________”。

参考答案

1.谢婉莹;小说家;诗人;散文家;儿童文学家2.繁星;春水;泰戈尔3.郭沫若;徐志摩;凤

凰涅槃;再别康桥4.行为的果子结得愈小

5.满蕴着温柔,微带着忧愁6.宋;苏轼;拂面的微风里,知道春来了7.是梦中的真;是真中的梦;是回忆时含泪的微笑8.人们只惊慕她现时的明艳;浸透了奋斗的泪泉9.爱

l0.《斯人独憔悴》;《去国》;《小桔灯》ll.《寄小读者》;《往事》;《笑》l2.小诗;短小;形式自由;富含哲理13.爱国;维新思想l4.我的文学生活;笔画简单好写,莹字的含义l5.泰戈尔;飞鸟集16.一;1919年冬;1921年秋;164;晨报副刊17.繁星;春水;超人;冬儿姑娘;寄小读者;归

来之后;樱花赞l8.1922年3月;6月;l82 19.母爱;童真;自然20.繁星,代表着零星的思想;春水,是因为作者希望在不经意之时将思绪像春水一样流入读者心中21.爱的哲学22.繁星格;春水体

第五篇:习题及答案

1、去好呢 还是不去好呢

2、你看到什么了 孩子

3、我也不知道该不该去

4、能否更上一层楼 主要是看我们的努力程度怎么样

5、再见吧 亲爱的妈妈

6、全体立正

7、这孩子的嘴多巧 李阿姨说

8、冬冬 王老师来了 冬冬的妈妈说 还不快给王老师倒杯水

9、这回翻山使部队养成了一种新的习惯 那就是用脸盆 饭盒子 茶缸煮饭 煮东西吃

10、她问我们饿了没有 这一问正中了我们的心思

11、他时而默读 时而朗读 时而背诵

12、我在市场里买了桔子 苹果 青菜 锤子 钉子等东西

13、张华考上了北京大学 在化学系学习李萍考进了中等技术学校 读机械制造专业 我在百货公司工作 我们都有光明的前途

14、人们常说的 开卷有益 读书破万卷 就是从这里来的

15、当时的情况是 开水没有 水壶要洗 茶壸 茶杯要洗 火生了 茶叶也有了

16、推开门一看 呵 好在的雪呀 山川 河流 树木 房屋 全都罩上了一层厚厚的白雪 万里江山变成了粉妆玉砌的世界

17、不 不 你误会了 他解释着 我不是残疾人 我是给别人送拐杖的 说着 他踢踢腿给老奶奶看 车上的人都笑了

18、图书馆里的书真多 梅林童话 上下五千年 十万个为什么 我都喜欢看

19、她带走了落叶 纸屑 尘土和果皮 留下了清新的空气与洁净的大地 啊 这不是王阿姨吗 她是我原来的邻居

20、他脸色苍白 艰难地说 水 水 说着就昏过去了

21、他大声地说 快离开我 咱们两个不能都牺牲 要记住下功夫革命

22、大家就丰女老师的手指 齐声轻轻地念了起来 我们 是 中国人 我们 爱 自己的 祖国

23、往前没走多远 就听到小丽叫 快来呀 姐夫 我跑到跟前 扒开草丛一看 是个不大的水泡子 水面上波光粼粼仔细一看 挨挨挤挤地都是鱼 我不禁叫起来 啊 这么多鱼 他连忙脱掉鞋袜 跳进膝盖深的水里逮起来

24、散会了 大家想想我是孩子 应该照顾 就把糖呀 蜜饯呀 橘子呀 拿过来给我说 带回去吃吧 我连连摆手说不要 不要 我家里有 可是爸爸却好像没听见我的话似的 不客气地拿出塑料袋 把糖果一把把地装进去 边装边说 不拿白不拿

最佳答案

1、去好呢,还是不去好呢?

2、你看到什么了,孩子?

3、我也不知道该不该去。

4、能否更上一层楼,主要是看我们的努力程度怎么样。

5、再见吧,亲爱的妈妈!

6、全体立正!

7、“这孩子的嘴多巧!”李阿姨说

8、“冬冬,王老师来了。”冬冬的妈妈说,“还不快给王老师倒杯水!”

9、这回翻山使部队养成了一种新的习惯,那就是用脸盆、饭盒子、茶缸煮饭、煮东西吃。

10、她问我们饿了没有,这一问正中了我们的心思。

11、他时而默读;时而朗读;时而背诵。

12、我在市场里买了桔子、苹果、青菜、锤子、钉子等东西。

13、张华考上了北京大学,在化学系学习;李萍考进了中等技术学校,读机械制造专业;我在百货公司工作。我们都有光明的前途。

14、人们常说的;开卷有益,读书破万卷。就是从这里来的。

15、当时的情况是:开水没有,水壶要洗,茶壸、茶杯要洗,火生了,茶叶也有了。

16、推开门一看。呵,好在的雪呀!山川、河流、树木、房屋。全都罩上了一层厚厚的白雪,万里江山变成了粉妆玉砌的世界。

17、“不!不!你误会了。”他解释着,“我不是残疾人,我是给别人送拐杖的。”说着,他踢踢腿给老奶奶看,车上的人都笑了。

18、图书馆里的书真多:《格林童话》《上下五千年》《十万个为什么》,我都喜欢看。

19、她带走了落叶、纸屑、尘土和果皮,留下了清新的空气与洁净的大地。啊!这不是王阿姨吗?她是我原来的邻居。

20、他脸色苍白,艰难地说:“水!水!”说着就昏过去了。

21、他大声地说:“快离开我!咱们两个不能都牺牲!要记住下功夫革命!”

22、大家就丰女老师的手指,齐声轻轻地念了起来:“我们,是,中国人,我们,爱,自己的,祖国!”

23、往前没走多远,就听到小丽叫:“快来呀,姐夫!”我跑到跟前,扒开草丛一看,是个不大的水泡子,水面上波光粼粼仔细一看,挨挨挤挤地都是鱼。我不禁叫起来:“啊!这么多鱼!”他连忙脱掉鞋袜,跳进膝盖深的水里逮起来。

24、散会了,大家想想我是孩子,应该照顾。就把糖呀、蜜饯呀、橘子呀。拿过来给我说;“带回去吃吧!”我连连摆手说:“不要!不要!我家里有,可是爸爸却好像没听见我的话似的,不客气地拿出塑料袋,把糖果一把把地装进去,边装边说:“不拿白不拿。” 最后,让一首标点符号歌使我们在教学中运用自如。

一,标点符号很重要,组成文章不可少。

该用哪种小符号,都要认真来思考。

意思未完用逗号,一句完了用句号。

喜怒哀乐感叹号,提出问题用问号。

并列词语用顿号,并列分句用分号。

提示下文用冒号,对话引用加引号。

书文名称要标明,前后加上书名号。

有些意思要省掉,可以加个省略号。

转折解释破折号,表示注释加括号。

标点符号用准确,文章清楚都称好。

二、一句话完了,划个小圆圈〔。〕

中间要停顿,圆点带个尾〔,〕

并列词语间,点个瓜子点〔、〕

总结导语前,上下两圆点〔:〕

并列分句间,圆点加逗点〔;〕

疑问与发问,耳朵坠耳环〔?〕

命令打招呼,滴水下屋檐〔!〕

引文特殊词,蝌蚪上下窜〔“”〕

转折或注释,一横写后边〔——〕

意思说不完,六点紧相连〔„„〕

下载微分方程习题答案word格式文档
下载微分方程习题答案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    习题答案

    第1章1. 什么是操作系统,有如何主要功能?答:操作系统是计算机软件中的系统软件,主要功能是管理计算机上所有的活动以及驱动系统所有的硬件。2. 简要说明操作系统的主要分类。答:......

    第四章 微分方程讲稿

    高等数学C教案第四章微分方程 第四章微分方程 §4 1 微分方程的基本概念 导入:(8分钟)函数是客观事物的内部联系在数量方面的反映 利用函数关系又可以对客观事物的规律性进行......

    二阶微分方程解法[本站推荐]

    第六节二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解......

    线性代数习题答案

    习题 三 (A类) 1. 设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3. 解:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1+2α2-α3=(3,3,0)+(0,2,2)-(3,4,0)=(0,1,2) 2. 设3(α1......

    线性代数习题答案

    综合练习一01AA.01BB、C.01CA.01DA.01Er2,s5,t8或r5,s8,t2或r8,s2,t5.01Fi2,j1.01G12.01Ha13a25a31a42a54;a13a25a32a44a51;a13a25a34a41a52.01I排列的逆序数为k2;当k为偶数......

    赤壁习题及答案

    《赤壁》 1. 这首诗属于哪一类题材?这类诗最突出的特点是什么? 答:咏史诗。特点是咏史抒怀或借史实抒发作者情感。 2. 试说说''东风不与周郎便,铜雀春深锁二乔''的深刻含义。 答......

    电工学习题答案..

    1 1.5.9在图中,五个元件代表电源和负载。电流和电压的参考方向如图中所示。 今通过实验测量得知 I1 = -4A I2 = 6A I3 = 10A U1 = 140V U2 = -90V U3 = 60V U4 = -80V U5 =......

    长城习题答案

    参考: :金属造的城,滚水形成的护城河。形容工事无比坚固。 :比喻自己削弱自己的力量或自己破坏自己的事业。 喻团结一致,力量无比强大 赖的大将或军队,也比喻难以逾越的障碍或界......