2015年小学数学人教版四年下册51《三角形的内角和》名师教学设计片段

时间:2019-05-12 22:20:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2015年小学数学人教版四年下册51《三角形的内角和》名师教学设计片段》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2015年小学数学人教版四年下册51《三角形的内角和》名师教学设计片段》。

第一篇:2015年小学数学人教版四年下册51《三角形的内角和》名师教学设计片段

名师教学设计片段

动手操作,探究三角形的内角和(教学重点)

(一)研究特殊三角形的内角和。

师:请看屏幕。大家熟悉这副三角板吗?请拿出形状与这块一样的三角板,同桌互相说一说这块三角板中各个角的度数。(课件展示其中一块三角板)

生:90°、60°、30°。

(课件展示:由三角板抽象出三角形)师:这个三角形三个内角的度数和是多少? 生:180°。

师:你是怎样知道的?

生:90°+60°+30°=180°。

师:对,把三角形三个内角的度数合起来就叫三角形的内角和。师:(课件展示另一块三角板各角的度数)这块呢?它的内角和又是多少度呢?

生:90°+45°+45°=180°。

师:从刚才两个三角形内角和的计算中你发现了什么? 生1:这两个三角形的内角和都是180°。

生2:这两个三角形都是直角三角形,并且都是特殊的三角形。

(二)研究一般三角形的内角和。1.猜一猜。

师:猜一猜其他三角形的内角和是多少度,同桌互相说一说自己的看法。生1:180°。生2:不一定。……

2.操作、验证一般三角形的内角和是180°。(1)小组合作,进行探究。

师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明呢? 生:可以先量出每个内角的度数,再加起来。

师:也就是测量计算,那就请四个小组共同研究一下吧!

师:每个小组都有不同类型的三角形,每种类型的三角形都需要验证,讨论怎样才能很快地完成这个任务。

(2)小组汇报结果。师:请各小组汇报探究结果。生1:180°。生2:175°。生3:182°。……

(三)继续探究。1.用拼合的方法验证。

师:没有得到统一的结果。这个方法不能使人信服,还有其他的方法吗? 生:有,用拼合的方法,就是把三角形的三个内角放在一起,看一看拼在一起后是一个什么角。

师:很好,请用不同的三角形来验证。(小组内完成,先分工,再快速地完成任务)

2.汇报验证结果。师:你们得出什么结论? 生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

生2:直角三角形的内角和也是180°。生3:钝角三角形的内角和还是180°。……

赏析:教师在教学三角形的内角和时,首先由特殊的两个直角三角形计算出内角和是180°,引发学生猜想:是不是任意一个三角形的内角和都是180°呢?在教师的引领下,学生对一般的三角形采取测量、剪拼的方法进行验证,得出任意一个三角形的内角和都是180°。学生充分体验了感知、猜想、验证、归纳的思考过程,亲身感受了转化思想的魅力。

第二篇:三角形内角和片段教学教学设计

三角形内角和片段教学的教学设计

一、教材分析:

教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材表格里。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。

三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角剪下来,再拼在一起,组成一个平角,因此三角形内角和是180度。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。

二、学情分析:

学生在本课学习前已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此较容易出现解决问题的策略多样化。

三、教学目标:

1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。

2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。

3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。

四、教学重难点

教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程

教学难点:运用三角形的内角和解决实际问题。

五、教具、学具准备:

课件、一副三角尺、几个三角形。学生准备一副三角尺。

六、教学过程:

(二)创设疑问,交流发现

师:呦,瞧,有两个三角形在争论呢。(播放课件)它们在争论什么呀? 生:它们在争论谁的内角和大。

师:哦,原来如此。那么,你们知道什么是三角形的内角? 三角形的内角和又是指什么吗?

(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)师:这个同学说得真好,(课件闪烁三个角的弧线),我们把三角形里面的这三个角,就叫做三角形的内角。而这三个角的度数和,我们就称为三角形的内角和。师:理解了三角形的内角和,那请你们给评评理:这两个一大一小的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)

生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)

生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)

生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。

师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来探讨这个问题。(板书课题:三角形的内角和)

(三)验证猜想,解决问题

师拿出两个三角尺,问:它们是什么三角形? 生:直角三角形。

师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)

师:你们算出来,这两个三角尺的内角和是多少度啊? 生齐:180°。

师:那„„其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)

生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°

师:看来呀,大家都有不同的看法。我们学过角的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,画一画这三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?

