初一数学 绝对值教案

时间:2019-05-12 21:53:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初一数学 绝对值教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初一数学 绝对值教案》。

第一篇:初一数学 绝对值教案

绝 对 值(1)

【教学目标】

使学生初步理解绝对值的概念;明确绝对值的代数定义和几何意义;会求一个已知数的绝对值;会在已知一个数的绝对值条件下求这个数;培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想。【内容简析】

绝对值是中学数学中一个非常重要的概念,它具有非负性,在数学中有着广泛的应用。本节从几何与代数的角度阐述绝对值的概念,重点是让学生掌握求一个已知数的绝对值,对绝对值的几何意义、代数定义的导出、对“负数的绝对值是它的相反数”的理解是教学中的难点。

【流程设计】

一、旧知再现

1.在数轴上分别标出–5,3.5,0及它们的相反数所对应的点。

2.在数轴上找出与原点距离等于6的点。

3.相反数是怎样定义的?

引导学生从代数与几何两方面的特点出发回答相反数的定义。从几何方面可以说在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数。

那么互为相反数的两个数有什么特征相同呢?由此引入新课,归纳出绝对值的几何意义。

二、新知探索

1.绝对值的几何意义

一个数a的绝对值就是数轴上表示数a的点与原点的距离。如|–5|=5,|3.5|=3.5,|–6|=6,|6|=6,|0|=0。2.绝对值的表示方法

数a的绝对值记作|a|,读作“a的绝对值”。

3.绝对值的代数定义(性质)

①一个正数的绝对值是它本身; ②一个负数的绝对值是它的相反数; ③0的绝对值是0。

即:①若a>0,则|a|=a; ②若a<0,则|a|=–a; ③若a=0,则|a|=0;

a(a0)a0(a0)。或写成:a(a0)4.绝对值的非负性

由绝对值的定义可知绝对值具有非负性,即|a|≥0。

三、范例共做

例1:在数轴上标出下列各数,并分别指出它们的绝对值:

8,–8,1,–1,0,–3。44分析:本例旨在巩固绝对值的几何意义。

例2:计算:

(1)|0.32|+|0.3|;

(2)|–4.2|–|4.2|;(3)|–2|–(–2)。33 分析:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到。在(3)中要注意区分绝对值符号与括号的不同含义。

四、小结提高

1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

2.求一个数的绝对值注意先判断这个数是正数还是负数、0。

五、巩固练习

1.下列说法正确的是()

A.一个数的绝对值一定是正数 B.一个数的绝对值一定是负数 C.一个数的绝对值一定不是负数 D.一个数的绝对值的相反数一定是负数

2.如果一个数的绝对值等于它的相反数,那么这个数()

A.必为正数

B.必为负数

C.一定不是正数

D.一定不是负数 3.下列语句正确的个数有()

①若a=b,则|a|=|b|;②若a= –b,则|a|=|b|;③若|a|=|b|,则a=b;④若|a|=b,则a=b;⑤若|a|= –b,则a= –b;⑥若|a|=b,则a=±b。

A.2个

B.3个

C.4个

D.5个

4.绝对值等于4的数是()

A.4

B.–4

C.±4

D.以上均不对

5.计算:|–(+3.6)|+|–(–1.2)|–|–[+(–4)]|

六、课后思考

已知|x–2|+|y–3|+|z–4|=0,求x+y–z的值。

绝对值(2)

【教学目标】

使学生进一步巩固绝对值的概念;会利用绝对值比较两个负数的大小;培养学生逻辑思维能力,渗透数形结合思想。【内容简析】

前面已经学习了利用数轴比较两个有理数的大小的方法,本节是在讲了绝对值概念之后,介绍利用绝对值比较两个负数的大小的方法,这既可以巩固绝对值的概念,又把比较有理数大小的方法提高了一步,利用绝对值,就可以不必借助数轴比较两个有理数大小了。本节的重点是利用绝对值比较两个负数的大小;利用绝对值比较两个异分母负分数的大小是教学中的难点。【流程设计】

