第一篇:《分数与除法》教学设计
《分数与除法》
一、课程标准要求
1、知识目标:是理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。
2、能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。
3、情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。
二、教材地位作用
“分数与除法的关系”这一教学内容(人教版),是小学数学五年级下册,第五单元中第二小节的授课内容,前面从部分与整体的关系揭示了分数的意义。本节从“分数与除法”可以表示两个数相除(除数不为0)的商揭示分数另一方面的意义。加深和扩展学生对分数的意义的理解,同时为学习假分数以及把假分数化为整数或带分数作准备。所以让学生很好的掌握分数与除法之间的关系,体会量与率的区别十分重要。
能借助几何直观探究分数与除法的关系,在这过程中,提高观察分析、类比推理的思维能力,进一步发展数感。
被除数
a 被除数÷除数=__________
a÷b= ______(b≠0)
除数
b
三、学情调查分析
本节课比较抽象,学生很容易理解用除法计算,但理解计算结果比较困难一些。数学课程标准指出:把“只关注知识结构”转向“要重视知识结构,更要关注获取知识的过程”,以被动听讲和联系为主的方式,是难以引起学生思考的。
这节课,我不想把知识、结果直接告诉给学生,而是为学生探索新知识创造机会,给他们提供感兴趣的、有思考价值的数学材料,让学生通过观察、分析、比较、小组讨论等活动来获取知识。
四、教学目标确定
本节的重点是理解分数与除法之间的关系。而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学,教学过程的设计采取在大量的数活动和数学信息中感知知识产生和发展的过程。
在教学的进行中,要充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。
五、教学流程设计
一、复习导入点明课题
因为本节课是在分数的意义的基础上进行的,所以让学生加深对分数意义的理解,明确本节课要干什么。开门见山提出课题。
二、探究新知
1.唤起生成,由6张饼平均分给3个人,怎样列式得出除法,然后根据除法的意义顺势导出1张饼平均分给2人、3人、4人怎样列式,然后多媒体给学生直观的演示,让学生理解分数可以写成除法。给学生以表象的认识。2.尝试探究
这节课,我不想把知识、结果直接告诉给学生,而是为学生探索新知识创造机会,给他们提供感兴趣的、有思考价值的数学材料,让学生通过观察、分析、比较、小组讨论等活动来获取知识。
三、达标检测
出示练习题后,先让学生独立完成,再集体订正。
四、课堂总结
请学生谈谈本节课的学习收获。
五、布置作业
六、教学过程
(一)课前设计 1.课前复习
(1)幼儿园的马老师把6块小点心,平均分给3个小朋友,每个小朋友得到多少块?
(2)把1个蛋糕平均分给2个人,每人多少个?
(二)课堂设计 1.回顾旧知,导入新课
①幼儿园的马老师把6块小点心,平均分给3个小朋友,每个小朋友得到多少块? ②把1个蛋糕平均分给2个人,每人多少个? 师:谁来汇报这两道题目是怎样解决的? 预设:6÷3=2(块)师:你是怎么得到2块的? 1÷2=0.5(个)1÷2=(个)师:你是怎么想到个的?
师:如果把1个蛋糕平均分给3个人,每人分得多少块? 预设:1÷3=0.333??(个)1÷3=(个)
师:当商不能用整数表示时,怎么办呢?(用分数)分数与除法之间有什么关系吗?这节我们来研究。板书课题。
【设计意图:在前几节课学习分数的意义时,学生对把一个物体平均分成若干份比较熟悉,会很顺利地联想到分数的意义。从整数除法的意义和分数的意义入手,先从直观上初步建立起分数与除法的相等关系,为下面的探究铺路搭桥。】 2.问题探究
(1)借助几何直观,探究关系 出示:把3块月饼,平均分给4个人,每人分得多少块? ①理解题意
师:要求每人分得多少块?就是求什么? 学生自由发言。
小结:“要求每人分得多少块?”,就是求“把3块平均分成4份,每份是多少?列式是3÷4”
师:那每份是多少呢?请你借助手中的学具剪一剪、摆一摆,也可以在本上写一写、画一画。表示出平均每人分得多少块? ②独立操作,交流汇报,学生独立操作后全班交流。
一边摆一边说自己是怎么得到每人分的块数的。
预设1:先把每个圆形纸片平均分成4份,每人每次分得块,结果每人分得3个块,也就是块。
预设2:把每个圆形纸片平均分成4份,再把12小块平均分成4份,每份是3个块,再把3个块拼在一起,每人分得块。
预设3:把3个圆片叠在一起,平均分成4份,每份是3块的,是3个块,再把3个块拼在一起,每人分得块。
师:大家用不同的方法,都得到的是块,在你们动手分的时候,都是把谁看做单位“1”? 一个月饼。
小结:把3块月饼平均分给4个人,每人分得块。板书:3÷4=(块)
【设计意图:计算结果为什么可以用分数来表示,学生理解比较困难,这是本节课教学的重难点。学生动手操作经历得到每人分得四分之三。让学生对操作过程进行反思与分析,从而深刻地认识到不仅表示把单位“1”平均分成4份,表示这样的3份,还可以表示把“3”平均分成4份,表示这样的1份,从而很好地突破了教学难点。】 举一反三,加深理解
想象一下,如果把5块月饼,平均分给6个人,每人分得多少块?分给8个人呢? 5÷6=(块)5÷8=(块)把5块饼平均分成3个人呢?
