分数与除法教学设计

时间:2019-05-12 21:57:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《分数与除法教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《分数与除法教学设计》。

第一篇:分数与除法教学设计

《分数与除法》教学设计

海伦市伦河镇中心小学

陈庆云

师:大家好,我是陈老师,老师很高兴和大家合作,我希望通过这节课的交流我们能成为朋友。大家都发现了,今天有很多老师来观看我们的精彩表现。在这里老师请你们握紧拳头伸出自己的大拇指,大声的喊出来:“我是最棒的!”预备,1、2.师:首先请各个小组长检查一下同学们的预习情况。

师:老师看到了你们的自信,我也相信你们是最棒的。好上课。

师:今天老师给大家带来了你们喜欢看的动画片《喜羊羊与灰太狼之开心闯龙年》中的一个片段,请大家看一看他们在做什么? 生:在给美羊羊过生日。

师:对,大家正在高兴的为美羊羊庆祝生日,贪吃的懒羊羊却闻到了一股青草香味,它悄悄地溜了出来。看,它闻着香味来了,门轻轻地打开,“哇”青草蛋糕,1、2„8,整整8个呢!懒羊羊想如果这些蛋糕平均分给我们4个的话,每只小羊分的几个呢?谁来说一说怎样列式8÷4=2(个)说一说你的想法。

生:就是把8平均分成4份,每份是2.师:懒羊羊实在是受不了青草香味的诱惑,于是它偷偷的拿走了一个躲在了一棵小树后面,它正准备偷吃的时候,它的好朋友美羊羊找来了,懒羊羊看到了小寿星美羊羊不好意思的笑了,调皮的说道:“”美羊羊,咱俩一起吃吧!同学们,你们说他俩每人应分得几个蛋糕呢?1÷2=0.5(个)=1/2(个)机灵的喜羊羊这时早已躲在了树后,一听说要分蛋糕了急忙跑出来说:“那就让我来分吧”懒羊羊有些失落地说:“三只小羊怎么分啊?”同学们猜一猜这个问题能难住喜羊羊吗? 生:不能。

师:那你们能解决这个问题吗? 生:能。

师:谁来说一说每只小羊应分得多少个? 生:1÷3=1/3(个)

师:他回答的正确吗?(正确)谁来说一说这个算式表示什么意思? 生:就是把一个蛋糕平均分成三份,每份是1/3个。师:你说的真棒,让我们继续走进动画世界里,“大家都在这啊,那还能缺了我吗?”话音刚落,沸羊羊就从树上跳了下来。懒羊羊一看彻底崩溃了,本来想自己先美美的享受一番,现在全泡汤了。于是它生气的大叫道:“快点分吧!”同学们,现在平均每只小羊应该分得多少个呢?

生:1÷4=1/4(个)

师:那么如果是5只小羊呢?6只呢?„.师:现在请同学们认真观察这些算式,一个数除以另一个数,结果可能是整数、小数或者分数。在除法计算时,当得数不是整数时,一般我们用分数表示,今天这节课老师就带领大家一起来学习一下分数与除法的关系。小羊们看懒羊羊有些生气,喜羊羊和沸羊羊大笑起来。沸羊羊说道:“懒羊羊,你看这是什么?”懒羊羊抬头一看,原来喜羊羊和沸羊羊各自也拿来了一个蛋糕,同学们,现在是几个蛋糕了? 生:3个。

师:懒羊羊高兴坏了,但是转而它又犯愁起来,这应该怎么分啊?同学们,你们有办法吗?生:3÷4=3/4(个)师:你是怎么想的?

