第一篇:方程的意义教学设计
《方程的意义》教学设计 城北小学 刘鑫艳
教学内容:人教版小学数学教材五年级上册第62~63页及练习十四第1~3题。
教学目标:
1.借助天平及式子的分类操作,使学生初步了解方程的意义;能从形式上判别一个式子是否是方程;理清方程与等式的关系。
2.能根据简单的线段图、情境图列出方程,并能在教师引导下找到等量关系,经历利用等量关系进行方程模型建构的过程。
3.在对式子的分类、整理的教学活动中培养学生观察、描述、分类、抽象、概括及应用等能力。
教学重点:抓住“等式”“含有未知数”两个关键词初步建立方程的概念。
教学难点:方程与等式的关系;方程中等量关系的建立。教学准备:课件、写式子的卡片、磁钉。教学过程:
一、认识天平,谈话铺垫
教师(出示天平图):这是什么?同学们知道天平的用途吗? 一般在称东西时,我们在天平的左边放上要称的东西,右边放上砝码。如果天平左右两边达到平衡,左边东西的质量就等于右边砝码的质量。这种平衡的状态如果用一个数学符号来表达,就是──等号。
二、探究新知
(一)、谈话导入 板书课题
(二)、通过课件展示及交流汇报,探究方程的意义。
1、课件出示天平图片演示动画,让学生说说天平的特点。师概括总结得出天平的平衡这一特点并指出:平衡表示左右两边相等。(感受等式的特点)
2、出示一架天平的左边有20克和30克物体,右边没有物体,问:天平平衡吗?怎样才能使天平左右两边相等?(再次思考等式条件)
3、当学生提出右边的盘中放入50的物体后就会平衡时课件演示用平衡状态并提问算式怎么表示?生:20+30=50
4、出示篮球比赛情境图学生写出比分之间的关系式,老师将学生写的关系式结果分别粘贴在黑板上。(延伸关系式)
5、出示4个情境图学生独立写关系式,然后组内交流,班内展示交流。师把生的关系式粘贴在黑板上。(通过情境图区分三种关系)6引导学生对9个关系式分类,明确分类必须有分类的依据。班内交流。(通过分类认识特征)
7、引导学生总结不同关系式的特征,总结方程的意义。(逐步建模)
8、学生练习写方程,个别板演,引导学生根据板演结果明确判断一个式子是不是方程必须符合两个条件:含有未知数和是一个等式。
9、小组讨论方程与等式的关系,班内交流。师做讲解。
(三)、实践反思,巩固提高
1.“做一做”第2题及练习十四第2题:看图列出方程。
学生练习并进行反馈。
反馈侧重:使学生明确,可以根据量相等来列出方程。2.练习十四第3题:看情境图,思考数量关系再列方程。
(1)从图上你知道了什么?
(2)你能根据你知道的数量关系列出方程吗?(3)学生自行根据数量关系列出方程,并进行反馈。【设计意图】能用方程表达简单情境中的数量关系,也是《义务教育数学课程标准(2011年版)》对本内容的要求,为从数量关系到等量关系的转变做好准备,这对于学生理解和掌握方程的知识至关重要。
(四)、总结回顾,介绍历史
1.你对方程印象最深的是什么?(每个同学说一点,后面的同学要和前面同学不一样。)
2.教师介绍方程的相关知识。(课件出示教材第63页“你知道吗?”的内容)
【设计意图】把数学史融入课堂教学当中,一方面可以拓展学生的视野,让学生对方程的产生过程产生比较清晰的认识,知道数学是一个动态成长的科学,体会到数学的每一个理论和发展是一个漫长的过程。让学生在体会数学文化的价值的同时,产生探索的欲望。<方程的意义>教学反思
在教学设计时,我把“方程的意义”作为教学的重点,方程意义的教学目标定位是,不仅仅是让学生了解方程的概念,能指出哪些是方程;更多思考的是学生对方程后继的学习和发展,注重知识的渗透.课堂上让学生借助于天平平衡与不平衡的现象列出表示等与不等关系的式子,为进一步认识等式、不等式提供了观察的感性材料,然后引导学生对式子分类,建立等式概念,并举出新的生活实例进行强化.最后引导学生分析、判断,明确方程与等式的联系与区别,深化方程的概念。
本节课从课堂整体来看还可以,有大部分学生的思维还较清晰、会说;可还有部分学生不敢说,或者是不知如何表述,或者是表述的不准确,我想问题的关键是学生的课堂思维过程的训练有待加强,数学课堂也应该重视学生“说”的训练,在说的过程中激活学生的思维,让学生在新课程的指引下学会自主探索,学得主动,学得投入。
第二篇:方程意义教学设计