学生借助前面分的经验,在脑中想象分的过程,迁移类推出结论。
【设计意图:因为已经有把3块饼平均分成4份的操作经验,学生可以通过想象推理出把5块饼平均分成6份、8份,把5块饼平均分成3份的结果。】(3)归纳总结关系
师:观察这几个除法算式,你认为除法与分数有怎样的关系? 预设:被除数相当分数的分子,除数相当于分数的分母。板书:被除数÷除数=
师:如果用a表示被除数,用b表示除数,这个关系式可以怎样写? 板书:a÷b=
师:a、b可以是任何数,对吗?
小结:在除法中,0不能做除数,分数中的分母,相当于除法中的除数,所以分母不能是0。板书:(b≠0)
【设计意图:学生的认知需要经历行为表征——表象表征——符号表征这三个阶段。借助学具分饼的基础上,继续通过“想象分的过程写出得数——直接写出得数”两个层次,层层递进,由具体到抽象,帮助学生逐步摆脱具体的实物操作,引导学生对分数与除法关系的实质进行内化,让学生根据已获得的多个算式,类比推理、抽象概括出了分数与除法的关系。】 3.巩固练习(1)在下面括号里填上适当的数。7÷13==()÷()()÷7=
(2)把这桶饼干平均放在5个保鲜盒中,平均每个保鲜盒放多少kg?(3)马腾从家到学校走了15分钟,他平均每分钟走多少km? 4.课堂总结
师:通过学习你有什么收获?
小结:除法的商也可以用分数来表示。分数和除法之间的关系。
(三)课时作业 1.填一填。
2÷5=3÷7=8÷11= 9÷13=1÷10=16÷11=
2.把20米的长的铁丝平均分成7段,每段多少米?
七、教学设计完善
为了达成教学目标,本节课的教学必须贯彻以学生为主体,坚持启发和发现法相结合的教学方法,引导学生大胆猜测,动手实践,在体验中、在交流中发现规律。
在教学的过程中,充分创设让学生主动探究的学习氛围,创设生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的基础知识,让每个学生通过学都得到不同程度的发展,培养学生学习数学的能力。
针对学生的学习情况和教学设想,我设计了这样的过程。
第二篇:分数与除法教学设计
《分数与除法》教案设计
一、教学目标:
1、知识目标:理解分数与除法的关系,会用分数表示除法的商,会用两种方法叙述分数的意义。
2、技能目标:通过观察、思考和动手操作,培养学生合作探索和实践能力。增强学生的抽象思维。
3、情感目标:体会知识来源于实际生活的需要,激发学习数学的积极情感。
二、教学重、难点:
重点:理解和掌握分数与除法的关系。难点:理解一个分数所表示的两种意义。
三、学情分析:
学习本课前,学生已经理解了分数的意义和除法的意义,具有了一定的操作能力和小组合作能力,知道了除数不能为0。在此基础上学习《分数与除法》就显得比较轻松。而且,兴趣是学习的推动力,是获取知识的开端,是求知欲的基础。学生的学习动力往往被学习兴趣所左右,因此在教学的重要环节以激发学生兴趣为出发点,在学习素材的选取和学习活动的安排上,更突出从学生的生活实际出发,使学生感受到数学就在自己身边,学习数学是为自己所用,是必要的,从而调动学习数学、探讨数学知识的欲望。教学过程:
(一)创设情景,导入新知。
1、师:同学们,老师想知道我们班有哪位同学准备要过生日呢? 今天我们就一边学数学,一边跟**同学庆祝生日好吗?