生:把3个蛋糕平均分给4只小羊就是把3平均分成4份,每份是3/4个。师:他说的对不对呢?现在就请你们拿出提前准备好的学具小组合作,交流一下昨天预习的时候你是怎么分的,小组认可后汇报给大家听。师巡视。

师:哪个小组把你们的分法给大家展示一下,点名演示,边演示边描述。哪个小组还有不同的分法,演示并口述。

师:刚才两个小组给我们展示了两种不同的分法。也就是说刚才这名同学的推理是正确的。师:请同学们完成书本上例2的填空,并指着例2的过程图说一说这3个蛋糕分的过程。师:好,请做好,大家说的都很好,那老师现在还有几个问题想问一下大家,现在厨房里还剩下几个蛋糕呢?(5个)如果把它们平均分给它们4只小羊,每只小羊应该分的几个呢? 生:5÷4=5/4(个)师:这时候慢羊羊村长和暖羊羊也来了,慢羊羊村长说:好东西是大家一起分享才更快乐呀!同学们,你们说是吗?(是)那3个蛋糕平均分给6只小羊,每只小羊分得几个呢? 生:3÷6=3/6(个)

师:将厨房的5个蛋糕平均分给6只小羊,每只小羊分得几个蛋糕呢? 生:5÷6=5/6(个)师:请同学们认真观察黑板上的这两组算式,你发现分数与除法有什么关系呢?请学生到板前指着数说。

生:被除数相当于分子,除数相当于分母,除号相当于分数线。

师:同意吗?大家想一想能不能说被除数是分子,除数是分母,除号是分数线。因为除法是一种运算方法,而分数是一个数。所以,在这里我们应该用“相当于”。谁还能来说一说。同学们看着这些算式再自己说一说分数与除法的关系。

师:通过刚才同学们的叙述,谁能把分数与除法的关系式写出来。点名板演。生:被除数÷除数=被除数/除数

师:在除法算式中,我们有什么要求。生:除数不能为0.(师板书除数≠0)师:对,你说的非常正确,那么除数为什么不能为0.生:因为除数是表示分的份数,如果是0就表示没有分,这个除法也就没有了意义。师:你说的太棒了,老师祝贺你的表现得到了大家的喝彩。

师:我们以前学习了一个关系式后,为了书写上的简便一般都用字母来表示,谁能用字母来表示分数与除法的关系。(点名板演)生:a÷b=a/b(b≠0)师:让我们一起来读一下分数与除法的关系。

请同学们想一想,b为什么不能等于0?也就是说除数和分母都不能是0。

师:现在请同学们看一下书本65和66页的内容,圈出重点,并说一说你还有什么不明白或者想提出的问题。

生:分数与除法有什么区别呢?

师:你的问题太棒了,谁知道呢?除法是一种算法,而分数是一个数。

师:现在请你们利用自己学到的知识在书上完成66页第1题。汇报答案。做对的请举手。请同学们仿照这3个类型题自己编几道这样的练习题,一分钟后请同桌互相检查一下并选一道题说一说分数与除法的关系。

师:好了,同学们请做好,我发现同学们已经很好的掌握了分数与除法的关系,那现在老师就考考大家,看看你们是否能够解决实际生活中的问题。(出示例3)生读题。点名列式解答。

师:说一说你的理由。

师:你们的表现真的是太精彩了,老师为你们感到骄傲。其他同学想不想把这个舞台变成你自己的舞台呢? 生:想。

师:好,请看这道题。(课件播放)

生快速的写出答案汇报结果,全班评价。

师:好,同学们,通过本节课的学习,你掌握了哪些知识? 生总结

谢谢大家的合作,下课。

第二篇:分数与除法教学设计

《分数与除法》教案设计

一、教学目标:

1、知识目标:理解分数与除法的关系,会用分数表示除法的商,会用两种方法叙述分数的意义。

2、技能目标:通过观察、思考和动手操作,培养学生合作探索和实践能力。增强学生的抽象思维。

3、情感目标:体会知识来源于实际生活的需要,激发学习数学的积极情感。

二、教学重、难点:

重点:理解和掌握分数与除法的关系。难点:理解一个分数所表示的两种意义。

三、学情分析:

学习本课前,学生已经理解了分数的意义和除法的意义,具有了一定的操作能力和小组合作能力,知道了除数不能为0。在此基础上学习《分数与除法》就显得比较轻松。而且,兴趣是学习的推动力,是获取知识的开端,是求知欲的基础。学生的学习动力往往被学习兴趣所左右,因此在教学的重要环节以激发学生兴趣为出发点,在学习素材的选取和学习活动的安排上,更突出从学生的生活实际出发,使学生感受到数学就在自己身边,学习数学是为自己所用,是必要的,从而调动学习数学、探讨数学知识的欲望。教学过程:

(一)创设情景,导入新知。

1、师:同学们,老师想知道我们班有哪位同学准备要过生日呢? 今天我们就一边学数学,一边跟**同学庆祝生日好吗?