《方程的意义》教学设计
华宁县甸尾小学 王 惠
教学内容: 教材53页、54页的内容 教学目标:
1、使学生理解和掌握等式与方程的意义,明确方程与等式的关系,会用方程表示生活情境中简单的数量关系。
2、通过学生观察思考,探讨交流,培养学生抽象、归纳和概括 的能力。
3、感受方程与生活的密切联系,培养进一步探究方程知识的乐 趣和欲望。
教学重点:在具体的情境中,理解方程的含义。教学难点:体会等式与方程的关系。
一、复习旧知,为新课做铺垫
(一)在括号里填上适当的式子
1、一个皮球的价格是a元,买5个皮球应付()元。
2、哥哥b岁,比妹妹大a岁,妹妹()岁。
3、小芳看一本x页的故事书,每天看4页,需要用()天看完。(二)、复习等式
以练习的形式引导学生说出等式的意义:数学中用等号来表示相等关系的式子叫做等式。
二、学习新课,认识方程
(一)、创设情境,抽象数学算式
1、认识天平(称)
(1)教师演示课件,提问:①这是什么? ②天平有什么作用?天平的原理是什么呢?(2)学生积极回答,教师充分肯定学生的想法。
(3)教师总结并引入新课:天平可以用来量取物体的重量。今天这 节课我们就利用这个天平进行演示来研究一下相关的数学问题。
2、创设情境,抽象数学算式
(1)一个天平左盘上放了一个玻璃杯,右盘上放了100 g重的砝码,正好平衡。师:请看这幅图。
思考:看了这幅图你知道了什么?生答。
师:对,我们找到了这样一个等量关系,(课件出示:1个空杯子=100g)
3.课件出示第三幅图:一个天平左盘上放了一个加约150毫升水(红色)的玻璃杯,右盘上放了100 g重的砝码,天平左低右高。师:如果我们在杯中加约150毫升的水呢?为了大家看得更清楚,老师在水中滴几滴红墨水。
问:这时发生了什么变化?(生能答:杯子里倒了水,水有重量,天平就不平衡了。)
问:如果水重x克,你能用一个式子表示天平两边的结果吗? 生回答后,课件、卡片出示:100+X>100 4.课件出示第四幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上加了100 g重的砝码,天平还是左低右高。
师:天平出现了倾斜,因为杯子和水的质量加起来比100克重,要使天平平衡,该怎么做?(增加砝码)对,要需要增加砝码的质量。师:怎么样?刚才左低右高,现在呢?(生能答:还要加砝码)那就在加100 g重的一个砝码。(课件演示:右盘上再放100 g重的砝码,天平出现左高右低。)
师:现在什么情况?(生答:左高右低)这种情况你能用式子来表示吗?可以同桌讨论。
学生回答后课件、卡片出示: 100+X<300 问:观察列出的两个式子,有什么共同的地方?
这个问题可能稍有难度,教师可以引导:当天平两边不平衡,一边比一边重时,要表示两边的关系,我们就可以用这样的不等式表示。(板书:不等式)
问:能再举几个这样的不等式吗?
(学生列出不等式,教师选择两个写在卡片上贴于黑板。)5.课件出示第五幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上放了250 g重的砝码,天平平衡。
师:下面老师把其中一个100 g重的砝码换成50 g重的砝码。你再来观察一下。
(学生看到都说:平衡了)问:谁来表示这个式子? 学生回答后课件:100+X=250 师:仔细观察以上的式子这个就是我们今天要学习的新的知识方程。那么方程的什么呢? 请同学组织回答
含有未知数的等式就是方程
师:我们已经知道什么是方程,那么我们要怎样来判断一个式子是不是方程呢?
两个条件:一定是等式 一定含有未知数
三、探究交流,抽象概括
1、判断以下的式子哪些是方程
2、辨析
(1)100+200=100+200(2)100+x>200;100+x<300(3)100+x=250 这三组式子中哪个是方程?什么是方程?怎样判断一个式子是不是方程?
3、思考:方程与等式之间存在怎样的关系? 方程是否一定是等式? 等式是否一定是方程? 方程和等式之间的关系
方程一定是等式,但等式不一定方程。
四、巩固提高,形成技能 1.说一说——列出方程 2.练一练
(1)你能根据已学知识写出至少一个列出方程吗?(2)你能根据下面的数量之间的相等关系列出方程吗?