师:同学们,请看老师带来了什么?(课件出示8个蛋糕)
2、师:如果要把这8个蛋糕平均分给小组里的4个人,每人可以 分得多少个? 师指名同学回答。生:2个,8÷4=2(个)(二)动手操作,探究新知。
1、教学例1。
(1)师:同学们真棒,现在将8个小蛋糕变成1个大蛋糕,把这个大蛋糕平均分给他们4个人,每人又可以分得多少个呢? 生:1÷4=1/4(个)(板书)
师:为什么这样列式?你是怎样想的?
生:把1个蛋糕平均分给4个人吃,就是把1个蛋糕平均分成4份,每人吃其中的1份,这1份占这1个蛋糕的 1/4,也就是 1/4个蛋糕。
师:他的说法是否正确呢?现在请每个同学用手上的圆折一折,分一分,看看平均分给四个人每人得到的是不是1/4个?(2)学生操作,教师巡视。(巡视时找一位同学汇报)(3)出示例1: 师:大家都说得很好,现在看谁学得最棒,老师把1个蛋糕平均分给3个人,每人可以分得多少个?平均分给6个人呢?(师提问时
指着板书说)
生回答,师同时板书。(4)引出课题: 师:两个数相除,商也可以用分数来表示,究竟怎样准确地用分数
表示呢?这节课我们就来探究分数与除法。(板书课题)
2、教学例2。(1)把例1变例2。
师:八月中秋之夜,皓月当空,银光洒遍大地。有四个小朋友他们是邻居,正坐在一起一边欣赏明月一边品尝月饼。可是他们遇到了一个麻烦,我们一起去看一下吧。原来呀他们想将将3块月饼平均分给4个人,可是不知道每人分得多少个,你们能帮助他们吗?说一说要怎样列式呢?结果是多少? 生:3÷4 师:你能猜想一下它的结果吗?
生:3÷4= 3/4(个)(板书: 3/4(个)?)(?号用红色粉笔板书)
师:大家的猜想都是这样吗?
(2)师:他的猜想对不对呢?请同学们亲自动手操作验证一下,听清老师的要求:四人小组利用桌面上的学具合作来分一分,剪一
剪,并讨论这两个问题。(课件出示)
1、每人可以分得多少个蛋糕?
2、你是怎样分的?
(3)学生动手剪拼,先独立思考,后四人小组讨论,教师巡视。(教师可用激励语言:这个小组合作得很好)(4)学生汇报,集体探究。
生1:一个一个分,把每个蛋糕平均分成4份,每1份就是1个蛋糕的 1/4,每人可分得3个1/4 个蛋糕,就是3/4 个蛋糕。师:这个小组1个1个地分。其它小组有不同的分法吗? 生2:把3个蛋糕摞在一起分,平均分成4份,每人分得其中的1份,这1份占这三个蛋糕的 1/4,相当于一个蛋糕的3/4,就是3/4 个蛋糕。
师:这个小组很聪明,三个一起分。
生3:先把2个蛋糕摞在一起,平均分成2份,得4个 1/2个蛋糕,再把1个蛋糕平均分成4份,然后把 1/2个和 1/4个蛋糕拼在一起,就是就是3/4 个蛋糕。
生4:1个蛋糕平均分给4个人,每人分得 1/4个蛋糕,3个蛋糕平均分给4个人,每人分得3个 1/4个蛋糕,就是 3/4个蛋糕。(5)课件演示分饼过程:
师:刚才四个小组为我们展示了两种不同的分法,我们一起来看看,第一种方法:一个一个地分,把每个蛋糕平均分成4份,每1份就是1个蛋糕的 1/4,每人可分得3个 1/4个蛋糕,就是 3/4个蛋糕;第2种方法:把3个蛋糕摞在一起,平均分成4份,每人分得其中的1份,每份占这三个蛋糕的 1/4,相当于一个蛋糕的 3/4,就是 3/4个蛋糕。
师:其实3个蛋糕的1/4,就是 3/4个蛋糕,而1个蛋糕的 3/4也是 3/4个蛋糕。(师指着投影说)
(6)师:通过我们的合作,证明这个同学的猜想是对的。3÷4= 3/4(个),(7)补充练习:
师:同学们说得很好,老师出2道题考考大家,把3个蛋糕平均分给5个人,每人分得多少个? 学生口答:3÷5= 3/5(个)。
师:如果把2个蛋糕平均分给3个人,每人又分得多少个呢? 学生口答:2÷3= 2/3(个)。
(分别请2名学生回答,师同时板书))
3、观察,发现分数与除法间的关系。
(1)师:请同学们观察这三组算式,你发现分数与除法有什么关系?请独立观察思考后与同桌交流。(2)生汇报。
生1:我发现被除数相当于分子,除数相当于分母,除号相当于分数线。
师:我们能不能反过来说,分数的分子相当于什么?
