数学余弦定理

时间:2019-05-12 05:27:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学余弦定理》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学余弦定理》。

第一篇:数学余弦定理

一、正弦定理

1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即abc。sinAsinBsinC

2.正弦定理的变形

RnisAb,2nRisBc2nisR,C变形(1):a2;

abc变形(2):; nisA,Bnis,C2R2R2R

bnisAnicsAcsinBasinBasinCbsinC变形(3):a,b,c; nisBnisCsinCsinAsinAsinB

bc∶niAsnisnB∶isC∶变形(4):a∶;

变形(5):nisabcabc2R。AnisBnisCnisAnisBnisC

3.正弦定理的应用

(1)已知两角和任一边,求其他两边和另一角;

(2)已知两边及其中一边的对角,求另一边及其他两角。

二、余弦定理

1.余弦定理:三角形任意一边的平方等于其他两边平方的和减去这两边与它们的夹角的余弦的积的两倍。即

a2b2c22bccosA①

b2c2a22cacosB②

c2a2b22abcosC③

2.余弦定理的变形

(1)定理的特例:是指当某一内角取特殊值时的特殊形式。主要有:

①c2a2b2C90(勾股定理及其逆定理);

②c2a2b2abC60;

③c2a2b2abC120;

④c2a2b2C30;

⑤c2a2b2C150;

⑥c2a2b2C45;

⑦c2a2b2C135。

b2c2a2a2c2b

2(2)定理的推论:cosA,cosB,2bc2ac

a2b2c2

cosC。2ab

3.余弦定理的应用:(1)已知三边,求三角;(2)已知两边及其夹角,求第三边和其他两角。

知识点一:正弦定理

例1:在△ABC中,(1)已知A45,a2,bB;

(2)已知A30,ab2,求B;

1(3)已知A30,a,bB。2

思路分析:这三个小题看似相同,其实大相径庭,虽然都是已知两边及其中一边的对角,求另一边的对角,但结果却是一个一解,一个两解,第(3)小题无解,下面我们来逐个分析。

bsinA1ab。解答过程:(1)根据正弦定理,得sinB

a2sinAsinB

∵ab,AB,而A45,B30。

bsinAab(2)根据正弦定理,得sinB。

asinAsinB∵ab,AB,而A30,B为锐角或钝角,B45或B135。

bsinAab(3)根据正弦定理,得sinB 

asinAsinB

解题后的思考:已知两边及其中一边的对角解三角形用正弦定理,其结果可能有一解、两解或无解。

例2:在△ABC中,已知b14,A30,B120,求a,c及△ABC的面积S。思路分析:已知两角实际上第三个角也是已知的,故用正弦定理可以很方便的求出其他边的值。

解答过程:依正弦定理:abbsinA=,∴a,代入已知条件,得sinAsinBsinB

a14sin303 sin120

3∵C180(AB)180(30120)30,又bc=,sinBsinC

cbsinC14sin30C=A,△ABC为等腰三角形,所以acsinBsin1203

11∴SABCabsinC。14sin302233

解题后的思考:三角形的面积公式

111(1)S△ABCahabhbchc(ha,hb,hc分别表示a,b,c上的高)。22

2111(2)S△ABCabsinCbcsinAacsinB。222

(3)S△ABC2R2sinAsinBsinC。(R为外接圆半径)

(4)S11ahaabsinCrp22p(pa)(pb)(pc)。其中r为三角形的内切圆半径,p为三角形周长的一半。

cosA=a·cosB成立,试判断这个三角形的形状。例3:在△ABC中,若b·

思路分析:条件中既有边又有角,统一条件是首要任务。

cosA=2RsinA·cosB,sinB·cosA=解答过程:由正弦定理,得:2RsinB·

sinA·cosB,∴sinAsinB,即tanAtanB,根据三角形内角和定理,可知A、BcosAcosB

必都为锐角。所以A=B,即△ABC是等腰三角形。

解题后的思考:由已知条件确定三角形的形状,主要通过两个途径:①化角为边,通过代数式变形求出边与边之间的关系。②化边为角,利用三角恒等变形找出角与角之间的关系。一般情况下,利用三角恒等变形计算量会小一些。