师:同学们,请看老师带来了什么?(课件出示8个蛋糕)

2、师:如果要把这8个蛋糕平均分给小组里的4个人,每人可以 分得多少个? 师指名同学回答。生:2个,8÷4=2(个)(二)动手操作,探究新知。

1、教学例1。

(1)师:同学们真棒,现在将8个小蛋糕变成1个大蛋糕,把这个大蛋糕平均分给他们4个人,每人又可以分得多少个呢? 生:1÷4=1/4(个)(板书)

师:为什么这样列式?你是怎样想的?

生:把1个蛋糕平均分给4个人吃,就是把1个蛋糕平均分成4份,每人吃其中的1份,这1份占这1个蛋糕的 1/4,也就是 1/4个蛋糕。

师:他的说法是否正确呢?现在请每个同学用手上的圆折一折,分一分,看看平均分给四个人每人得到的是不是1/4个?(2)学生操作,教师巡视。(巡视时找一位同学汇报)(3)出示例1: 师:大家都说得很好,现在看谁学得最棒,老师把1个蛋糕平均分给3个人,每人可以分得多少个?平均分给6个人呢?(师提问时

指着板书说)

生回答,师同时板书。(4)引出课题: 师:两个数相除,商也可以用分数来表示,究竟怎样准确地用分数

表示呢?这节课我们就来探究分数与除法。(板书课题)

2、教学例2。(1)把例1变例2。

师:八月中秋之夜,皓月当空,银光洒遍大地。有四个小朋友他们是邻居,正坐在一起一边欣赏明月一边品尝月饼。可是他们遇到了一个麻烦,我们一起去看一下吧。原来呀他们想将将3块月饼平均分给4个人,可是不知道每人分得多少个,你们能帮助他们吗?说一说要怎样列式呢?结果是多少? 生:3÷4 师:你能猜想一下它的结果吗?

生:3÷4= 3/4(个)(板书: 3/4(个)?)(?号用红色粉笔板书)

师:大家的猜想都是这样吗?

(2)师:他的猜想对不对呢?请同学们亲自动手操作验证一下,听清老师的要求:四人小组利用桌面上的学具合作来分一分,剪一

剪,并讨论这两个问题。(课件出示)

1、每人可以分得多少个蛋糕?

2、你是怎样分的?

(3)学生动手剪拼,先独立思考,后四人小组讨论,教师巡视。(教师可用激励语言:这个小组合作得很好)(4)学生汇报,集体探究。

生1:一个一个分,把每个蛋糕平均分成4份,每1份就是1个蛋糕的 1/4,每人可分得3个1/4 个蛋糕,就是3/4 个蛋糕。师:这个小组1个1个地分。其它小组有不同的分法吗? 生2:把3个蛋糕摞在一起分,平均分成4份,每人分得其中的1份,这1份占这三个蛋糕的 1/4,相当于一个蛋糕的3/4,就是3/4 个蛋糕。

师:这个小组很聪明,三个一起分。

生3:先把2个蛋糕摞在一起,平均分成2份,得4个 1/2个蛋糕,再把1个蛋糕平均分成4份,然后把 1/2个和 1/4个蛋糕拼在一起,就是就是3/4 个蛋糕。

生4:1个蛋糕平均分给4个人,每人分得 1/4个蛋糕,3个蛋糕平均分给4个人,每人分得3个 1/4个蛋糕,就是 3/4个蛋糕。(5)课件演示分饼过程:

师:刚才四个小组为我们展示了两种不同的分法,我们一起来看看,第一种方法:一个一个地分,把每个蛋糕平均分成4份,每1份就是1个蛋糕的 1/4,每人可分得3个 1/4个蛋糕,就是 3/4个蛋糕;第2种方法:把3个蛋糕摞在一起,平均分成4份,每人分得其中的1份,每份占这三个蛋糕的 1/4,相当于一个蛋糕的 3/4,就是 3/4个蛋糕。

师:其实3个蛋糕的1/4,就是 3/4个蛋糕,而1个蛋糕的 3/4也是 3/4个蛋糕。(师指着投影说)

(6)师:通过我们的合作,证明这个同学的猜想是对的。3÷4= 3/4(个),(7)补充练习:

师:同学们说得很好,老师出2道题考考大家,把3个蛋糕平均分给5个人,每人分得多少个? 学生口答:3÷5= 3/5(个)。

师:如果把2个蛋糕平均分给3个人,每人又分得多少个呢? 学生口答:2÷3= 2/3(个)。

(分别请2名学生回答,师同时板书))

3、观察,发现分数与除法间的关系。

(1)师:请同学们观察这三组算式,你发现分数与除法有什么关系?请独立观察思考后与同桌交流。(2)生汇报。

生1:我发现被除数相当于分子,除数相当于分母,除号相当于分数线。

师:我们能不能反过来说,分数的分子相当于什么?

生2:分数的分子相当于被除数,分数的分母相当于除数,分数线相当于除号。

(3)师小结:所以,被除数 ÷ 除数=被除数/除数

(4)师:如果用字母a表示被除数,b表示除数,谁可以用字母来表示这种关系。生:a ÷b=a/b 师:b可以是0吗?

生:不可以,因为除数不能为0,所在b不能为0。(三)扎实训练,活用新知。

师:同学们,今天**同学过生日你们想送她一些礼物吗?可是你们并没有准备对不对,不过没关系老师帮你们准备了礼物。但是,只有你们闯关成功了才可以得到礼物,你们敢挑战吗? 生齐说:敢。

(1)师:好,下面就让我们一起走进智力大闯关。请看第一关。

把下面的除法算式的商用分数来表示。

3÷2= 2÷9= 5÷12= 31÷5= m ÷ n=(2)师:同学们可真棒第一关就这样轻松的闯过来了,我们来看

一下

是什么礼物?(文具盒)下面走进第二关。把下面的分数用除法来表示;4/3 = 5/4= 4/2= 1/3= 13/22=(3)师:经过我们的努力又闯过了一关,获得了一支精美的钢笔。同学

们你们还想闯第三关吗? 判断对错:

1、把3米长的电线平均剪成8段,每段长1/8米。()2、7÷5=5/7()

3、把一个4平方米的圆形花坛分成5块,每块是4/5平方米。()4、10/13=13÷10()

(4)师:看看这一次又是什么礼物?(一副羽毛球拍)**同学你的礼物这么多了你还想要吗?(想)同学们还敢闯吗?(敢)好,我们来看看第四关。教材p67练习十二第一题。请同学们在练习本上独立完成。学生回答,教师订正

(5)师:我们又获得了一个崭新的书包,同学们,我们做什么事都不能半途而废,只剩下最后一关了我们一定要闯,是不是呀?好,我们一起来看一看。

小明说:“我把3米长的绳子平均分成5段,取其中的1段。”

小红说:“我把1米长的绳子平均分成5段,取其中的3段。” 请问,谁取得绳子长?

生互相讨论然后汇报,教师课件演示讲解。

(6)教师总结:同学们,你们可真棒通过自己的不懈努力为**同学获得了这么多的生日礼物,老师真为你们高兴。(四)课堂小结

同学们,通过这节课的学习你感觉怎么样?你有什么收获?你想对老师同学们说些什么?