生2:分数的分子相当于被除数,分数的分母相当于除数,分数线相当于除号。
(3)师小结:所以,被除数 ÷ 除数=被除数/除数
(4)师:如果用字母a表示被除数,b表示除数,谁可以用字母来表示这种关系。生:a ÷b=a/b 师:b可以是0吗?
生:不可以,因为除数不能为0,所在b不能为0。(三)扎实训练,活用新知。
师:同学们,今天**同学过生日你们想送她一些礼物吗?可是你们并没有准备对不对,不过没关系老师帮你们准备了礼物。但是,只有你们闯关成功了才可以得到礼物,你们敢挑战吗? 生齐说:敢。
(1)师:好,下面就让我们一起走进智力大闯关。请看第一关。
把下面的除法算式的商用分数来表示。
3÷2= 2÷9= 5÷12= 31÷5= m ÷ n=(2)师:同学们可真棒第一关就这样轻松的闯过来了,我们来看
一下
是什么礼物?(文具盒)下面走进第二关。把下面的分数用除法来表示;4/3 = 5/4= 4/2= 1/3= 13/22=(3)师:经过我们的努力又闯过了一关,获得了一支精美的钢笔。同学
们你们还想闯第三关吗? 判断对错:
1、把3米长的电线平均剪成8段,每段长1/8米。()2、7÷5=5/7()
3、把一个4平方米的圆形花坛分成5块,每块是4/5平方米。()4、10/13=13÷10()
(4)师:看看这一次又是什么礼物?(一副羽毛球拍)**同学你的礼物这么多了你还想要吗?(想)同学们还敢闯吗?(敢)好,我们来看看第四关。教材p67练习十二第一题。请同学们在练习本上独立完成。学生回答,教师订正
(5)师:我们又获得了一个崭新的书包,同学们,我们做什么事都不能半途而废,只剩下最后一关了我们一定要闯,是不是呀?好,我们一起来看一看。
小明说:“我把3米长的绳子平均分成5段,取其中的1段。”
小红说:“我把1米长的绳子平均分成5段,取其中的3段。” 请问,谁取得绳子长?
生互相讨论然后汇报,教师课件演示讲解。
(6)教师总结:同学们,你们可真棒通过自己的不懈努力为**同学获得了这么多的生日礼物,老师真为你们高兴。(四)课堂小结
同学们,通过这节课的学习你感觉怎么样?你有什么收获?你想对老师同学们说些什么?
板书设计:
分数与除法
被除数÷除数=被除数/除数 a÷b=a/b(b=0)1÷4=1/4(个)3÷4=3/4(个)1÷3=1/3(个)3÷5=3/5(个)1÷6=1/6(个)2÷3=2/3(个)
第三篇:“分数与除法”教学设计与评析
“分数与除法”教学设计
教学内容:
小学义务教育课程标准实验教科书《数学》五年级下册第65~66页内容。练习十二第1---3题。教学目标:
1、使学生理解并掌握分数与除法的关系,学会用分数表示两个数相除的商。
2、通过动手操作,使学生理解3的1/4就是1的3/4。培养学生的分析、推理能力。
3、进一步深化分数的意义,渗透转化的数学思想方法。教学重、难点:
理解3张饼的1/4就是1张饼的3/4(既分数意义的深化)。教学准备:圆形纸片
教学方法:合作探究、操作法。教学过程:
一、启动研究问题。(出示题组)
师:老师给大家带来一组除法算式,比比谁的反应最快?