生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。

师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。

师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。

师:谁愿意第一个向大家介绍你们组的验证方法?

组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。

师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

师:现在请同学们看大屏幕,林老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊? 生齐:能!

师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?

组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)

(展示:3个角折成了一个平角。)

师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?

组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的内角和是多少度? 生:180 °

师:(出示一个很小的三角形)它呢? 生:180 °

师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?

(生有的答360°,有的180 °。)

师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?

师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)

生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)

生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。

师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)

师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度? 生齐:180°。

师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°

我的片段教学到此结束,接下来的环节是“应用实践,巩固深化”和“全课总结,点题呼应”,在此我就不再继续。谢谢!

第三篇:小学数学《三角形内角和》教学设计

青岛版小学数学《三角形内角和》教学设计

《三角形内角和》教学设计 教学内容:P84(四上)。学习目标:

1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

2.知道三角形两个角的度数,能求出第三个角的度数。3.发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。

4.能应用三角形内角和的性质解决一些简单的问题。

教具、学具准备:

课件、学生准备直角三角形、锐角三角形和钝角三角形各一个,并分别测量出每个内角的角度,标在图中 ;一副三角板。

教具、学具准备:课件、学生准备直角三角形、锐角三角形和钝角三角形各一个、一副三角板、磁铁若干。

教学过程:

一、谈话导入

猜谜语:形状似座山,稳定性能坚

三竿首尾连,学问不简单

(打一几何图形)师:最近我们一直在研究关于三角形的知识,谁能给大家介绍一下?(学生讲学过的三角形知识。)

师:就这么简单的一个三角形我们就得出了那么多的知识,你们

说数学知识神气不神奇?

今天我们还要继续研究三角形的新知识。

二、创设情境,引出课题,以疑激思

师:什么是三角形的内角? 三角形有几个内角? 生:就是三角形内的三个角。每个三角形都有三个内角。师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。

师:有两个三角形为了一件事正在争论,我们来帮帮他们。(播放课件)

师:同学们,请你们给评评理:是这样吗? 生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。

生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。

生3:当然是大三角形的内角和大了。

生4:我同意第二个同学的意见,两个三角形的内角和一样大。师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。(板书课题:

三角形的内角和)

三、动手操作,探究问题,以动启思

1、师拿出两个三角板,问:它们是什么三角形? 生:直角三角形。

师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。

(学生们能够很快求出每块三角尺的3个角的和都是180°)师:其他三角形的内角和也是180°吗? 生A:其他三角形的内角和也是180° 生B:其他三角形的内角和不是180° 生C:不一定

2、小组合作探究:

师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考想一想,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。

(1)、小组合作,讨论验证方法(2)汇报验证方法、结果

师:谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎

样?

方法一:

生A:我们小组是用剪拼的方法,将三角形的三个角撕下来,拼成一个平角,得到三角形的内角和是180度。

师:上来展示给大家瞧一瞧。你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。(学生操作)

生:不管什么三角形三个角都能拼成一个平角。

师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?真会动脑筋,不用工具也行,那我们把掌声送给刚才这个小组。

方法二:

生B:我们小组是用折的方法,同样得到三角形的内角和是180度。

师:请这位同学折来给大家看看。

生:3个角折成了一个平角。

师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况)

师:说得真清楚。

方法三:

学生C:测量角的度数,再加起来。(填表)

师:这位同学测量的是锐角(钝角)三角形,下面就请同学们另选一个三角形求出它的内角和。(汇报:填写结果)

问:你们发现了什么?

小结:通过测量我们发现每个三角形的三个内角和都在180度左右。

师:三角形的内角和就是180度,只是因为我们在测量时会出现一些误差,所以测量出的结果不是很准确。

3、小结:

师:刚才同学们用量、拼、折等方法证明了无论是什么样的三角形内角和都是1800,(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。

(出示大小不等的三角形判断内角和,判断前面两个三角形的对话,得出大三角形的说法是不对的。)

四、自主练习,解决问题:

师:学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

1、第一关:下面每组中哪三个角能围成一个三角形?(1)70。

60。

30。

90。

(2)42。

54。

58。

80。

2、第二关:庐山真面目:求三角形中一个未知角的度数。

3、第三关:解决生活实际问题。

(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

(2)交通警示牌“让”为等边三角形,求其中一个角的度数。

4、第四关:变变变(拓展练习)

利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)

师:小组的同学讨论一下,看谁能找到最佳方法。学生汇报,在图中画上虚线,教师课件演示。

五、课堂总结

帕斯卡法是国着名的数学家、物理学家、哲学家、科学家,他12岁发现“任何三角形的三个内角和是1800!