一、旧知再现 1.复习绝对值的几何意义和代数意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。2.复习有理数大小比较方法:在数轴上,右边的数总比左边的数大;正数大于一切负数和0,负数小于一切正数和0,0大于一切负数而小于一切正数。

二、新知探索

引例:比较大小

(1)|–3|与|–8|;|–2|与|–1|;

3(2)4与–5;0.9与1.2;–8与0;–7与–1。

通过练习一方面进一步巩固绝对值概念,另一方面又回顾了两个正整数、正分数、正小数、正数与0、0与负数、正数与负数的大小比较方法,对于两个负数可以借助于数轴比较大小,但较繁琐。

通过观察几组负数的大小与他们的绝对值的大小的关系,便可发现两个负数的大小规律:

两个负数,绝对值大的反而小,绝对值小的反而大。

三、范例共做

例1:比较大小

(1)–0.3与–0.1;(2)–2与–3。34解:(1)∵ |–0.3|=0.3,|–0.1|=0.1

0.3>0.1 ∴ –0.3<–0.1(2)∵ |–2|=2=8,|–3|=3=9 331244128<9

1212∴ –2>–3 34 说明:①要求学生严格按此格式书写,训练学生逻辑推理能力;②注意符号“∵”、“∴”的写法、读法和用法;③对于两个负数的大小比较可以不必再借助于数轴而直接进行;④异分母分数比较大小时要通分将分母化为相同。

例2:用“>”连接下列个数:

2.6,–4.5,1,0,–22 103 分析:多个有理数比较大小时,应根据“正数大于一切负数和0,负数小于一切正数和0,0大于一切负数而小于一切正数”进行分组比较,即只需正数和正数比,负数和负数比。

四、小结提高

两个负数比较大小,先比较它们绝对值的大小,再根据“绝对值大的反而小”确定两数的大小。

六、巩固练习

1.设a、b为两个有理数,且a<b<0,则下列各式中正确的是()

A.|a|>|b| B.–a<–b C.–a<|b| D.|a|<–b

2.如果a>0,b<0,|a|<|b|,则a,b,–a,–b的大小关系是()

A.–b>a>–a>b

B.a>b>–a>–b

C.–b>a>b>–a

D.b>a>–b>–a 4.比较大小:

(1)–98 –99;(2)–π –3.14;(3)–3 –0.273。9911100

第二篇:六年级数学绝对值教案

2.3绝对值

教学目标: 使学生理解绝对值的概念,熟悉绝对值的符号。教学重点和难点:

理解正、负数及有理数的意义 教学过程:

一、复习、引入

1.在数轴上找出表示+6和-5两个数的点。2.说出+6和-5的相反数各是什么数?

3.+6和-5是不是互为相反数?为什么?它们离开原点的长度各是几个长度单位?

二、讲授新课:

1.我们知道为了区分具有相反意义的量,引入了正数和负数。例如两辆汽车,第一辆向东行驶了6公里,第二辆向西行驶了5公里。如果要表示它们行驶的方向(规定向东为正)和路程,就应当分别记作+6公里和-5公里。但是,有时我们只需要研究行驶的路程,不需要考虑方向,即上例若问这两辆车各行驶了多少公里(不计方向),就可以记作6公里和5公里。这里6叫做+6的绝对值,5叫做-5的绝对值。那么,什么叫一个数的绝对值呢? 2.我们规定:

(1)一个正数的绝对值是它本身。例如,|3|=3,|+8.2|=8.2。(2)一个负数的绝对值是它的相反数 例如,|-8|=8,|-6.7|=6.7。(3)0的绝对值是0。

a是正数可以表示成a>0,a是负数可以表示成a < 0,这样,上面的三条可以表示成: <1> 如果a>0,那么|a|=a; <2> 如果a<0,那么|a|=-a; <3> 如果a=0,那么|a|=0。例1 求7,-7,;- 的绝对值。

解:|7|=7,|-7|=7,| |=,|- |=。

133.绝对值的几何意义。

从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离。注意,这里的距离,是以单位长度为度量单位的,是一个非负的量。

一个数的绝对值的表示法,是在这个数的两旁各画一条竖线。例如-2的绝对值记作|-2|。例2(1)+3的绝对值怎么表示?是什么?(2)-3的绝对值怎么表示?是什么?