28÷4=
1÷2 =
6÷4=
0.7÷2=
9÷10= 师:两个数相除的商有可能是整数,也有可能是小数。那么 1÷6等于多少呢?(生回答:0.16666…、约等于0.17)
师:1除以6除不尽,结果除了用循环小数,你知道还可以用什么表示?生讨论交流。(可以用1/6表示)
师:这是你们的猜想,是不是所有的除法都可以用分数来表示呢?只是猜想还不行,我们还得验证,今天这节课我们就研究这个问题。
揭示课题:
分数与除法
二、动手操作、探究新知
1、创设解决问题的情境,研究分数与除法的关系。
(1)师:这是一个圆形纸片,把当作一张饼,如果要平均分给3个人,每人分多少张?该怎样列式?
生:1÷3=
师:每个人可以得到多少张呢?(强调是谁的1/3)
生:每人分得1张饼的1/3,就是1/3张(板书)1÷3=1/3(张)
(2)师:如果把3张饼平均分给4个人吃,每人吃多少张饼呢?怎样列式? 生 :3÷4
(学生可能会得出3/4)
师:我们现在就动手来验证,看是否是这样的。你们每个小组手里都有3张纸片,以小组为单位,亲自剪一剪,拼一拼,看看结果是多少?(小组合作探究)
思考:a:你们是几张几张的分的?
b:每人每次分得几张饼的几分之几?
c:分了几次,共分了多少张?
d:怎样才能看出是3/4张?(强调:还得一张一张的摆)
生交流,生1:(一张一张的分)把一张饼平均分成4份,每人吃一份,就吃了一张饼的1/4张,连续分了3次,一张一张的摆开拼起来就是3/4张。
师:谁是和他们分法一样的?还有其它的分法吗?
生2:(把三张饼重合在一起分的)把3张饼摞起来平均分成4份,分了一次,每人分得3张饼的1/4,一张一张的摆开拼起来就是3/4张。(3)师引导学生完整叙述自己的分饼的方法:
A:把3张饼一张一张的平均分,每人每次分得1张饼的1/4张饼,分了3次,共分得3个1/4张,就是3/4张。
B:也可以把3张饼摞起来当着一块平均分,只分一次,每个人都分得了
3张饼的1/4,也是3/4张。
2、借助想象,深化研究。
(1)刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5张饼平均分给8个人,每人分得多少张吗?
(2)反馈:刚才大家研究了分饼的问题,你能用分数表示刚才开始时的计算题的结果吗?
28÷4=
1÷2 =
6÷4 =
0.7÷2 =
9÷10 = 【注】教师解释:0.7÷2=0.7/2是可以的,这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。
3、观察算式,概括分数与除法的关系。师:大家观察这些算式,看看你能发现什么?
28÷4 = 4/28
1÷2 =1/2
6÷4 = 4/6
9÷10 = 9/10(组织学生讨论、交流)
生:分数的分子,相当于除法中的被除数,分母相当于除法中的除数,除号相当与分数线。
师:所以被除数÷除数 = 被除数/除数
如果用a表示被除数,b表示除数,那么a÷b可以写成什么形式?
a÷b = a/b 师:同学们对于这个等式有什么补充吗?(b≠0,既分数的分母不能为0)讨论:为什么b≠0不能为0?
4、师:我们研究了分数与除法的联系,他们之间有区别吗?(小组讨论)得出:除法是一种运算,而分数是一种具体的数量。
5、小组内互相说一说分数与除法的联系与区别。
三、应用知识、课堂练习:
1、在下面的()里填上适当的数。
7÷13 =()/()
5/8 =()÷()10÷()= 10/9
()÷7 = 4/7
2、判断:(1)分数的分母可以为任何自然数。
(2)21÷32 = 32/21
(3)8千克的1/9等于1千克的8/9。
(4)把4个西瓜平均分成6份,1份是1/6个。
3、填空。
8cm=()/()65dm=()/()
36平方厘米=()/()
258ml=()/()250立方分米=(通过今天的学习,你有什么收获?
/()
互助小学 陈 波
2007年4月12日
四、课堂总结:)
第四篇:分数与除法教学设计
分数与除法教学设计 教学内容
义务教育教科书(北师大版)五年级上册69—70页 教学目标
1.结合具体情境观察比较,理解分数与除法的关系,会用分数来表 示两数相除的商。
2.运用分数与除法的关系,探索假分数与带分数的互化方法,初步 理解假分数与带分数互化的算理,会正确进行互化。
3、培养观察、比较、抽象和概括的能力。教学重点
1、理解并掌握除法和分数的关系。
2、会对假分数与带分数进行正确互化。教学难点
利用除法和分数的关系进行带分数和假分数的互化。教学准备
多媒体课件 教学过程
(一)创设情景,导入新知:今天,是我们班xx同学的生日,她的好朋友们为她准备了生日蛋糕。她把生日蛋糕带来和大家一起分享,该如何分呢?(出示课件)
1、把1块蛋糕平均分给2个小朋友,每人可以分到几块蛋糕?