帕斯卡小的时候身体不太强壮,而父亲又认为数学对小孩子有害

且很伤脑筋,所以不敢让他接触到数学。在十二岁的时候,偶然看到父亲在读几何书。他好奇的问几何学是什么?父亲为了不想让他知道太多,只讲几何学的用处就是教人画图时能作出正确又美观的图。父亲很小心的把自己的数学书都收藏好,怕被帕斯卡擅自翻动。可是却引起了巴斯卡的兴趣,他根据父亲讲的一些简单的几何知识,自己独立研究起来。当他把发现:“任何三角形的三个内角和是一百八十度”的结果告诉他父亲时,父亲是惊喜交集,竟然哭了起来。父亲于是搬出了欧几里得的“几何原理”给巴斯卡看。巴斯卡才开始接触到数学书籍。

帕斯卡12岁发现此结论,我们同学10岁就发现了。所以只要善于用眼睛观察,动脑思考,相信未来的数学家、物理学家、科学家就在你们中间!

第四篇:三角形的内角和》教学设计(冀教

《三角形的内角和》教学设计(冀教版四年级下册)教学内容:冀教版《义务教育课程标准实验教科书数学》四年级(下册)教材分析:

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

学生分析:

学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。

教学目标:

1.使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°能运用这一规律解决一些简单的问题。

2.使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提动手操作能力和数学思考能力。

3.使学生在参与数学学习活动的过程中,获得成功的体验,感受探索数学规律的乐趣,产生喜欢数学的积极情感,培养积极与他人合作的意识。

教学重难点:

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备:

多媒体课件、三角形、剪刀、三角板、量角器等。

教学流程:

一、游戏激趣,设置悬念

1、猜角游戏:学生任意报出两个角的度数,教师快速猜出第三个角的度数。

2、你们想知道游戏的秘密吗?这节课我们共同研究三角形的内角和,板书课题。

【设计意图:以学生感兴趣的游戏,来激发学生的学习兴趣,巧设悬念使学生以良好的状态进入新课的学习。】

二、探究新知,猜想验证

1.猜想。请同学猜一猜三角形的内角和是多少度?

2.验证。怎样验证“三角形的内角和等于180°”呢?请同学们先在小组里讨论讨论,可以怎样进行验证?再选择合适的材料,以小组为单位进行验证。比一比,哪个组验证的方法多,有创意。学生分小组活动,教师参与学生的活动,并给予必要的指导。

3、汇报

哪个小组先来汇报,你们是怎样验证的?

4、归纳。

通过刚才的活动,我们得出了什么结论?

板书:三角形的内角和等于180°。

小结:“猜想—验证”是一种很有效的科学研究方法。有很多重大的科学发现,就是通过这一方法得到的。

5.进一步感受三角形内角和与三角形大小的关系

教师出示一个直角三角形,问学生内角和是多少度?再出示一个直角三角形,问学生它的内角和是多少度?把这个完全一样的两个直角三角形拼在一起,大三角形的内角和是多少度?你有什么发现吗?

【设计意图:引发学生讨论争辩,让学生自己去发现问题,自己去解决问题。进一步感受三角形的内角和与三角形的大小没有关系。】

6、下面,我们来看看书中是怎样验证的。你还有什么疑问吗?