(3)绝对值等于3的数有几个?是什么?并将它们用数轴上的点表示出来。答:(1)|+3|=3;(2)|-3|=3;

(3)绝对值等于3 的数有两个,是+3和-3。

在数轴上表示的两个负数,例如-2和-7,-7的绝对值较大,而-7在-2的左边,因此-7小于-2。

两个负数,绝对值大的反而小。(三)巩固练习

1.|+2.7|,|-2.7|各表示什么意思? “零的绝对值是零”这句话几何意义是什么? 2.绝对值等于6的数有几个?是什么?用数轴上的点表示出所有绝对值等于6的数来。3.“一个数的绝对值一定是正数”这句话是否正确?(四)小结

什么是一个数的绝对值呢?(五)作业:

第三篇:七年级数学绝对值教案

七年级数学绝对值教案

本资料为woRD文档,请点击下载地址下载全文下载地址

www.5y

kj.co

m1.2.4绝

一、学习与导学目标:

知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;

过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;

情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。

二、学程与导程活动:

A、创设情境(幻灯片或挂图)、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。

再如测量误差问题、排球重量谁更接近标准问题……

2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。

B、学习概念:、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。

如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)

2、尝试回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=

(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=

(3)︱0︱=

。(幻灯片)

思考:你能从中发现什么规律?引导学生得出:(幻灯片)

性质:一个正数的绝对值是它本身;

一个负数的绝对值是它的相反数;

零的绝对值是零。

如果用字母a表示有理数,上述性质可表述为:

当a是正数时,︱a︱=a;

当a是负数时,︱a︱=-a;

当a=0时,︱a︱=0。

解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:

在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?

3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。

显然,结合问题的实际意义不难得到:-4<-3<-2<-1<0<1<2……。

因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。

再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用P19/6,8为素材)

通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;

两个负数,绝对值大的反而小。

4、师生活动比较下列各对数的大小:P17例,P18练习。

5、师生小结归纳(幻灯片)

三、笔记与板书提纲:

、幻灯片

2、师生板演练习P15/1

四、练习与拓展选题:

P19/4,5,9,10

反思:

www.5y

kj.co

m

第四篇:七年级数学绝对值教案湘教版

亿库教育网

http://www.xiexiebang.com

绝对值(2)【教学目标】

1.知识目标

⑴借助数轴,初步理解绝对值的概念; ⑵能求一个数的绝对值;

⑶会利用绝对值比较两个负数的大小.2.能力目标

⑴通过应用绝对值解决实际)问题;

⑵渗透数形结合等思想方法,并注意培养学生的概括能力

3.情感态度 帮助学生体会绝对值的意义和作用.感受数学在生活中的价值.【教材分析】

1.地位与作用:绝对值是继有理数、数轴之后又一个新的概念,同时又是逻辑推理的初步和开始,其重要性体现在:一方面,定义从几何的角度给出,也就是从数轴上表示数的点在数轴上的位置出发,得到定义。而数轴的概念、画法,利用数轴比较数的大小及相反数的概念为本节内容奠定了基础;另一方面,在有理数运算以及后面根式内容中,都是以绝对值的知识为基础的,因此,本节内容具有承上启下的作用。

2.重点与难点:本节的重点是让学生直观理解绝对值的含义,本节的难点是正确理解绝对值的代数意义及其应用。

【教学准备】

数学注意事项:

对于绝对值的概念教学要把握和控制其深度和广度。⑴不要求在绝对值号内出现多重符号的化简;

⑵《标准》要求不出现求字母的绝对值,是对全体学生而言,对于优生可以渗透。⑶对于例2,学生初次接触推理,不可强调过死,但要强调比较方法不唯一的。

教学方法

采用启发诱导,自主学习与合作学习相结合。

【教学过程】

1.情境、提出问题:

小明、小强、小华分别在三个车站等车去学校,其位置如图所示:

小明

学校 小强

小华

亿库教育网

http://www.xiexiebang.com

亿库教育网

http://www.xiexiebang.com(出幻灯片)

-6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 提出问题:

⑴小明、小强、小华所在位置表示的数是多少? ⑵他们各距学校(原点)多远?(几个单位长度)由不同层次的学生来回答,并进行纠正。

⑴小明、小强、小华所在位置表示的数是-

5、+

2、+5。

⑵小明距学校5个单位,小强距学校2个单位,小华距学校5个单位。

2分析探索、问题解决

在生活中,有些问题我们只考虑数的大小而不考虑方向,如:为了计算汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程而不是行驶的方向,这就需要引进一个新的概念──绝对值。(板书课题)

带着这个问题看书P28页,并解决以下几个问题: ⑴什么叫做绝对值?怎样用语言表达?其关键词是什么? ⑵绝对值用符号怎样表示?

学生自己看书,勾画重点字词。(培养学生的自主学习习惯)

3..知识理顺、得出结论:

⑴初步形成概念,由学生回答上面的⑴、⑵两个问题(可让学生对照数轴,再说出几个正数、负数的绝对值)。

⑵深化对概念的理解:

①绝对值的意义是在什么条件下给出的;②主要解决的是什么问题。

由小组讨论解决:(引导学生得出:绝对值是利用数轴这一直观条件得出的;它主要是解决在数轴上表示数的点到原点有几个单位长度(距离)的问题,这是绝对值的几何意义)。

⑶互为相反的两个数的绝对值有什么关系?(相等)

4.运用反思,拓展创新。

1、典例解析

1、求下列各数的绝对值

-21,+4/9,0,-7.8,15.5 分析:先表示出各数的绝对值,然后根据绝对值的意义写出结果,即“一添二去”。(添绝对值符号,再去掉绝对值的符号)

解:∣-21∣=21,∣+4/9∣=4/9,∣0∣=0,∣-7.8∣=7.8,∣15.5∣=15.5 反例强化:-21=21对吗?∣-21∣是负数吗? 随堂练习:

亿库教育网

http://www.xiexiebang.com

亿库教育网

http://www.xiexiebang.com P29 1(注意有两种书写方式:一是用语言叙述,二是用符号表示,无论学生写出哪一种,都应表扬、肯定。)

2、议一议:①以上各数可分为几类?请分一下。

②每类数的绝对值与原数有什么关系?

小组讨论后,写出它的关系。

3、拓展:

⑴绝对值的代数意义:正数的绝对值是它的本身;

负数的绝对值是它的相反数; 0的绝对值是0。

⑵对有理数的再认识:一个有理数可以看成是由符号和绝对值两部分组成。

4、拓展二:

⑴在数轴上表示下列每小题的两个数,并比较它们的大小: ①-5,-3

②-4,-1.5 ⑵求出⑴中各小题两个数的绝对值,并比较它们的大小。⑶比较-5,-3,-4,-1.5的大小和它们绝对值的大小。⑷你发现了什么?(鼓励学生大胆地表述自己的观点和看法)诱导学生,概括出:“两个负数比较大小,绝对值大的反而小”。(也可说成:“绝对值大的负数反而小”或“绝对值小的负数反而大”。)结论:以上可作为比较两个负数及多个负数大小的方法。

5、动手试试:

⑴自学P29例2(指导学生重点看解题的书写格式)。

⑵例2还可以怎么比较?请说一说。(用数轴比较,强调方法的多样性)

6、比一比

⑴做随堂练习及习题2.3第4题(锻炼学生快速、准确、整齐的书写能力)⑵反馈自救(学生小组交流,修改完善)

5、小结回顾、纳入体系

1、你的收获是什么?

2、你的困难是什么?

3、你还想说些什么?

6.布置作业:

1、自选作业:从习题2.3中1~7题中任选几个题目(数量不限)

2、能力挑战作业:P30“试一试”(自愿做)3.课堂作业;习题2.3第4、5、7题.【教后札记】

亿库教育网

http://www.xiexiebang.com

第五篇:初一数学教案《绝对值》

1.2.4 绝对值(第一课时)

教学目标

1.知识与技能

①能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.

②通过应用绝对值解决实际问题,体会绝对值的意义和作用. 2.过程与方法

经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.