板书设计:

分数与除法

被除数÷除数=被除数/除数 a÷b=a/b(b=0)1÷4=1/4(个)3÷4=3/4(个)1÷3=1/3(个)3÷5=3/5(个)1÷6=1/6(个)2÷3=2/3(个)

第三篇:“分数与除法”教学设计与评析

“分数与除法”教学设计

教学内容:

小学义务教育课程标准实验教科书《数学》五年级下册第65~66页内容。练习十二第1---3题。教学目标:

1、使学生理解并掌握分数与除法的关系,学会用分数表示两个数相除的商。

2、通过动手操作,使学生理解3的1/4就是1的3/4。培养学生的分析、推理能力。

3、进一步深化分数的意义,渗透转化的数学思想方法。教学重、难点:

理解3张饼的1/4就是1张饼的3/4(既分数意义的深化)。教学准备:圆形纸片

教学方法:合作探究、操作法。教学过程:

一、启动研究问题。(出示题组)

师:老师给大家带来一组除法算式,比比谁的反应最快?

28÷4=

1÷2 =

6÷4=

0.7÷2=

9÷10= 师:两个数相除的商有可能是整数,也有可能是小数。那么 1÷6等于多少呢?(生回答:0.16666…、约等于0.17)

师:1除以6除不尽,结果除了用循环小数,你知道还可以用什么表示?生讨论交流。(可以用1/6表示)

师:这是你们的猜想,是不是所有的除法都可以用分数来表示呢?只是猜想还不行,我们还得验证,今天这节课我们就研究这个问题。

揭示课题:

分数与除法

二、动手操作、探究新知

1、创设解决问题的情境,研究分数与除法的关系。

(1)师:这是一个圆形纸片,把当作一张饼,如果要平均分给3个人,每人分多少张?该怎样列式?

生:1÷3=

师:每个人可以得到多少张呢?(强调是谁的1/3)

生:每人分得1张饼的1/3,就是1/3张(板书)1÷3=1/3(张)

(2)师:如果把3张饼平均分给4个人吃,每人吃多少张饼呢?怎样列式? 生 :3÷4

(学生可能会得出3/4)

师:我们现在就动手来验证,看是否是这样的。你们每个小组手里都有3张纸片,以小组为单位,亲自剪一剪,拼一拼,看看结果是多少?(小组合作探究)

思考:a:你们是几张几张的分的?

b:每人每次分得几张饼的几分之几?

c:分了几次,共分了多少张?

d:怎样才能看出是3/4张?(强调:还得一张一张的摆)

生交流,生1:(一张一张的分)把一张饼平均分成4份,每人吃一份,就吃了一张饼的1/4张,连续分了3次,一张一张的摆开拼起来就是3/4张。

师:谁是和他们分法一样的?还有其它的分法吗?

生2:(把三张饼重合在一起分的)把3张饼摞起来平均分成4份,分了一次,每人分得3张饼的1/4,一张一张的摆开拼起来就是3/4张。(3)师引导学生完整叙述自己的分饼的方法:

A:把3张饼一张一张的平均分,每人每次分得1张饼的1/4张饼,分了3次,共分得3个1/4张,就是3/4张。

B:也可以把3张饼摞起来当着一块平均分,只分一次,每个人都分得了

3张饼的1/4,也是3/4张。

2、借助想象,深化研究。

(1)刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5张饼平均分给8个人,每人分得多少张吗?

(2)反馈:刚才大家研究了分饼的问题,你能用分数表示刚才开始时的计算题的结果吗?

28÷4=

1÷2 =

6÷4 =

0.7÷2 =

9÷10 = 【注】教师解释:0.7÷2=0.7/2是可以的,这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。

3、观察算式,概括分数与除法的关系。师:大家观察这些算式,看看你能发现什么?

28÷4 = 4/28

1÷2 =1/2

6÷4 = 4/6

9÷10 = 9/10(组织学生讨论、交流)

生:分数的分子,相当于除法中的被除数,分母相当于除法中的除数,除号相当与分数线。

师:所以被除数÷除数 = 被除数/除数

如果用a表示被除数,b表示除数,那么a÷b可以写成什么形式?

a÷b = a/b 师:同学们对于这个等式有什么补充吗?(b≠0,既分数的分母不能为0)讨论:为什么b≠0不能为0?