7、游戏的秘密:因为三角形的内角和等于180°,所以用180°减去已知的两个角的度数,就可以得到第三个角的度数。

【设计意图:学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。我觉得在课上不能停留在学生对方法的描述上,而应引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。】

三、师生互动,拓展提高

1.猜一猜:猜角游戏”

A已知两个角的度数,求第三个角的度数。

B给出一个角,求其它两个角的度数。

C等边三角形,求三个角的度数。

2.算一算: 四边形、六边形的内角和

用三角形内角和的知识知道了四边形内角和,六边形的内角和,七边形,八边形,N边形的内角和是多少度?有没有什么规律可循,希望同学们能用学到的知识和方法去探究问题,你还会有一些精彩的发现。

【设计意图:基本训练与技能训练相结合,在运用中提高学生解决问题的能力。使不同层次的学生得到不同的发展。】

四、师生交流,体验成功

今天你的收获是什么?你还有什么不明白的地方吗?

板书 三角形内角和等于180°

第五篇:小学数学四年级下册:《三角形内角和》教学设计

小学数学四年级下册:《三角形内角和》教

学设计

教学内容

义务教育课程标准试验教科书《数学》(人教版)四年级下册第85页。

设计思路

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

教学目标

1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教材分析

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备

多媒体课件、学具。

教学过程

一、激趣引入

(一)认识三角形内角

师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

生1:三角形是由三条线段围成的图形。

生2:三角形有三个角,……

师:请看屏幕(课件演示三条线段围成三角形的过程)。

师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)

(二)设疑,激发学生探究新知的心理

师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

师:有谁画出来啦?

生1:不能画。

生2:只能画两个直角。

生3:只能画长方形。

师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?

生:想。

师:那就让我们一起来研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、动手操作,探究新知

(一)研究特殊三角形的内角和

师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)

生:90°、60°、30°。(课件演示:由三角板抽象出三角形)

师:也就是这个三角形各角的度数。它们的和怎样?

生:是180°。

师:你是怎样知道的?

生:90°+60°+30°=180°。

师:对,把三角形三个内角的度数合起来就叫三角形的内角和。

师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

生:90°+45°+45°=180°。

师:从刚才两个三角形内角和的计算中,你发现什么?

生1:这两个三角形的内角和都是180°。

生2:这两个三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形内角和

1.猜一猜。

师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

生1:180°。

生2:不一定。

……

2.操作、验证一般三角形内角和是180°。

(1)小组合作、进行探究。

师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

生:可以先量出每个内角的度数,再加起来。

师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!

师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)

(2)小组汇报结果。

师:请各小组汇报探究结果。

生1:180°。

生2:175°。

生3:182°。

……

(三)继续探究

师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

生1:有。

生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

师:怎样才能把三个内角放在一起呢?

生:把它们剪下来放在一起。

1.用拼合的方法验证。

师:很好,请用不同的三角形来验证。

师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。

2.汇报验证结果。

师:先验证锐角三角形,我们得出什么结论?

生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

生2:直角三角形的内角和也是180°。

生3:钝角三角形的内角和还是180°。

3.课件演示验证结果。

师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

师:我们可以得出一个怎样的结论?

生:三角形的内角和是180°。

(教师板书:三角形的内角和是180°学生齐读一遍。)

师:为什么用测量计算的方法不能得到统一的结果呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差。

三、解决疑问。

师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。

师:在一个三角形中,有没有可能有两个钝角呢? 生:不可能。师:为什么?

生:因为两个锐角和已经超过了180°。师:那有没有可能有两个锐角呢?

生:有,在一个三角形中最少有两个内角是锐角。

四、应用三角形的内角和解决问题。1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

2.按要求计算。(数学信息较为隐藏和生活中的实际问题)

3.游戏巩固。在四人小组中完成:由一个同学出题,其它三个同学回答。(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。

五、全课总结。

今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?

教学反思

这篇教学设计通过施教,符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,学生思维活跃,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。

在学习活动的过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,也很有趣味性。但还受课本资源的限制,不能大胆突破教材,充分利用生活资源。例如:可以出示一块被打烂了的三角形玻璃板(如图:),向学生提出挑战性的问题:老师今天不小心把这块三角形的玻璃板打烂了,要重新买与原来同样大的一块,可老师不知道尺寸,怎么办呢?谁能帮老师解决这个问题呢?让学生利用学过的知识解决生活中常出现的问题,更能使学生体会到数学不仅来源于生活,学习数学的目的更是为了解决生活中的问题,体会到学习数学的重要意义。

下载2015年小学数学人教版四年下册51《三角形的内角和》名师教学设计片段word格式文档
下载2015年小学数学人教版四年下册51《三角形的内角和》名师教学设计片段.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