3.情感、态度与价值观

①通过解释绝对值的几何意义,渗透数形结合的思想.

②体验运用直观知识解决数学问题的成功.

教学重点难点

重点:给出一个数,会求它的绝对值.

难点:绝对值的几何意义、代数定义的导出.

教与学互动设计

(一)创设情境,导入新课

活动 请两同学到讲台前,分别向左、向右行3米.

交流 ①他们所走的路线相同吗? ②若向右为正,分别可怎样表示他们的位置? ③他们所走的路程的远近是多少?

(二)合作交流,解读探究

观察 出示一组数6与-6,3.5与-3.5,1和-1,它们互为________,•它们的__________不同,______________________相同.

【总结】 例如6和-6两个数在数轴上的两点虽然分布在原点的两边,•但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们到原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值.

绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│.

想一想(1)-3的绝对值是什么?

(2)+23的绝对值是多少? 7(3)-12的绝对值呢?

(4)a的绝对值呢?

思考 例1 求8,-8,3,-3,11,-的绝对值.你发现了什么? 44

总结:互为相反数的两个数的绝对值相同.

例2 求+2.3,-1.6,9,0,-7,+3的绝对值.你发现了什么?

总结:正数的绝对值是它本身,负数的绝对值是它的相反数,0•的绝对值是零. 例3 一个数的绝对值可能是负数吗?可以是什么数?

讨论 字母a可以代表任意的数,那么表示什么数?这时a的绝对值分别是多少?

归纳

若a>0,则│a│=a 若a<0,则│a│=-a 若a=0,则│a│=0

(三)应用迁移,巩固提高

例题填空:

(1)绝对值等于4的数有 个,它们是 .

(2)绝对值等于-3的数有 个.

(3)绝对值等于本身的数有 个,它们是 .(4)①若│a│=2,则a= .

②若│-a│=3,则a= .

(5)绝对值不大于2的整数是

(6)根据绝对值的意义,思考:如果a<0,那么-│a│= a .

【点评】 去绝对值符号,首先要判断绝对值里的正负情况,由此发展自身的合情推理能力.

备选例题

(2004·四川资阳)绝对值为4的数是()A.±4 B.4 C.-4 D.2 【点拨】 要注意到一个正数的绝对值等于它本身,负数的绝对值等于它的相反数.

【答案】 A

(四)总结反思,拓展升华

本节课,我们学习认识了绝对值,要注意掌握以下两点: ①一个数的绝对值是在数轴上表示这个数的点到原点的距离; ②求一个数的绝对值必须先判断是正数还是负数. 1.阅读与理解:

点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为│AB│. 当AB两点中有一点在原点时,不妨设点A在原点,如图(1)所示,│AB│=│OB│=│b│=│a-b│; 当A、B两点都不在原点时:

① 如图(2)所示,点都在原点的右边,│AB│=│OB│-│OA│=│b│-│a│=•b-a=│a-b│; ② 如图(3)所示,点都在原点的左边,│AB=│OB│-│OA│=│b│-│a│=-b-•(-a)=│a-b│; ③ 如图(4)所示,点都在原点的两边,│AB│=│OA│+│OB│=│a│+│b│=•-a+b=│a-b│;

aO(A)(1)bBaOA(2)bBbBaA(3)OaAO(4)bB

综上,数轴上A、B两点之间的距离│AB│=│a-b│. 2.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示-2和-5•的两点之间的距离是,数轴上表示1和-3的两点之间的距离是

(2)数轴上表示x和-1的两点之间的距离是,如果│AB│=2,那么x•为;

(3)当代数式│x+1│+│x-2│取最小值时,相应的x的取值范围是 .

(五)课堂跟踪反馈

夯实基础 1.填空题

(1)-│-3│=,+│-0.27│=,-│+26│=,-(+24)= .

(2)-4的绝对值是,绝对值等于4的数是

(3)若│x│=2,则x=,若│-x│=2,则x= .若│-x│=-3,则x .

(4)│3.14-|= .