4、师:我们研究了分数与除法的联系,他们之间有区别吗?(小组讨论)得出:除法是一种运算,而分数是一种具体的数量。

5、小组内互相说一说分数与除法的联系与区别。

三、应用知识、课堂练习:

1、在下面的()里填上适当的数。

7÷13 =()/()

5/8 =()÷()10÷()= 10/9

()÷7 = 4/7

2、判断:(1)分数的分母可以为任何自然数。

(2)21÷32 = 32/21

(3)8千克的1/9等于1千克的8/9。

(4)把4个西瓜平均分成6份,1份是1/6个。

3、填空。

8cm=()/()65dm=()/()

36平方厘米=()/()

258ml=()/()250立方分米=(通过今天的学习,你有什么收获?

/()

互助小学 陈 波

2007年4月12日

四、课堂总结:)

第四篇:分数与除法教学设计

分数与除法教学设计 教学内容

义务教育教科书(北师大版)五年级上册69—70页 教学目标

1.结合具体情境观察比较,理解分数与除法的关系,会用分数来表 示两数相除的商。

2.运用分数与除法的关系,探索假分数与带分数的互化方法,初步 理解假分数与带分数互化的算理,会正确进行互化。

3、培养观察、比较、抽象和概括的能力。教学重点

1、理解并掌握除法和分数的关系。

2、会对假分数与带分数进行正确互化。教学难点

利用除法和分数的关系进行带分数和假分数的互化。教学准备

多媒体课件 教学过程

(一)创设情景,导入新知:今天,是我们班xx同学的生日,她的好朋友们为她准备了生日蛋糕。她把生日蛋糕带来和大家一起分享,该如何分呢?(出示课件)

1、把1块蛋糕平均分给2个小朋友,每人可以分到几块蛋糕?

师:大家想一想要是你分你会怎么分啊得到的结果是什么?

生1:1/2块。生2:1÷2

生3:把它一切为二,得一半。

师:大家看,这里的1/2和1÷2之间有什么关系吗?

生1:他们的两个数字都相同。

生2:分数的分子和除法的被除数相同。

生3:分数的分母和除法的除数也相同。

师:非常好!这个关系就是我们今天要学习的内容。

(二)探究新课

(出示课件):如果把7块蛋糕分给3个小朋友,每人分得几块?(学生用手中圆片代替动手分一分小组内互相说说分的过程)

生1:7/3块

生2:7÷3

师:同学们都很聪明,你们来说一说他们的关系吧。生1:这里分数的分子是除法的被除数,分数的分母是

除法的除数。

师:你们还有发现吗?

生2:我觉得分数线和除号应该是相同的。

师:这个同学真仔细!

2、归纳总结

(出示课件)

分数的分子 相当于 除法中的()

分数的分数线相当于 除法中的()

分数的分母 相当于 除法中的()

师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?

生1:a÷b=a/b

生2:老师,我认为还要写上b≠0。

师:为什么b≠0?

生:因为b表示除数,除数不能为0。

生:分数的分母也不能等于0。

师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢? 学生观察算式,思考举例。

小结(课件出示):两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子.反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。

师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?

小组讨论:

学生汇报:

教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。

(三)学生练习,引出假分数与带分数的互化。

1、(出示课件)在括号里填上合适的数。

3÷ 5=()/()8÷7=()/()5/6=()÷()12/7=()÷()

2、小组交流讨论归纳互化的方法。(学生组内用手中学具演示,老师做必要的指导)

学生汇报:假分数化成带分数:分子除以分母,余数做新的分子,商做整数部分,分母不变。带分数化成假分数:整数部分乘以分母加分子。

(四)实践体验,巩固知识

(练习题略)

(五)总结:同学们,今天我们都学了哪些知识啊?在以后的生活中,你会运用这些知识了吗?