a2b2sin(AB)例4:在△ABC中,角A,B,C的对边分别为a,b,c,证明:。2csinC

思路分析:条件中既有边又有角,条件需统一,另外△ABC中,内角和为180。

abc2R得: sinAsinBsinC

a2RsinA,b2RsinB,c2RsinC。

1cos2A1cos2B2222absinAsinBcos2Bcos2A c2sin2Csin2C2sin2C

cosBA(BA)cosBA(BA)解答过程:由正弦定理=2sin2C

2sin(BA)sin(BA)sinCsin(BA)sin(AB)==。222sinCsinCsinC

a2b2sin(AB)所以。c2sinC

解题后的思考:由于不等式两边一边是代数式,一边是三角式,故通过正弦定理来把边全化为角,把证明转化为三角恒等变形的问题。

知识点二:余弦定理

例5:已知△

ABC中,abB45,试求角A、C和边c。

思路分析:已知两边及其中一边的对角解三角形可用正弦定理或余弦定理,现用余弦定理来解。

解答过程:设边cx,由余弦定理b2a2c22accosB,得22)(x3)22。3

cos45

整理得x21

0,x。b2c2a21(1)当x时,cosA,A60,C75。2bc2

b2c2a21(2)当x时,cosA,A120,C15。

综合上两种情况:A60,C75,cA120

,C15,c。解题后的思考:用余弦定理解决此类问题,是设量解方程的思想,也是经常用的方法。

例6:已知△

ABC中,a∶b∶c21),求△ABC中各角的度数。

思路分析:虽然此题三边都不确定,但它们的比例一定,所以可设a2k,b,c1)k,用余弦定理解决。

解答过程:令a

2k,b,c1)k,b2c2a2利用余弦定理cosA,A45。2bc用同样的方法可得,B60。

因此,C180456075。

解题后的思考:已知三角形三边的比,或已知三边的长度,都可用余弦定理解决,只是已知三边的比时,可引用参数k,但在解题时可将分子分母中的参数k约掉。,AC,b,a是b方

程x220的两个根,且例7:在△ABC中,BCa

2cosA(B),试求边1AB的长。

思路分析:本题已知的是两边和它们所对的两角的关系,在这种情况下往往可能不需要求出它们各自的值,通常可以考虑整体代入的方法。

ab解答过程:

由题意,得 ab2.

AB2AC2BC22ACBCcosC

1b2a22ab(ab)2ab2210。

2

AB

ab解题后的思考:因为解方程组分别求出a和b的值比较麻烦,所以将ab2

直接代入,巧妙而简洁,通常称为整体代入法,要注意这种解题技巧的运用。

解三角形的几种基本类型

(1)已知一边和两角(设为A,B,b),求另一角及两边,求解步骤:①C180(AB); bsinAbsinC②由正弦定理得:a;③由正弦定理得:c。sinBsinB

(2)已知两边及其夹角(设为a,b,C),解三角形的步骤:①由余弦定理得:ca,b中较小边所对的锐角;③利用内角和定理求第三个角。

(3)已知两边及一边的对角(设为a,b,A),解三角形的步骤:①先判定解的情况;bsinA②由正弦定理sinB,求B;③由内角和定理C180(AB),求C; a

④由正弦定理或余弦定理求边c。

注:已知a,b和A,用正弦定理求B时解的各种情况:

(4)已知三边a,b,c,解三角形的步骤:①由余弦定理求最大边所对的角;②由正弦定理求其余两个锐角。

第二篇:高一数学《余弦定理》精选

余弦定理

教学目标

知识与技能目标

(1)掌握余弦定理及其推导过程.

(2)会利用余弦定理求解简单的斜三角形边角问题.

(3)能利用计算器进行计算.

过程与能力目标

(1)通过用向量的方法证明余弦定理,体现向量的工具性,加深对向量知识应用的认识.

(2)通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察与分析、归纳与猜想、抽象与概括等逻辑思维能力.

情感与态度目标

通过三角函数、余弦定理、向量数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.

教学重点

余弦定理的证明及应用.

教学难点

(1)用向量知识证明余弦定理时的思路分析与探索.