(5)绝对值小于3的所有整数有 . 2.选择题

(1)则│a│≥0,那么()

A.a>0 B.a<0 C.a≠0 D.a为任意数

(2)若│a│=│b│,则a、b的关系是()

A.a=b B.a=-b C.a+b=0或a-b=0 D.a=0且b=0(3)下列说法不正确的是()

A.如果a的绝对值比它本身大,则a一定是负数 B.如果两个数不相等,那么它们的绝对值也必不相等 C.两个负有理数,绝对值大的离原点远 D.两个负有理数,大的离原点近

(4)若│x│+x=0,则x一定是(C)

A.负数 B.0 C.非正数 D.非负数

(5)已知│a+b│+│a-b│-2b=0,在数轴上给出关于a、b的四种位置关系,•则可能成立的有()

a0bb0a0ab0ba

A.1种 B.2种 C.3种 D.4种

提升能力

3.若实数a、b满足│3a-1│+│b-2│=0,求a+b的值.

【答案】

开放探究

4.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表: +15-10 +30-20-40 指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?

【答案】 5.新中考题

(2004·长沙)-2的绝对值是

1.2.4 绝对值(第二课时)

【教学目标】

1.知识与技能

会利用绝对值比较两个负数的大小. 2.过程与方法

利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力. 3.情感、态度与价值观

敢于面对数学活动中的困难,有学好数学的自信心. 【教学重点难点】

重点:利用绝对值比较两个负数的大小.

难点:利用绝对值比较两个异分母负分数的大小. 【教与学互动设计】

(一)创设情境,导入新课

你能比较下列各组数的大小吗?

(1)│-3│ │-8│(2)4-5(3)0 3(4)-7 0(5)0.9 1.2

(二)合作交流,解读探究

讨论交流 由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数.

思考 若任取两个负数,该如何比较它的大小呢?

点拨 若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?

◆ 注意

①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小.

②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值. ③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即:利用数轴来比较有理数的大小.

(三)应用迁移,巩固提高

例1 比较下列各组数的大小(1)-和-2.7 653(2)-和-

7455解:(1)∵ |-|=

│-2.7│=2.7 6655而<2.7 ∴ ->-2.7 66(2)

例2 按从大到小的顺序,用“〈”号把下列数连接起来.-4,-(-),│-0.6│,-0.6,-│4.2│

23解:

例3 自己任写三个数,使它大于-而小于-.

例4 已知│a│=4,│b│=3,且a>b,求a、b的值.

【答案】

备选例题

(2004.江苏南通)如图所示,在所给数轴上画出数-3,-1,│-2│的点.把这组数从小到大用“〈”号连接起来.

01

(四)总结反思,拓展升华

1.本节课所学的有理数的大小比较你能掌握两种方法吗?

(1)利用数轴,在数轴上把这些数表示出来,•然后根据“数轴上左边的数总比右边的数大”来比较;

(2)利用比较法则:“正数大于零,负数小于零,两个负数,•绝对值大的反而小”来进行.

(五)课堂跟踪反馈

夯实基础 1.填空题

(1)绝对值小于3的负整数有,绝对值不小于2且不大于5的非负整数有

(2)若│x│=-x,则,若=1,则 .

(3)用“〉”、“=”、“〈”填空:

①-7-5 ②-0.1-0.01 ③-│-3.2│-(-3.2)④-│-│-3.34

3881 ⑤--

⑥-(-)0.025 97422202 ⑦--3.14

⑧--

20323(4)若│x+3│=5,则x= . 2.选择题

(1)下列判断正确的是()A.a>-a B.2a>a C.a>-D.│a│≥a

a11(2)下列分数中,大于-而小于-的数是()

3411436 A.- B.- C.- D.-

13161720(3)│m│与-5m的大小关系是()A.│m│>-5m B.│m│<-5m C.│m│=-5m D.以上都有可能

|a|(4)m≠0,则=()

a A.1 B.-1 C.±1 D.无法判断 提升能力 3.解答题

76(1)比较-和-的大小,并写出比较过程.

87【答案】

(2)求同时满足:①│a│=6,②-a>0这两个条件的有理数a. 【答案】(3)将有理数:-(-4),0,-│-3│,-│+2│,-│-(+1.5)│,-(-3),│-(+2)

22│表示到数轴上,并用“〈”把它们连接起来.