①王涛去商店买了3本笔记本,每本X元。他付给售货员阿姨20元,找回2元。
②张华从家到学校有500米,他每分钟走60米,走了X分钟。离学校还有80米。
(3)怎样才能使两个杯子里的水一样多?
3、你知道吗?
课件动态显示关于方程的小知识。
你知道吗?早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料。一直到三百年前,法国数学家笛卡儿第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
五、总结提升
1、什么是方程?
2、怎么列简单方程? 板书设计:
方程的意义
方程的含义:100+X=250含有未知数的等式叫方程
方程和等式的关系:方程一定是等式 但等式不一定是方程
第三篇:《方程的意义》教学设计
《方程的意义》教学设计
襄州区实验小学 陈敏
教学内容:新人教版小学数学五年级上册第62-63页内容。
教学目标:
知识目标:理解和掌握方程的意义,弄清楚方程和等式两个概念的关系。
能力目标:培养学生认真的观察、思考分析问题的能力。
情感目标:通过自主的探究、合作交流等教学活动,激发学生的兴趣,培养合作意识。
教学重点:理解和掌握方程的意义。
教学难点:弄清方程与等式的异同。
教学准备:多媒体课件 教学过程:
一、导入新课
(1)师:生活中有很多工具可以测量物体的重量,你知道有哪些?(2)(课件出示天平)说说你对天平有哪些了解,生发言后,师简介天平可以测量物体的重量,还可以判断两个物体的重量是否相等,在使用天平时一般左边放物体,右边放砝码,两边物体重量相等时,天平会保持平衡,指针在中间。
二、探究新知
1、了解什么是等式和不等式。
(出示一架天平的左边是有物体20克和30克,右边是50克。)师:能不能列一个数学式子表示?
生:20+30=50
引导总结得出这是一个等式。师:像这样用等号连接起来的式子叫等式。(再出示天平左边是20克的物体和?克的物体,右边是100克的物体。)师:这里的问号表示什么意思?根据这副图,你能不能列一个数学式子?
师:你认为用哪个式子更能表示天平两边是平衡的? 引导得出:20+x=100 表示天平左右两边是平衡的.依次出示图片,学生用式子表示为 80<2χ 50+2χ> 180 3χ=180
2、探究什么叫方程
①20+30=50 ②20+x=100 ③3χ=180 ④80<2χ ⑤50+2χ> 180 思考:你能说说这些式子有什么区别吗? 学生先独立思考,然后同桌合作交流汇报: 生:①、②、③是等式 ④、⑤是不等式。生:①是不含字母 ②、③、④、⑤含有字母 生:①是等式 ②、③是方程 ④、⑤是不等式(课件出示)
②20+χ=100
⑥ 3χ=180
⑧100+2χ=3×50
师:观察这几个式子,你发现它们有什么共同特征? 师:我们给它起个新的名字,称为“方程”,谁能总结一下:什么叫方程?小组讨论 学生总结概括方程的意义(教师板书方程的意义)引导学生思考:是不是所有的等式都是方程?(不是。)你会自己写出一些方程吗?学生写完后同桌之间交然后汇报 师:请同学们打开课本第63页看看插图中三位同学写了哪些方程。(学生阅读课本)
练习:下面哪些是方程?哪些不是方程?
①5-χ=12()② y+24
()
③ 5χ+32=47()④ 28<16+15()⑤ 0.48÷χ=6()⑥ 35+65=100()⑦ χ-21> 72()
师:如何判断一个式子是不是方程?
归纳小结:方程的特点:是一个等式,且含有未知数。
3、理解方程与等式的关系
师:知道了什么是方程,我们来研究一下方程和等式有什么区别?
聪聪也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程?
(1)6χ+()=78
(2)36+()=42
学生反馈
师:第一题为什么是方程?第二题为什么不一定是方程? 师:方程和等式之间存在什么样的关系呢?方程是否一定是等式?等式是否一定是方程?(小组讨论)
师:你能用自己的方式表示方程和等式之间的关系吗?
引导概括得出:方程一定是等式;但等式不一定是方程。三巩固练习
练习题:
一、判断、二、看图列方程、三、用方程表示等量关系(略)
四、拓展新知:(出示资料)了解方程的历史和发展
五、全课总结
通过本节课学习,你有什么收获和疑问?