板书设计:

分数与除法

1/2 1÷2 假分数 → 带分数

7/3 3÷7 带分数 → 假分数

被除数/除数=被除数÷除数

第五篇:分数与除法教学设计与评析

“分数与除法”教学设计与评析

教学内容:《义务教育课程标准实验教科书 数学五年级下册》第65~66页。

教学目标:

1.使学生理解并掌握分数与除法的关系,学会用分数表示两个数相除的商。2.通过动手操作,使学生理解3的就是1的。培养学生的分析、推理能力。

教学重难点:3张饼的是多少张 教学准备:圆形纸片、多媒体课件

课前谈话

师:上课前我们先来交流一下对几个问题的看法:(发明与发现)① 发明和发现是一回事吗?大家谈一谈什么叫发明,什么叫发现?

生①:发明是原来没有,经过想像创造出来,发现原来就有,后人逐步得到了。大家天天学习的数

学知识是发明的?还是发现的?

生①:发明的,阿拉伯数字,就是印度人发明的。生②:运算定律是发现的,比如说加法的交换律。生③:数学知识既有发明的又有发现的„„

师:大家的分析很有见地,其实就像大家所说的,数学知识既有发现,又有发明,发现靠经验,发明靠聪明,积极地思维,一个好的数学家要发现和发明要兼而有之,才能发现数学世界的新大陆,今天希望我们每一位同学和张老师一起努力既能做知识的发现者,又能做知识的发明者。

【新授】

复习旧知,启动研究问题。【出示题组】

师:老师给大家带来一组除法算式,看看大家谁的反应最快?(课件)

28÷4= 2÷100= 6÷4= 0.7÷2= 9÷10= 师:两个数相除的商有可能是整数,也有可能是小数。

1÷6等与多少呢? 生①:0.1666„

师:1除以6除不尽,结果除了用循环小数,还可以用什么表示?

生②:

师:这是你的猜想,光猜想不行,我们还得验证,经天这节课我们就研究这个问题。【评析】通过一组口算,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷6得不到一个准确的小数时,又该如何表示?这一问题激发了学生探索的积极性,渗透了合情推理的思维方法。创设解决问题的情境,研究分数与除法的关系。

(1)师:这是一个圆形纸片,把

当作一张饼,如果要平均分给3个人,每人分多少张,该怎样列式?

生①:1÷3= 结果是多少张?(课件演示)

师:每人分得1张饼的,就是张(板书)1÷3=(张)

d)如果把3张饼平均分给4个人吃,每人吃多少张饼呢?怎样列式?

生①:3÷4 师:每个人手里都有3张

纸片,以小组为单位,亲自剪一剪,拼一拼,看看结果是多

少?(小组合作)

交流

生①:把每个人饼平均分成4份,每人吃一份,就吃了师:谁能给他们组的想法提几个问题?

a:你们是几张几张的分的?

张。

b:每人每次分得多少张饼?(张),c:分了几次,共分了多少张?(就是3个张就是张)

d:怎样才能看出是张?

师:谁是和他们分法一样的?还有更简单的分法吗?

生②:把3张饼摞起来分,每人分一块,就是

师:提出问题: a:现在是几张几张分的? b:每人分了这3张饼的几分之几?

张。

c:3张饼的就是多少张饼?

d:怎么看出是张?(还得一张一张的摆)

师(小结):【课件出示】

把3张饼一张一张的分,每人每次分得张张饼,分了3次,共分得3个张,就是张;

也可以把3张饼摞起来一块分,每个人都分得了3张的,就是张(板书)3÷4=(张)

【评析】两种分法都强调分得了多少张饼,让学生初步体会了分数的另一种含义,即表示具体的数

量。

借助学具,深化研究。

如果把2张

平均分给3个人,每人应该分得多少张?用学具分一分。

生①: 2÷3=2/3(张)借助想象,巩固研究方法。

刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5张饼平均分给8个人,每人分多

少张吗?

生①:略。(课件演示)

(5)刚才大家研究了分饼的问题,如果不借助学具你能计算7÷9的结果吗?(7/9)【评析】借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。

观察算式,概括分数与除法的关系。

师:大家观察这些算式,看看你能发现什么?

生①:分数的分子,相当于除法中的被除数,分母相当于除法中的除数。

师:被除数÷除数=

如果用a表示被除数,b表示除数,那么a÷b可以写成什么形式?