师:大家想一想要是你分你会怎么分啊得到的结果是什么?
生1:1/2块。生2:1÷2
生3:把它一切为二,得一半。
师:大家看,这里的1/2和1÷2之间有什么关系吗?
生1:他们的两个数字都相同。
生2:分数的分子和除法的被除数相同。
生3:分数的分母和除法的除数也相同。
师:非常好!这个关系就是我们今天要学习的内容。
(二)探究新课
(出示课件):如果把7块蛋糕分给3个小朋友,每人分得几块?(学生用手中圆片代替动手分一分小组内互相说说分的过程)
生1:7/3块
生2:7÷3
师:同学们都很聪明,你们来说一说他们的关系吧。生1:这里分数的分子是除法的被除数,分数的分母是
除法的除数。
师:你们还有发现吗?
生2:我觉得分数线和除号应该是相同的。
师:这个同学真仔细!
2、归纳总结
(出示课件)
分数的分子 相当于 除法中的()
分数的分数线相当于 除法中的()
分数的分母 相当于 除法中的()
师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?
生1:a÷b=a/b
生2:老师,我认为还要写上b≠0。
师:为什么b≠0?
生:因为b表示除数,除数不能为0。
生:分数的分母也不能等于0。
师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢? 学生观察算式,思考举例。
小结(课件出示):两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子.反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。
师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?
小组讨论:
学生汇报:
教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。
(三)学生练习,引出假分数与带分数的互化。
1、(出示课件)在括号里填上合适的数。
3÷ 5=()/()8÷7=()/()5/6=()÷()12/7=()÷()
2、小组交流讨论归纳互化的方法。(学生组内用手中学具演示,老师做必要的指导)
学生汇报:假分数化成带分数:分子除以分母,余数做新的分子,商做整数部分,分母不变。带分数化成假分数:整数部分乘以分母加分子。
(四)实践体验,巩固知识
(练习题略)
(五)总结:同学们,今天我们都学了哪些知识啊?在以后的生活中,你会运用这些知识了吗?
板书设计:
分数与除法
1/2 1÷2 假分数 → 带分数
7/3 3÷7 带分数 → 假分数
被除数/除数=被除数÷除数
第五篇:分数与除法教学设计与评析
“分数与除法”教学设计与评析
教学内容:《义务教育课程标准实验教科书 数学五年级下册》第65~66页。
教学目标:
1.使学生理解并掌握分数与除法的关系,学会用分数表示两个数相除的商。2.通过动手操作,使学生理解3的就是1的。培养学生的分析、推理能力。
教学重难点:3张饼的是多少张 教学准备:圆形纸片、多媒体课件
课前谈话
师:上课前我们先来交流一下对几个问题的看法:(发明与发现)① 发明和发现是一回事吗?大家谈一谈什么叫发明,什么叫发现?
生①:发明是原来没有,经过想像创造出来,发现原来就有,后人逐步得到了。大家天天学习的数
学知识是发明的?还是发现的?
生①:发明的,阿拉伯数字,就是印度人发明的。生②:运算定律是发现的,比如说加法的交换律。生③:数学知识既有发明的又有发现的„„
师:大家的分析很有见地,其实就像大家所说的,数学知识既有发现,又有发明,发现靠经验,发明靠聪明,积极地思维,一个好的数学家要发现和发明要兼而有之,才能发现数学世界的新大陆,今天希望我们每一位同学和张老师一起努力既能做知识的发现者,又能做知识的发明者。
【新授】
复习旧知,启动研究问题。【出示题组】
师:老师给大家带来一组除法算式,看看大家谁的反应最快?(课件)
28÷4= 2÷100= 6÷4= 0.7÷2= 9÷10= 师:两个数相除的商有可能是整数,也有可能是小数。
1÷6等与多少呢? 生①:0.1666„
师:1除以6除不尽,结果除了用循环小数,还可以用什么表示?