(2)余弦定理在解三角形时的应用思路.

教学过程

一、引入

在Rt

ABC中(若C90)有:c2a2b2.在斜三角形中一边的平方与其余两边平方和及其夹角还有什么关系呢 ?

设ABC三边长分别为a,b,c

ACABBC

ACAC(ABBC)(ABBC)

AB2ABBCBCCAB180B)c22accosBa

2类似可证:

a2b2c22bccosA

c2a2b22abcosC

二、新课

余 弦 定 理 :

三角形任何一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍.归纳:

1.熟悉定理的结构,注意“平方”夹角”“余弦”等.2.知三求一.3.当夹角为90°时,即三角形为直角三角形时即为勾股定理(特例).b2c2a2a2c2b2a2b2c

24.变形:cosA;cosB;cosC.2bc2ac2ac

余弦定理能解决的问题:

1.已知三边求角;

2.已知两边和它们的夹角求第三边.三、应用

例 1.在ABC中,已知a7,b10,c6,求 A,B,C(精确到1).练习:

已知ABC的三边长,a3,b4,c37,求三角形的最大内角.例 2.已知ABC中,a:b:c2:6:(1),求 ABC的各角的度数.例 3.已知ABC中,A120,a7,bc8,求 b,c 及角B.练习:

在ABC中,AC2B,ac8,ac15,求b.

第三篇:高三数学《余弦定理》评课稿

高三数学《余弦定理》评课稿2篇

高三数学《余弦定理》评课稿1

今天上午在高三计算机班观摩了一节中职数学·拓展模块第1.2.1《余弦定理》的课。本节课是利用向量的内积来推导余弦定理,然后运用余弦定理解决 “边角边”、“边边边”两类基本的解三角形问题的新授课。这节课的教学采用探究式的教学方式,教学中教师以问题为导向设计问题情境,学生通过自主探究和合作交流,在解决问题中发现和推导“余弦定理”,以及定理的应用。总的来说,这是一节运用新课改理念非常成功的概念课。下面,谈谈我个人对这节课的看法:

1、从教学目标来看,教师的课堂教学目标明确,教学过程紧紧围绕三维目标展开。课堂教学中通过情境问题、图片的展示、学生的活动与探究、交流与讨论逐步实现知识与技能的形成、过程与方法的培养、情感态度价值观的陶冶。

2、从教学教材处理来看,教师能根据新课改的要求,能结合中职数学教材的内容和学生的学情,创设问题情境,从具体问题探究出发,抽象出一般性问题结论方法,符合学生的认知规律和学习特点。在教学中,教师努力营造一个民主、平等、和谐、愉悦的教学氛围,用探讨、商量式的口吻组织教学,使学生敢于、乐于参与探讨与学习;在教学活动中教师非常重视教师的激发作用、启迪作用和组织作用,千方百计用各种行之有效的方式,引导学生主动参与学习过程。

3、从教学程序来看,本节课的设计采用探究式教学方法,教师通过合理的设疑,正确的引导学生通过计算---归纳---推理余弦定理,培养学生发现问题、探索问题、解决问题的能力,养成良好的思考习惯。在教学中,教师先通过创设问题情境,从具体问题出发,抽象出一般性的结论,通过学生的自主探究和合作交流,发现和推导“余弦定理”。在引导学生观察余弦定理的结构特征上,运用定理解决三角形“边角边”,“边边边”的问题。课堂结构严谨、环环相扣,过渡自然,时间分配合理,密度适中,效率高。

4、从教学效果来看,本节课的教学激发了学生的兴趣,活跃了学生的思维,学生在教师的组织、引导下,能积极主动的参与对问题的探究,在问题的探究中锻炼和发展自身的能力。落实了三维目标,突破了重难点。