大家还需要补充什么?(b≠0)

师:刚才我们研究了分数与除法的联系,他们之间有区别吗?(小组讨论)

生:除法是一种运算,而是一种具体的数量。

小组内互相说一说联系与区别。

小结

通过刚才的研究,我们发现了分数与除法的关系,你能说说刚才的研究哪些是发现的,哪些又

是发明的?

生1:分数与除法的关系是我们发现的,但是分饼的方法是我们发明的。

生2:用字母表示它们之间的关系是我们发明的。

【评析】学生的精彩的回答说明学生已经沉浸在了本节课的探索之中,且有了自己学习数学的思考与心得,这正是我们每一位教师所期望的。

练习

出示上课伊始的口算题组

师:大家能用分数分别表示这些除法算式的结果吗?

教师解释0.7÷2=是可以的,这种分数形式平时并不常见,随着今后的学习,大家就能把它转化

成常见的分数。

【评析】本组练习使学生知道了不论被除数小于、大于或等与除数,都可以用分数形式表示商,这样不仅加深和扩展了对分数意义的理解,同时为讲假分数及分数的基本性质打下基础。

【总评】

本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。具体说本节课有以下几个特点:

一、直观演示是学生理解分数与除法的关系的前提。

由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是2/3张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

二、培养学生提出问题的意识与能力是培养学生创新精神的关键。

爱因斯坦曾说:提出一个问题比解决一个问题更重要。学生提出问题的能力不是与生俱来的,需要教师精心、具体的指导。本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。比如学生展示完自己的分法后教师启

发学生提出问题: a:你们是几张几张的分的?

b:每人每次分得多少张饼?

c:分了几次,共分了多少张?(就是3个张就是

张)

d:怎样才能看出是

张?

问题的提出针对性强,有利于学生把握数学的本质。

三、用发展的思维去理解所学的知识,注重了知识的系统性。

数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对于0.7÷2=,部分学生会觉着的表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常

见的分数形式。

下载分数与除法教学设计word格式文档
下载分数与除法教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《分数与除法》教学设计

    《分数与除法》教学设计 教学内容:《义务教育课程标准实验教科书 数学五年级下册》第65~66页。 教学目标: 1.使学生理解并掌握分数与除法的关系,学会用分数表示两个数相除的商。......

    分数与除法教学设计

    分数与除法教学设计 三河市北燕村小学 崔华欣 教学目标: 1.使学生理解两个整数相除的商可以用分数来表示。 2.使学生掌握分数与除法的关系。 3.培养学生的应用意识。 教学重......

    分数与除法教学设计

    《分数与除法》教学设计 教者:尚剑峰 教学目标: 1、理解分数与除法的关系。 2、会用分数表示除法的商。 3、会用分数与除法的关系解决实际问题。 教学重点: 理解、归纳分数与除......

    分数与除法教学设计

    《分数与除法》教学设计 教学内容:分数与除法(五年级数学65、66页) 知识目标: 1.使学生理解两个整数相除的商可以用分数来表示。 2.使学生掌握分数与除法的关系。 能力目标: 运用......

    分数与除法教学设计

    分数与除法教学设计 【授课时间】:2013.4.17 【教学内容】:人教版小学数学五下p65—66 【教学目标】: 1.理解分数与除法的关系,会用分数表示除法的商,会用两种方法叙述分数的意义......

    《分数与除法》教学设计

    《 分数与除法的关系》教学设计 蔡庄小学五年级贾红娜 教学目标 1 .使学生理解两个整数相除的商可以用分数来表示。 2 .使学生掌握分数与除法的关系。 教学重点难点 1 .理解......

    《分数与除法》教学设计

    《分数与除法》 一、课程标准要求 1、知识目标:是理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。 2、能力目标:培养学生动手操作的能力,合作交流的能力,发展......

    《分数与除法》教学设计

    《分数与除法》教学设计 前锋小学部 数学教师 任长雪 教学内容:《义务教育课程标准实验教科书 数学五年级下册》第65~66页。 教学目标: 1.在具体的问题情境中,探索并理解分数与......