生②:
师:这是你的猜想,光猜想不行,我们还得验证,经天这节课我们就研究这个问题。【评析】通过一组口算,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷6得不到一个准确的小数时,又该如何表示?这一问题激发了学生探索的积极性,渗透了合情推理的思维方法。创设解决问题的情境,研究分数与除法的关系。
(1)师:这是一个圆形纸片,把
当作一张饼,如果要平均分给3个人,每人分多少张,该怎样列式?
生①:1÷3= 结果是多少张?(课件演示)
师:每人分得1张饼的,就是张(板书)1÷3=(张)
d)如果把3张饼平均分给4个人吃,每人吃多少张饼呢?怎样列式?
生①:3÷4 师:每个人手里都有3张
纸片,以小组为单位,亲自剪一剪,拼一拼,看看结果是多
少?(小组合作)
交流
生①:把每个人饼平均分成4份,每人吃一份,就吃了师:谁能给他们组的想法提几个问题?
a:你们是几张几张的分的?
张。
b:每人每次分得多少张饼?(张),c:分了几次,共分了多少张?(就是3个张就是张)
d:怎样才能看出是张?
师:谁是和他们分法一样的?还有更简单的分法吗?
生②:把3张饼摞起来分,每人分一块,就是
师:提出问题: a:现在是几张几张分的? b:每人分了这3张饼的几分之几?
张。
c:3张饼的就是多少张饼?
d:怎么看出是张?(还得一张一张的摆)
师(小结):【课件出示】
把3张饼一张一张的分,每人每次分得张张饼,分了3次,共分得3个张,就是张;
也可以把3张饼摞起来一块分,每个人都分得了3张的,就是张(板书)3÷4=(张)
【评析】两种分法都强调分得了多少张饼,让学生初步体会了分数的另一种含义,即表示具体的数
量。
借助学具,深化研究。
如果把2张
平均分给3个人,每人应该分得多少张?用学具分一分。
生①: 2÷3=2/3(张)借助想象,巩固研究方法。
刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5张饼平均分给8个人,每人分多
少张吗?
生①:略。(课件演示)
(5)刚才大家研究了分饼的问题,如果不借助学具你能计算7÷9的结果吗?(7/9)【评析】借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。
观察算式,概括分数与除法的关系。
师:大家观察这些算式,看看你能发现什么?
生①:分数的分子,相当于除法中的被除数,分母相当于除法中的除数。
师:被除数÷除数=
如果用a表示被除数,b表示除数,那么a÷b可以写成什么形式?
大家还需要补充什么?(b≠0)
师:刚才我们研究了分数与除法的联系,他们之间有区别吗?(小组讨论)
生:除法是一种运算,而是一种具体的数量。
小组内互相说一说联系与区别。
小结
通过刚才的研究,我们发现了分数与除法的关系,你能说说刚才的研究哪些是发现的,哪些又
是发明的?
生1:分数与除法的关系是我们发现的,但是分饼的方法是我们发明的。
生2:用字母表示它们之间的关系是我们发明的。
【评析】学生的精彩的回答说明学生已经沉浸在了本节课的探索之中,且有了自己学习数学的思考与心得,这正是我们每一位教师所期望的。
练习
出示上课伊始的口算题组
师:大家能用分数分别表示这些除法算式的结果吗?
教师解释0.7÷2=是可以的,这种分数形式平时并不常见,随着今后的学习,大家就能把它转化
成常见的分数。
【评析】本组练习使学生知道了不论被除数小于、大于或等与除数,都可以用分数形式表示商,这样不仅加深和扩展了对分数意义的理解,同时为讲假分数及分数的基本性质打下基础。
【总评】
本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。具体说本节课有以下几个特点:
一、直观演示是学生理解分数与除法的关系的前提。
由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是2/3张饼的理解。学生操作经验的积累有效地突破了本节课的难点。
二、培养学生提出问题的意识与能力是培养学生创新精神的关键。
爱因斯坦曾说:提出一个问题比解决一个问题更重要。学生提出问题的能力不是与生俱来的,需要教师精心、具体的指导。本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。比如学生展示完自己的分法后教师启
发学生提出问题: a:你们是几张几张的分的?
b:每人每次分得多少张饼?
c:分了几次,共分了多少张?(就是3个张就是
张)
d:怎样才能看出是
张?
问题的提出针对性强,有利于学生把握数学的本质。
三、用发展的思维去理解所学的知识,注重了知识的系统性。
数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对于0.7÷2=,部分学生会觉着的表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常
见的分数形式。