5、从教学基本功来看,教师的教态自然、亲切,言语富有感染力,板书条理性强,教学的思路清晰,课堂驾驭能力非常强,从这里,说明教师的基本功是非常扎实。

6、本节课的具体亮点:①本节课的引入很有新意,教师没有直接教教材,而是对教材做了修改,通过创设我县新建九凰山隧道长度如何测量的问题情境引入新课,激发学生学习的兴趣与积极性,使学生纷纷自觉投入到学习活动中,降低学生对新概念理解的难度,为学生初步领会新课打下了良好的基础,做好了铺垫,体现了“数学来源于生活,生活中处处有数学”。②教师的设计思路比较好,采用“情境--问题”教学模式,沿着“设置情境--提出问题--解决问题--反思应用”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境--问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。③课堂互动强,教学评价机制运用合理。教师通过创设情境,提出问题,营造一个一种生动活泼、民主平等、和谐愉悦的人文氛围,引导学生思考、讨论,小组探究;在学生的合作探究过程中,让学生能大胆的发表自己独特见解,体现师生互动、生生互动关系。对于学生在课堂中的表现,教师都能及时的肯定与鼓励,在一定的程度上又激励了学生的探究学习,促进了教学。

7、本节的不足之处:虽然教师对本节课的例题做了删减,把例3的证明题给删除了,但对例2没有进拓展,有些遗憾,这里教师自己也提到了,不再重复说明了。

总的来说,这课堂一堂充满生命活力的课,是一堂能促进学生全面发展的课,是一堂遵循新课程理念的课。

高三数学《余弦定理》评课稿2

今天上午在高三计算机班观摩了一节中职数学·拓展模块《余弦定理》的课。本节课是利用向量的内积来推导余弦定理,然后运用余弦定理解决“边角边”、“边边边”两类基本的解三角形问题的新授课。这节课的教学采用探究式的教学方式,教学中教师以问题为导向设计问题情境,学生通过自主探究和合作交流,在解决问题中发现和推导“余弦定理”,以及定理的应用。总的来说,这是一节运用新课改理念非常成功的概念课。下面,谈谈我个人对这节课的看法:

1、从教学目标来看

教师的课堂教学目标明确,教学过程紧紧围绕三维目标展开。课堂教学中通过情境问题、图片的展示、学生的活动与探究、交流与讨论逐步实现知识与技能的形成、过程与方法的培养、情感态度价值观的陶冶。

2、从教学教材处理来看

教师能根据新课改的要求,能结合中职数学教材的内容和学生的学情,创设问题情境,从具体问题探究出发,抽象出一般性问题结论方法,符合学生的认知规律和学习特点。在教学中,教师努力营造一个民主、平等、和谐、愉悦的教学氛围,用探讨、商量式的口吻组织教学,使学生敢于、乐于参与探讨与学习;在教学活动中教师非常重视教师的`激发作用、启迪作用和组织作用,千方百计用各种行之有效的方式,引导学生主动参与学习过程。

3、从教学程序来看

本节课的设计采用探究式教学方法,教师通过合理的设疑,正确的引导学生通过计算——归纳——推理余弦定理,培养学生发现问题、探索问题、解决问题的能力,养成良好的思考习惯。在教学中,教师先通过创设问题情境,从具体问题出发,抽象出一般性的结论,通过学生的自主探究和合作交流,发现和推导“余弦定理”。在引导学生观察余弦定理的结构特征上,运用定理解决三角形“边角边”,“边边边”的问题。课堂结构严谨、环环相扣,过渡自然,时间分配合理,密度适中,效率高。

4、从教学效果来看

本节课的教学激发了学生的兴趣,活跃了学生的思维,学生在教师的组织、引导下,能积极主动的参与对问题的探究,在问题的探究中锻炼和发展自身的能力。落实了三维目标,突破了重难点。

5、从教学基本功来看

教师的教态自然、亲切,言语富有感染力,板书条理性强,教学的思路清晰,课堂驾驭能力非常强,从这里,说明教师的基本功是非常扎实。

6、本节课的具体亮点:

①本节课的引入很有新意,教师没有直接教教材,而是对教材做了修改,通过创设我县新建九凰山隧道长度如何测量的问题情境引入新课,激发学生学习的兴趣与积极性,使学生纷纷自觉投入到学习活动中,降低学生对新概念理解的难度,为学生初步领会新课打下了良好的基础,做好了铺垫,体现了“数学来源于生活,生活中处处有数学”。

②教师的设计思路比较好,采用“情境——问题”教学模式,沿着“设置情境——提出问题——解决问题——反思应用”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境——问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。