六、布置作业
完成第63页 “做一做”
1、2题。
板书设计:
方程的意义
含有未知数的等式叫做方程。
方程一定是等式;但等式不一定是方程。
第四篇:《方程的意义》教学设计
《方程的意义》教学设计
一、导入新课,提出研究问题 1.直接揭题
师:今天的学习我们要借助一个新的朋友?想知道是谁吗?---天平。
在哪见过?数学课也来用天平,我们看看从天平中能读出哪些数学。
2.导入新课,出示天平:让学生说一说对天平有哪些了解?
【预设:让学生自由发言,可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等。】
二、实践操作,建立方程模型
1.用天平创设情境直观形象,有助学生抽象出式子(1)只含有数的式子
①看课件演示(平衡图),写出50×2=100和50+50=100。②看演示课件(不平衡图),写出180>100。(2)含有未知数的式子
①杯子里重量不知引出未知数用字母表示。
②猜测:天平左盘是180克,右盘是100克,如果将杯子放入左盘会出现什么情况?
③根据不同情况写出式子。
100+X=180 100+X<180 100+X>180 ④课件呈现:写出式子:50+X=100+100 30+30+2X=158 3X=2.4。
【设计意图:这些实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式、不等式,含有未知数的和不含未知数的。】
2.方程的认识从表面趋向本质
(1)在分类比较中认识方程的主要特征
学生进行小组合作通过自己的分类让别人看出不一样来。
预设:学生可以分成两组有未知数和无未知数 分成三组含有未知数、等式、不等式 分成两组等式、不等式
【设计意图:学生通过分类对比,形成表象,教师引出概念,使学生亲历知识的生成过程。】
(2)要体会方程是一种数学模型。
使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。
三、实际运用,升华提高
在“看”“说”和“写”中体会式子 1.下面哪些式子是方程? 35+65=100 x-14>72 y+24 5x+32=47 28<16+14 6(y+2)=42 【让学生加深对方程的意义的认识,培养学生的判断能力。】
2.方程一定是等式,等式也一定是方程。进行判断,你能用自己的方式表示方程和等式之间的关系吗?学生操作。
3.儿时的方程20+()=100与20+X=100 上面的方程可以表示生活中哪些事情?结合方程讲出它的故事。
【设计意图:在练习中加深对方程的理解,联系生活实际,让学生用数学知识描述自然现象,充分让学生经历分析数量关系,寻找等量关系----建立方程的过程,为以后进一步学习方程打下基础。】
4.方程产生的文化背景
早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。
【设计意图:数学是人类文化的重要组成部分,任何一
个数学知识的形成都凝聚着人类智慧与汗水。因此学生在学习前人给我们带来的经验同时,也要了解数学文化。通过这部分知识的讲解,学生对方程的产生有了初步的印象。】
5.解决生活中的问题:180大于100,怎样使天平平衡。6.(1)看图列方程。
(2)文字叙述题:为准备五年级组足球联赛,陈老师买了4个足球,每个足球y元,付出300元,找回20元。
四、课堂小结。
你学会了什么?有哪些收获?
五、布置作业。
第五篇:《方程的意义》教学设计
《方程的意义》教学设计
教学内容:教科书第1~2页的内容。教学目标:
1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。
2、培养学生概括、归纳的能力。教学重点:会根据题意列方程。教学难点:理解方程的含义。教学过程:
一、教学例1 出示例1图,提出要求:你能用等式表示天平两边物体的质量关系吗? 学生在本子上写。
指名回答,板书:50+50=100 含有等号的式子叫等式,它表示等号两边的结果是相等的。
二、教学例2 学生自学
要求:
1、学生在书上独立填写,用式子表示天平两边的质量关系。
2、小组同学交流四道算式,最后达成统一认识: X+50>100 X+50=100 X+50<100 X+X=100 根据学生的回答,教师板书这4道算式。
3、把这4道算式分成两类,可以怎样分,先独立思考后再小组 内交流,要说出理由。学生可能会这样分: 第一种:
X+50>100 X+50=100 X+50<100 X+X=100 第二种:
X+50>100 X+X=100 X+50<100 X+50=100 引导学生理解第一种分法:
你为什么这样分,说说你的想法。
小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。
指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。
提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式” 那X+50>100、X+50<100为什么不是方程呢? 提问:那等式和方程有什么关系呢,在小组里交流。方程一定是等式,但等式不一定是方程。
三、完成“试一试”“练一练” 学生独立完成。
集体订正时围绕“含有未知数的等式”进一步理解方程的含义
四、课堂作业:练习一的1、2、3。板书:方程的初步认识 X+50=100 X+X=100 像X+50=150、2X=200这样含有未知数的等式是方程。