【答案】

(4)甲、乙、丙、丁四个有理数讨论大小问题.甲说:我是正整数中最小的.•乙说:我是绝对值最小的.丙说:我与甲的一半相反.丁说:我是丙的倒数.你能写出它们分别是多少吗?然后按从小到大的顺序排列. 【答案】

(5)若a<0,b>0,且│a│<│b│,试用“〈”号连接a、b、-a、-b.

【答案】

1.阅读与理解:

点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为│AB│. 当AB两点中有一点在原点时,不妨设点A在原点,如图(1)所示,│AB│=│OB│=│b│=│a-b│; 当A、B两点都不在原点时:

④ 如图(2)所示,点都在原点的右边,│AB│=│OB│-│OA│=│b│-│a│=•b-a=│a-b│; ⑤ 如图(3)所示,点都在原点的左边,│AB=│OB│-│OA│=│b│-│a│=-b-•(-a)=│a-b│; ⑥ 如图(4)所示,点都在原点的两边,│AB│=│OA│+│OB│=│a│+│b│=•-a+b=│a-b│;

aO(A)(1)bBaOA(2)bBbBaA(3)OaAO(4)bB 综上,数轴上A、B两点之间的距离│AB│=│a-b│. 2.回答下列问题:

(1)数轴上表示2和5的两点之间的距离是,数轴上表示-2和-5•的两点之间的距离是,数轴上表示1和-3的两点之间的距离是 ;

(2)数轴上表示x和-1的两点之间的距离是,如果│AB│=2,那么x•为

(3)当代数式│x+1│+│x-2│取最小值时,相应的x的取值范围是 .

23.(1)阅读下列比较-a与-a的大小的解题过程:

322 解:∵│-a│=a,│-a│=a

3322 又∵a>a ∴-a<-a 33 你认为上述解答过程正确吗?与同学们研究,并发表你的看法.(2)要比较有理数a和a的大小时,因为a的正、负不能确定.所以要分a>0,a=0,3a<0三种情况讨论: 当a>0时,a>a.

当a=0时,a=a.

当a<0时,a

下载初一数学 绝对值教案word格式文档
下载初一数学 绝对值教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    绝对值教案

    2009---2010学年度上学期七年级数学科教案 课题:绝对值 教学目标: 1. 理解绝对值的概念。 2. 能求一个数的绝对值,并且会进行简单的绝对值计算。 3. 会利用绝对值比较两个负数......

    绝对值教案

    学科:数学 教学内容:绝对值 【学习目标】 1.借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小. 2.通过应用绝对值解决实际问题,帮助学生体会绝对值......

    《绝对值》教案

    课题:绝对值 备课人:贵州省铜仁市思南县第五中学 李茂兰 教学内容解析:《绝对值》是七年级数学教材上册1.2.4节内容。在此之前,学生已学习了有理数,数轴与相反数等基础内容,这为......

    《绝对值》教案[模版]

    课题:绝对值 正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。 互为相反数的两个数的绝对值相等。 试一试:若字母a表示一个有理数,你知道a的绝对值等于什么吗?......

    绝对值教案

    绝对值(教案) 一 教学目标 1.知识目标:要求从代数与几何两个角度,借助数轴初步理解绝对值的概念,会求一个数的绝对值。 2.能力目标: 通过应用绝对值解决实际问题,使学生体会绝对值的......

    《绝对值》教案

    绝对值 一.教学目的: 1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念。 2.给出一个数,能求出它的绝对值。 3.在把绝对值的代数定义转化成数学式子的过程中,培养学生运......

    2.3绝对值教案

    绝对值(1) 学习目标: 1、能借助数轴初步理解绝对值的概念,会求一个数的绝对值。 2、正确理解绝对值的代数意义和几何意义,渗透数形结合与分类讨论思想。 重点和难点:理解绝对值的......

    相反数和绝对值教案

    相反数和绝对值教案 以下是查字典数学网为您推荐的相反数和绝对值教案,希望本篇文章对您学习有所帮助。 相反数和绝对值 1、知道相反数的概念,并会在已知的有理数中,借助数轴识......