③课堂互动强,教学评价机制运用合理。教师通过创设情境,提出问题,营造一个一种生动活泼、民主平等、和谐愉悦的人文氛围,引导学生思考、讨论,小组探究;在学生的合作探究过程中,让学生能大胆的发表自己独特见解,体现师生互动、生生互动关系。对于学生在课堂中的表现,教师都能及时的肯定与鼓励,在一定的程度上又激励了学生的探究学习,促进了教学。

7、本节的不足之处:

虽然教师对本节课的例题做了删减,把例3的证明题给删除了,但对例2没有进拓展,有些遗憾,这里教师自己也提到了,不再重复说明了。

总的来说,这课堂一堂充满生命活力的课,是一堂能促进学生全面发展的课,是一堂遵循新课程理念的课。

第四篇:数学学案 编号40 1.1.2 余弦定理

山西大学附中高一年级(下)数学学案编号40

1.1.2余弦定理

一.学习目标:

1.能理解用向量法证明余弦定理的过程,并了解从其他途径(向量法、三角法)证明余弦定理.2.能应用余弦定理及其推论解三角形.二、知识导学

(1)上节回顾

1)正弦定理:在一个三角形中,各的比值相等,即===()

2)正弦定理的应用:

①已知三角形的,可以求三角形的其他元素;

②已知三角形的(2)本节导学 问题1:在ABC中,已知AB3,AC2,A60,如何求BC?

问题2:在ABC中,已知ABc,ACb,以及角A, 如何求BC? C

ab

AB22同理可得:b c上面这三个等式称为余弦定理(文字描述为):

提出质疑:1、2、3、思考:你还有其他方法证明余弦定理吗?试试看!

222问题3:观察余弦定理结构:abc2bccosA,指明了三边长与其中一角的具体关系,公式中涉及个量,应用方程的思想可得:已知其中个量,可求的剩余一个量。特别的,若已知三角形的三边a,b,c,可求得

即:cosA;cosB;

cosC;----------------余弦定理的推论.三、知识导练

1.(1)在ABC中,AB1,BC2,B60,则.

3,则c

2(2)在ABC中,已知a7,,b10,c6,则cosB 变式:在ABC中,已知a3,,b2,sinC

思考:应用余弦定理及其推论,可以解决那类解三角形的问题?

2.已知ABC中,a2,b3,c6-2,A45,解这个三角.2

探究:在解三角形时,已知三边和一个角的情况下,求另一个角,既可以用余弦定理的推论,又可以用正弦定理,通过上面例题的学习,你认为两种方法有什么利弊呢?

3.在ABC中,已知acos

四.当堂检测: 2C32A+ccos=b,求证:2bac.222

1.在ABC中,角A、B、C的对边分别为a、b、c,若acbac,则

52角B的值为()A.B.C.或D.或 66336

32.在ABC中,AC2B,ac8,ac15,求b.*(2010·浙江高考)在ABC中,角A、B、C的对边分别为a、b、c,已知cos2C

(1)求sinC的值;(2)当a2,2sinAsinC时,求b及c的长. 222tanB1.4

第五篇:余弦定理说课稿

1.1.2 余弦定理说课

尊敬的各位评委、老师,大家好!

今天我说课的题目是:余弦定理,下面我将从教材分析,教学目标,教学重难点,教法学法、教学过程、教学反思等方面对本课题进行分析说明。

一、教材分析

1、教材的地位和作用

余弦定理是人教版普通高中课程标准实验教科书第一章第一节的内容,在此之前学生已经学习过了勾股定理、平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据.二、学情分析

基于高二学生的理解能力、思维特征和生理特征,在课堂教学中,一方面要充分利用多媒体,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

三、教学目标

基于以上对教材的认识,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:

1.知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;

2.过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;

3.情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识.四、教学重难点

1、教学重点:余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;

2、教学难点:余弦定理的发现及证明;

五、教学过程

为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:

1.创设情境,引入课题 利用多媒体引出如下问题:

A地和B地之间隔着一个水塘(如图所示)现选择一地点C,可以测得∠C的大小及BC=,AC=,求 A、B两地之间的距离c.【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但 由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望.2.探索研究、构建新知

(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况△ABC为直角三角形(∠C=90°)时考虑。此时使用勾股定理,得c2=a2+b2.(2)从直角三角形这一特殊情况出发,引导学生在一般三角形中构造直角即作BC边的高AD,从而在构造的直角三角形中利用勾股定理列出边之间的等式关系.(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到△AB为钝角三角形(∠C>90°)中.通过解决问题可以得到在任意三角形中都有c2=a2+b2-2ab cosC,之后让同学们类比出a2、b2.这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示.【设计意图】通过创设情景、引导学生探究出余弦定理这一数学体验,既可以培养学生分析问题的能力,也可以加深学生对余弦定理的认识.在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理.之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建.根据余弦定理的两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:(1)已知三边,求三个角;

(2)已知三角形两边及其夹角,求第三边和其他两个角.3.例题讲解、巩固练习

本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用.例题讲解:

例1 在中,(1)已知b=3,c=1,A=60°,求a;(2)已知a=4,b=5,c=6,求A.【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用.例2 对于例题1(2),求,BC的大小.【设计意图】已经求出了A的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题.例3 使用余弦定理证明:在中,当C为锐角时,a2+b2>c2;当C为钝角时,a2+b2

练习1 在中,(1)已知b=4,c=7,A=60°,求a;(2)已知a=7,b=5,c=3,求A.【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用.练习2 若三条线段长分别为5,6,7,则用这三条线段().A.能组成直角三角形

B.能组成锐角三角形

C.能组成钝角三角形

D.不能组成三角形

【设计意图】与例题3相呼应.练习3 在 △ABC中,a2+b2+ab=c2,试求C的大小.【设计意图】要求灵活使用公式,对公式进行变形.4.课堂小结,布置作业

先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:

(1)余弦定理的内容和公式;

(2)余弦定理实质上是勾股定理的推广;

(3)余弦定理的可以解决的两类解斜三角形的问题.通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力.布置作业

必做题:习题1.2 1、2、3、5、6; 选做题:习题1.2 12、13.【设计意图】作业分为必做题和选做题.针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高.各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成.预设效果如何,最终还有待于课堂教学实践的检验.本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢.

下载数学余弦定理word格式文档
下载数学余弦定理.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    余弦定理说课稿(范文模版)

    余弦定理说课稿 教材分析:(说教材)。 是全日制普通高级中学教科书(必修)数学第一册(下)中第五章平面向量第二部分解斜三角形的一个重要定理。这堂课,我并不是将余弦定理全盘呈现......

    余弦定理学案

    1.1正弦定理和余弦定理第2课时 余弦定理编制:高一数学组使用时间:5-13【学习目标】1.通过对任意三角形边长和角度关系的探索,掌握余弦定理及证明余弦定理的向量方法,并会运用......

    余弦定理 三角函数(模版)

    对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质——a^2 = b^2 + c^22·a·c·cosBc^2 = a^2......

    余弦定理说课稿

    余弦定理说课稿 各位评委各位同学,大家好!我是数学()号选手,今天我说课的题目是余弦定理,选自高中数学第一册(下)中第五章平面向量第二部分解斜三角形的第二节。我以新课标的理念......

    余弦定理说课稿

    余弦定理说课稿 余弦定理说课稿1 大家好,今天我向大家说课的题目是《余弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。一、教材分析本节知识是职业高中数学教材......

    《余弦定理》说课稿(精选)

    《余弦定理》说课稿 一.教材分析 1.地位及作用 “余弦定理”是人教A版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它......

    余弦定理说课稿

    6.14余弦定理说课稿 职技校机械学区:汪 巍 我今天说课的题目是:余弦定理。 一、教材分析:(说教材) 《余弦定理》是全日制中等职业教育国家规划教材(人教版)数学第一册中第六章平面......

    怎么证明余弦定理

    怎么证明余弦定理证明余弦定理:因为过C作CD垂直于AB,AD=bcosA;所以(c-bcosA)^2+(bsinA)^2=a^2。又因为b^2-(bcosA)^2=(bsinA)^2,所以(c-x)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA......