《方程的意义》教学设计

时间:2019-05-12 22:59:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《方程的意义》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《方程的意义》教学设计》。

第一篇:《方程的意义》教学设计

《方程的意义》教学设计

教学内容:《义务教育课程标准实验教科书·数学》五年级上册 教学目标:

1、使学生在具体的情境中,理解方程的含义,初步体会等式与方程的关系。

2、使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象成式与方程的过程,积累将现实问题数学化的经验,感受方程的思想方法及价值,发展抽象思维能力和符号感。

3、让学生获得一些成功的体验,进一步树立学好数学的信心,产生对数学的兴趣。

教学重点:在具体的情境中,理解方程的含义。教学难点:体会等式与方程的关系。设计思路:

方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中的特定关系的过程。方程思想的核心在于建模、化归。方程的学习,从一开始就应该让学生接触现实的问题,学习建模,学习把日常生活中的自然语言等价地转化为数学语言,得到方程,进而解决有关问题。基于对数学概念及概念教学的再把握,相对于传统的教学,本课的设计进行了比较大的改变: 教学过程:

一、准备孕伏,激趣开课。

师:今天老师上课带来了一件重要的称量工具。(出示天平)同学们认识吗?它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平秤与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。其实,在天平中蕴含着有关数学方面的知识,同学们想知道吗?让我们一起走进天平的世界来学习。

二、创设情景,写出式子。

课件出示一架天平。

1、课件出示:左边的托盘中放一个物体为30克,一个物体为20克。师:现在要保持天平的平衡,右边的托盘中应该放多少克的砝码? 生:右边的托盘中应该放50克的砝码。师:为什么呢?

生:为了保持天平平衡,左右托盘的质量应该是一样的。课件出示:右边的托盘中放50克的砝码。

师:天平平衡,你想可以用怎样的式子来表示呢? 生:20+30=50。

课件出示:20+30=50。(教师板书:20+30=50)

2、课件出示:天平左边托盘中的30克的物体换成一个不知质量的物体,左边出现一个200克的砝码。天平出现倾斜。

师:观察现在的天平出现了什么变化? 生:30克的物体换成了一个不知质量的物体,左边出现了一个200克的砝码,天平出现了倾斜。

师:天平为什么会出现倾斜?

生:因为左边托盘物体的质量比200克重。师:你能用式子表示这种关系吗? 生:20+x>200。

师:你式子中的x表示什么? 生:不知质量的物体用x表示。

师:这个不知质量的物体能不能用其他的字母表示? 统一用常用的字母x表示。

课件出示:20+x>200。(教师板书:20+x>200)

3、师:既然左边托盘中的物体比200克重,那我们就把右边的砝码换成300克,看天平会怎样?

课件出示:天平左边的托盘中的物体不变,右边的砝码变成300克的砝码。天平再次出现了倾斜。

师:天平为什么又出现倾斜?这次倾斜与上次倾斜的原因一样吗?

生:因为左边托盘物体的质量比300克轻。这次倾斜与上次倾斜不一样,上次是左边托盘物体的质量重了,这次是左边托盘物体的质量轻了。

师:你能用式子表示这种关系吗? 生:20+x<300。

师:你式子中的x表示什么? 生:不知质量的物体用x表示。

课件出示:20+x<300。(教师板书:20+x<300)

4、师:如果我要想让天平的两边平衡有什么方法吗? 生:把300克砝码换成小些的,又比200克砝码大些。

课件出示:天平左边的托盘中的物体不变,右边的砝码变成250克的砝码。天平重新平衡。

师:怎样用式子表示天平的平衡? 生:20+x=250。

师:你式子中的x表示什么? 生:不知质量的物体用x表示。

课件出示:20+x=250。(教师板书:20+x=250)

三、引导分类,概括概念。

1、引导分类。

师:在我们刚才的活动中我们写出了四个式子,你能对这些式子进行分类吗?

学生交流。

第一次分类可能会出现的情况: △按不同连接符号来分成三类 △按是否是等式分成两类 △按是否含有未知数分成两类 师:像20+30=50,20+x=250这样用等号连接的式子叫做等式;而像20+x<300,20+x>200这样用大于、小于符号连接的式子叫做不等式。

学生尝试第二次分类。

师:仔细观察等式,它们还有不同吗?

生:一个等式中用未知数x,一个等式中没有未知数。

2、概括概念。

师:像20+x=250这些等式我们给它一个名称,叫方程。也是我们今天要学习的内容——方程的意义。(板书课题)觉得怎样的式子叫方程呢? 课件出示:什么是方程?

生:含有未知数的等式是方程。

课件出示:含有未知数的等式叫方程。

师:既然你们已经知道含有未知数的等式叫方程。请每位同学在自己的练习本上写一个方程。写完后与同位交流是不是方程。

请几名学生上黑板写出方程。订正板书的方程是否正确。

师质疑:你们是怎样判断一个式子是不是方程的? 生:一看是不是等式;二看有没有未知数。

师小结:看来理解方程意义的关键是两点:一是是不是等式,二是式子中有没有未知数。

课件出示:将未知数和等式变成醒目的红色。师:指着等式,这些为什么不是方程? 生:„„

师:再指边上的不等式,这些又为什么不是方程呢? 生:„„

师:打开课本第54页,有3名学生也写了一些方程,我们看看他们写得对不对?

四、联系比较,深化概念。

1、师:含有未知数的等式叫方程。那么方程与等式之间又有什么关系呢? 课件出示:方程与等式之间有怎样的关系。

2、学生分组讨论。

师:可以用自己喜欢的方法表现出这种关系。(巡视指导)

3、学生代表发言。生用集合图表现。

课件展示:用集合图表现这种关系。

生:方程都是等式,但等式不一定都是方程。

课件出示:方程一定是等式,但等式不一定都是方程。学生解释这句话。

4、引导学生看书第53页至第54页,勾画书中的重点。阅读“你知道吗?”。

五、课堂总结。

通过今天的学习,你还有什么疑困?你觉得你掌握得比较好的知识是什么?有困难需要帮助的地方是什么?

六、分析练习,巩固新知。(课件出示)

1、请你判断下面哪些式子是方程? 5x+32=47 x÷0.6=1.8 y+24 5b=2.5 35+65=100 x-14>72 28<16+14 0.3x-0.6=1.2 6(a+2)=42 6x+5x

2、请你辨一辨他们谁说的对。

(1)含有未知数的式子叫做方程.()(2)方程一定是等式.()(3)21.5X>3是方程.()(4)等式一定是方程.()(5)8=4+2X不是方程.()

3、师:生活中有很多的情景,也可以像刚才的天平图一样,用数学式子表示出来。有兴趣试试吗?请你用方程表示出下面各题中数量间的相等关系。

(1)文具店有乒乓球40筒,卖了χ筒,还剩18筒。(2)某班有男生23人,女生a人,共有50人。(3)小红买了5支铅笔,每支χ元,共付9元。(4)甲地距乙地S千米,一辆汽车以每小时42千米的速度从甲地开往乙地,12小时到达。

七、拓展延伸。(课件出示)

根据方程5x=200描述一副情境图。

八、板书设计。

方程的意义

不等式 等式 含有未知数的等式叫做方程。20+x>200 20+30=50 20+x<300 20+x=250(方程)

一、游戏引入,激发兴趣

师:今天,我们先来玩个游戏!这儿有13张扑克牌,分别代表1—13,你们从中任抽一张,不让老师看到,老师也能猜到你抽到的这张扑克牌是什么,谁愿意试试? 生:任抽一张(不让老师看见牌面)师:请将扑克牌代表的数先乘2,再加上3,再把所得的和乘5,最后减去25,看看结果是多少? 生算后报出结果,教师利用列方程快速求出结果,报出牌面的数字。待学生无限惊讶时,引导学生猜想:“老师怎么能这么快知道同学们手中的牌呢?” 生:你一定是倒推的,将得数加上25,除以5,减去3,再除以2。

师:你知道其中的秘密了,真了不起!老师能这么快知道你们抽的是什么牌,是因为数学王国的一位新朋友帮了我的忙,今天我们就能认识它。

二、情景呈现,抽象模型

1.师:老师这有一台简易天平,本文转自免费数学资源网 www.edusx.net 转载请注明出处。关于天平.你们都了解些什么? 生1:天平可以称物体的质量;生2:当天平两边物体的质量一样时,天平就平衡了。师:(借助天平边演示边问)在天平的左盘放上两袋100克的食物,右盘放上一个200克的砝码,天平怎么样了? 生:平衡了。

师:会不会用一个数学式子来表示天平现在的状况? 生:100+100=200。

师:这么个简单的式子,能表示天平现在的状况? 生:能。

师:左边表示的是什么,右边表示的是什么? 生:左边表示食物的质量,右边表示砝码的质量。师:(指着算式说)正因为食物的质量等于砝码的质量,所以天平平衡了。2.师:将左盘的食物换成两袋30克的食物,天平还平衡了吗? 生:不平衡,本文转自免费数学资源网 www.edusx.net 转载请注明出处。师:为什么? 生:因为两盘物体质量不相等。

师:谁能用个式子表示天平现在这种不平衡? 生:30+30<200。

3.师:是呀,因为两盘物体质量不相,所以天平就不平衡,那么,怎样才能使它平衡呢? 生1:可以在左盘加上一些物体。生2:也可以换一个砝码。

师:你们这样做的目的都是为了什么? 生:使左右两盘物体的质量相等。

师:这儿有一袋小豆,它的质量不知道,我们可以怎么表示? 生:可以用字母表示、可以用x表示。师将这袋x克的小豆加在轻的一端,让学生观察天平的状态并用式子表示。生:60+x=200。

师:60+x表示的是什么?200表示的是什么? 生:60+x表示的是左盘物体的质量,200表示仍然是砝码的质量。

4.师出示一盒牛奶,告诉学生它的质量是275克,让学生猜想如果将它放在天平的左盘里会怎样? 提示学生用式子表示(275>200),然后请一位同学将盒内的牛奶喝掉一些。

师:这盒学生奶被喝掉了多少克? 生:不知道x克,a克……

师:剩下的牛奶的质量可以怎么表示? 生:(275-x)克。

师:如果将剩下的牛奶放回天平左盘,天平可能会出现什么情况,又可以用什么式子表示呢? 生思维活跃,猜想出以下三种情况:可能平衡,用275-x=200表示;也可能是275-x>200,也就是说剩下的牛奶还是比砝码重。还可能是剩下的牛奶轻些,可以用275-x<200来表示。

师:同学们都理解了这些式子两边的含义,并用正确的符号连接起来。

三、引导分类,构建概念

1.师:刚才我们用了这么多的式子来描述天平的平衡情况。你能按天平的平衡情况将这些式子分分类吗?(生讨论,师巡视)组1:我们是按是否含有未知数来分的,将60+x =200,275-x=200,275-x=200,275-x<200分为一组,其余的分为一组。

组2:我们组将平衡的分为一类,大于200的分为一类,小于200的分为一类。组3:我们和组2分的差不多,只是将平衡的分为一类,将不平衡的分为一类。师拖放课件上的式子,按学生的汇报将不平衡的归到一起。

师:(指着含有等于号的式子)像这样的含有等于号的式子,数学上称之为等式。(板书:等式)其它的式子我们都称之为不等式。[ 师:观察这些等式,它们有什么不同的地方? 生:后两个含有字母,师:这些字母表示——未知数。(板书:含有未知数)像这样的含有未知数的等式,我们称之为方程。今天这节课我们就是研究方程的意义。师:能说说什么叫方程?(生齐读概念)师:联系刚才的操作,说说你对方程的理解。生1:方程就是表示平衡。生2:方程表示两边相等。生3:方程还要含有未知数。生4:方程是等式。

师:那么,方程和等式之间有什么关系呢? 生1:等式包含了方程。生2:方程一定是等式。

师:如果画这样一示等式,那方程应该画在哪里? 生:应该画在里面。

四、形式判断,加深认识 1.师:大家对方程有了一定的理解,在刚才的情景中,我们列出了两个方程。(指着黑板上已有的两个方程),下面,大家根据自己对方程的理解任意写几个方程吧!(生在练习纸上写,叫部分学生在黑板上写。)2.师:同桌间互相检查一下,看大家列的都是方程吗?再看黑板上这几位同学写的。都是方程吗? 学生写的方程没有错误的,还出现了用不同字母表示未知数的方程,师引导学生一一进行判断。

师:大头儿子也写了两个式子,可是不小心被墨水给弄脏了,猜猜他原来列的是不是方程? 生:第一个一定是方程,第二个则不一 定,本文转自免费数学资源网 www.edusx.net 转载请注明出处。师:同意吗?为什么? 生;从第一个没有被墨水弄脏的地方就可以看出它是等式并且含有未知数了,所以它一定是方程;而第二个则要看墨迹处的情况而定,如果墨迹处是未知数,则是方程,如果是6则只是一个等式。师:(鼓掌)说得太好了!大家都明白了吗? 生:明白了。

3.师:看来,大家对方程已经有了非常深刻的认识。方程的历史已经非常悠久了,我们一起去了解一下吧!(课件出示——方程“史话”)方程历史的第一页是由古代埃及人和巴比伦人揭开的。据现存世界上最早的数学文献——埃及的林特草卷记载,早在三千六百多年前,埃及人就会用方程解决数学问题了。中国人对方程的研究也有着悠久的历史。大约两千年前成书的《九章算术》中,就有专门以“方程”命名的一章,记载了用一组方程解决实际问题的方法。这不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产。在很长时期内,方程没有专门的表达形式,而是使用一般的语言文字来叙述它们。一直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。

师:随着数学的研究范围不断扩充,方程的作用也越来越重要。方程的类型也由简单到复杂不断地发展。但是,无论类型如何变化,各种各样的方程都是含有未知数的等式。很多以前用算术方法解起来很难的问题,用方程解起来就轻而易举呢。

五、联系实际,巩固应用 1.师:下面咱们来玩个小游戏!这是用电脑模拟的天平,请把天平下方的材料拖放到天平上,要求大家看到天平的状况就能列出一个方程来。由于电脑操作的原因,学生尝试多次,天平未出现平衡。

师:你觉得要让大家能列出方程来,关键要解决什么问题。生:让天平平衡。师:别着急,再试试。

生操作后出现情况①:左盘两个x克,一个20克,右盘一个50克,本文转自免费数学资源网 www.edusx.net 转载请注明出处。

情况②:左盘两个x克,一个y克,一个50克,右盘z克。师:能列出方程吗? 师:你们列出的方程是?(2x+20=50,x+y+50=z)当学生列出方程后,师启发学生讲清等式的左边和右边分别表示什么? 生:分别表示两边物体的质量。

师:大家看,这个方程两边都含有未知数,这么复杂的方程都能列出来,大家真了不起。

2.师:其实,不单是天平的平衡问题,我们研究许多数学问题时,经常会发现其中的未知数不是孤立的,它们与一些已知数之间有相等的关系,可以列出方程。师:你能根据下面这两幅图中的数量关系快速列出方程吗? 生汇报:3x=36。师:你是怎么想的? 生.3x表示的是三盒彩笔的总枝数,36也是表示的三盒彩笔的总枝数,所以我那样列。

师:有道理!第二幅图呢? 生l:60+x=200。

师:说说你的想法1 60+x表示的是什么,200表示的是什么? 生:60+x表示的是这条线段的长度,200也是表示这条线段的长度。

师:这个方程刚才出现过,(指黑板上已经列出的方程)同样一个方程.在这里表示的是长度相等,刚才表示的是什么?生:质量相等。

师:你们能不能再举个例子,让大家也能列出一个这样的方程来呢? 生:李师傅一天加工60个零件,王师傅一天加工x个零件,他们一天共加工200个零件。

师:60+x=200能表示这位同学所说问题中的数量关系吗? 生:能!师:这个方程又是表示什么相等? 生:李师傅一天加T的零件个数加上王师傅一天加工的零件个数等于他们一天加工的零件总个数。

师:看来,只要是涉及未知数的等量关系,都可以用方程表示。

3.师:大头儿子和小头爸爸在说些什么,我们一起去听听!(播放课件)师:你能从小头爸爸和大头儿子谈话中,选取一些信息列出方程吗?(师收集几张练习纸,投影展示。)师:我们来看这位同学的,列出了37-a=28这样一个方程,请这位同学说说你选择了哪几条信息,为什么这样列?

生:我根据爸爸今年37岁,儿子今年a岁,他们俩相差28岁列出的这个方程,爸爸的年龄减去儿子的年龄,就等于他们俩相差的年龄。

生:我想,a+28表示大头儿子的年龄加上28岁,也就是小头爸爸的年龄,而爸爸的年龄是37岁。

师:这里还有一位同学列的是a+28=37,37-28=a怎么想的? 生2:我是把爸爸的年龄减去他们相差的年龄,就是儿子的年龄了。

师:有道理!大家看看,这三个方程都是根据这一组信息列出的,像37—28=a这样的方程,和我们以前学的算术方法的思路是一样的,未知数没有参与运算,今后我们用方程解决实际问题时,一般不列这样的方程。

师:再看这位同学列出9-x=3这样一个方程。能说说你的想吗? 生1:9-x表示大头儿子给了爸爸x张扑克后自己有多少张,3就是爸爸的张数。生2:我不同意,儿子给了爸爸x张后,爸爸应该增加了x张,不止3张了。我列的是9-x=3+x。师:9-和3似分别表示的是儿子给了爸爸x张后两人扑克牌的张数,这时他们的张数才是一样多的。

师:还记得课开始的时候老师和你们玩的游戏吗?同学们第一次抽了一张牌。按照规定的方法计算后得到60,老师就是根据你们的计算过程和结果列出了一个方程(2x+3)×5-25---60,然后解出这个方程,从而快速判断出你们抽的牌是什么。至于怎么解方程,正是我们今后要研究的内容,相信大家有了今天的基础,大家一定会越来越喜欢“方程”这位朋友的!

第二篇:方程意义教学设计

《方程的意义》教学设计

华宁县甸尾小学 王 惠

教学内容: 教材53页、54页的内容 教学目标:

1、使学生理解和掌握等式与方程的意义,明确方程与等式的关系,会用方程表示生活情境中简单的数量关系。

2、通过学生观察思考,探讨交流,培养学生抽象、归纳和概括 的能力。

3、感受方程与生活的密切联系,培养进一步探究方程知识的乐 趣和欲望。

教学重点:在具体的情境中,理解方程的含义。教学难点:体会等式与方程的关系。

一、复习旧知,为新课做铺垫

(一)在括号里填上适当的式子

1、一个皮球的价格是a元,买5个皮球应付()元。

2、哥哥b岁,比妹妹大a岁,妹妹()岁。

3、小芳看一本x页的故事书,每天看4页,需要用()天看完。(二)、复习等式

以练习的形式引导学生说出等式的意义:数学中用等号来表示相等关系的式子叫做等式。

二、学习新课,认识方程

(一)、创设情境,抽象数学算式

1、认识天平(称)

(1)教师演示课件,提问:①这是什么? ②天平有什么作用?天平的原理是什么呢?(2)学生积极回答,教师充分肯定学生的想法。

(3)教师总结并引入新课:天平可以用来量取物体的重量。今天这 节课我们就利用这个天平进行演示来研究一下相关的数学问题。

2、创设情境,抽象数学算式

(1)一个天平左盘上放了一个玻璃杯,右盘上放了100 g重的砝码,正好平衡。师:请看这幅图。

思考:看了这幅图你知道了什么?生答。

师:对,我们找到了这样一个等量关系,(课件出示:1个空杯子=100g)

3.课件出示第三幅图:一个天平左盘上放了一个加约150毫升水(红色)的玻璃杯,右盘上放了100 g重的砝码,天平左低右高。师:如果我们在杯中加约150毫升的水呢?为了大家看得更清楚,老师在水中滴几滴红墨水。

问:这时发生了什么变化?(生能答:杯子里倒了水,水有重量,天平就不平衡了。)

问:如果水重x克,你能用一个式子表示天平两边的结果吗? 生回答后,课件、卡片出示:100+X>100 4.课件出示第四幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上加了100 g重的砝码,天平还是左低右高。

师:天平出现了倾斜,因为杯子和水的质量加起来比100克重,要使天平平衡,该怎么做?(增加砝码)对,要需要增加砝码的质量。师:怎么样?刚才左低右高,现在呢?(生能答:还要加砝码)那就在加100 g重的一个砝码。(课件演示:右盘上再放100 g重的砝码,天平出现左高右低。)

师:现在什么情况?(生答:左高右低)这种情况你能用式子来表示吗?可以同桌讨论。

学生回答后课件、卡片出示: 100+X<300 问:观察列出的两个式子,有什么共同的地方?

这个问题可能稍有难度,教师可以引导:当天平两边不平衡,一边比一边重时,要表示两边的关系,我们就可以用这样的不等式表示。(板书:不等式)

问:能再举几个这样的不等式吗?

(学生列出不等式,教师选择两个写在卡片上贴于黑板。)5.课件出示第五幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上放了250 g重的砝码,天平平衡。

师:下面老师把其中一个100 g重的砝码换成50 g重的砝码。你再来观察一下。

(学生看到都说:平衡了)问:谁来表示这个式子? 学生回答后课件:100+X=250 师:仔细观察以上的式子这个就是我们今天要学习的新的知识方程。那么方程的什么呢? 请同学组织回答

含有未知数的等式就是方程

师:我们已经知道什么是方程,那么我们要怎样来判断一个式子是不是方程呢?

两个条件:一定是等式 一定含有未知数

三、探究交流,抽象概括

1、判断以下的式子哪些是方程

2、辨析

(1)100+200=100+200(2)100+x>200;100+x<300(3)100+x=250 这三组式子中哪个是方程?什么是方程?怎样判断一个式子是不是方程?

3、思考:方程与等式之间存在怎样的关系? 方程是否一定是等式? 等式是否一定是方程? 方程和等式之间的关系

方程一定是等式,但等式不一定方程。

四、巩固提高,形成技能 1.说一说——列出方程 2.练一练

(1)你能根据已学知识写出至少一个列出方程吗?(2)你能根据下面的数量之间的相等关系列出方程吗?

①王涛去商店买了3本笔记本,每本X元。他付给售货员阿姨20元,找回2元。

②张华从家到学校有500米,他每分钟走60米,走了X分钟。离学校还有80米。

(3)怎样才能使两个杯子里的水一样多?

3、你知道吗?

课件动态显示关于方程的小知识。

你知道吗?早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料。一直到三百年前,法国数学家笛卡儿第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。

五、总结提升

1、什么是方程?

2、怎么列简单方程? 板书设计:

方程的意义

方程的含义:100+X=250含有未知数的等式叫方程

方程和等式的关系:方程一定是等式 但等式不一定是方程

第三篇:《方程的意义》教学设计

《方程的意义》教学设计

襄州区实验小学 陈敏

教学内容:新人教版小学数学五年级上册第62-63页内容。

教学目标:

知识目标:理解和掌握方程的意义,弄清楚方程和等式两个概念的关系。

能力目标:培养学生认真的观察、思考分析问题的能力。

情感目标:通过自主的探究、合作交流等教学活动,激发学生的兴趣,培养合作意识。

教学重点:理解和掌握方程的意义。

教学难点:弄清方程与等式的异同。

教学准备:多媒体课件 教学过程:

一、导入新课

(1)师:生活中有很多工具可以测量物体的重量,你知道有哪些?(2)(课件出示天平)说说你对天平有哪些了解,生发言后,师简介天平可以测量物体的重量,还可以判断两个物体的重量是否相等,在使用天平时一般左边放物体,右边放砝码,两边物体重量相等时,天平会保持平衡,指针在中间。

二、探究新知

1、了解什么是等式和不等式。

(出示一架天平的左边是有物体20克和30克,右边是50克。)师:能不能列一个数学式子表示?

生:20+30=50

引导总结得出这是一个等式。师:像这样用等号连接起来的式子叫等式。(再出示天平左边是20克的物体和?克的物体,右边是100克的物体。)师:这里的问号表示什么意思?根据这副图,你能不能列一个数学式子?

师:你认为用哪个式子更能表示天平两边是平衡的? 引导得出:20+x=100 表示天平左右两边是平衡的.依次出示图片,学生用式子表示为 80<2χ 50+2χ> 180 3χ=180

2、探究什么叫方程

①20+30=50 ②20+x=100 ③3χ=180 ④80<2χ ⑤50+2χ> 180 思考:你能说说这些式子有什么区别吗? 学生先独立思考,然后同桌合作交流汇报: 生:①、②、③是等式 ④、⑤是不等式。生:①是不含字母 ②、③、④、⑤含有字母 生:①是等式 ②、③是方程 ④、⑤是不等式(课件出示)

②20+χ=100

⑥ 3χ=180

⑧100+2χ=3×50

师:观察这几个式子,你发现它们有什么共同特征? 师:我们给它起个新的名字,称为“方程”,谁能总结一下:什么叫方程?小组讨论 学生总结概括方程的意义(教师板书方程的意义)引导学生思考:是不是所有的等式都是方程?(不是。)你会自己写出一些方程吗?学生写完后同桌之间交然后汇报 师:请同学们打开课本第63页看看插图中三位同学写了哪些方程。(学生阅读课本)

练习:下面哪些是方程?哪些不是方程?

①5-χ=12()② y+24

()

③ 5χ+32=47()④ 28<16+15()⑤ 0.48÷χ=6()⑥ 35+65=100()⑦ χ-21> 72()

师:如何判断一个式子是不是方程?

归纳小结:方程的特点:是一个等式,且含有未知数。

3、理解方程与等式的关系

师:知道了什么是方程,我们来研究一下方程和等式有什么区别?

聪聪也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程?

(1)6χ+()=78

(2)36+()=42

学生反馈

师:第一题为什么是方程?第二题为什么不一定是方程? 师:方程和等式之间存在什么样的关系呢?方程是否一定是等式?等式是否一定是方程?(小组讨论)

师:你能用自己的方式表示方程和等式之间的关系吗?

引导概括得出:方程一定是等式;但等式不一定是方程。三巩固练习

练习题:

一、判断、二、看图列方程、三、用方程表示等量关系(略)

四、拓展新知:(出示资料)了解方程的历史和发展

五、全课总结

通过本节课学习,你有什么收获和疑问?

六、布置作业

完成第63页 “做一做”

1、2题。

板书设计:

方程的意义

含有未知数的等式叫做方程。

方程一定是等式;但等式不一定是方程。

第四篇:《方程的意义》教学设计

《方程的意义》教学设计

一、导入新课,提出研究问题 1.直接揭题

师:今天的学习我们要借助一个新的朋友?想知道是谁吗?---天平。

在哪见过?数学课也来用天平,我们看看从天平中能读出哪些数学。

2.导入新课,出示天平:让学生说一说对天平有哪些了解?

【预设:让学生自由发言,可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等。】

二、实践操作,建立方程模型

1.用天平创设情境直观形象,有助学生抽象出式子(1)只含有数的式子

①看课件演示(平衡图),写出50×2=100和50+50=100。②看演示课件(不平衡图),写出180>100。(2)含有未知数的式子

①杯子里重量不知引出未知数用字母表示。

②猜测:天平左盘是180克,右盘是100克,如果将杯子放入左盘会出现什么情况?

③根据不同情况写出式子。

100+X=180 100+X<180 100+X>180 ④课件呈现:写出式子:50+X=100+100 30+30+2X=158 3X=2.4。

【设计意图:这些实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式、不等式,含有未知数的和不含未知数的。】

2.方程的认识从表面趋向本质

(1)在分类比较中认识方程的主要特征

学生进行小组合作通过自己的分类让别人看出不一样来。

预设:学生可以分成两组有未知数和无未知数 分成三组含有未知数、等式、不等式 分成两组等式、不等式

【设计意图:学生通过分类对比,形成表象,教师引出概念,使学生亲历知识的生成过程。】

(2)要体会方程是一种数学模型。

使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。

三、实际运用,升华提高

在“看”“说”和“写”中体会式子 1.下面哪些式子是方程? 35+65=100 x-14>72 y+24 5x+32=47 28<16+14 6(y+2)=42 【让学生加深对方程的意义的认识,培养学生的判断能力。】

2.方程一定是等式,等式也一定是方程。进行判断,你能用自己的方式表示方程和等式之间的关系吗?学生操作。

3.儿时的方程20+()=100与20+X=100 上面的方程可以表示生活中哪些事情?结合方程讲出它的故事。

【设计意图:在练习中加深对方程的理解,联系生活实际,让学生用数学知识描述自然现象,充分让学生经历分析数量关系,寻找等量关系----建立方程的过程,为以后进一步学习方程打下基础。】

4.方程产生的文化背景

早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。

【设计意图:数学是人类文化的重要组成部分,任何一

个数学知识的形成都凝聚着人类智慧与汗水。因此学生在学习前人给我们带来的经验同时,也要了解数学文化。通过这部分知识的讲解,学生对方程的产生有了初步的印象。】

5.解决生活中的问题:180大于100,怎样使天平平衡。6.(1)看图列方程。

(2)文字叙述题:为准备五年级组足球联赛,陈老师买了4个足球,每个足球y元,付出300元,找回20元。

四、课堂小结。

你学会了什么?有哪些收获?

五、布置作业。

第五篇:《方程的意义》教学设计

《方程的意义》教学设计

教学内容:教科书第1~2页的内容。教学目标:

1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

2、培养学生概括、归纳的能力。教学重点:会根据题意列方程。教学难点:理解方程的含义。教学过程:

一、教学例1 出示例1图,提出要求:你能用等式表示天平两边物体的质量关系吗? 学生在本子上写。

指名回答,板书:50+50=100 含有等号的式子叫等式,它表示等号两边的结果是相等的。

二、教学例2 学生自学

要求:

1、学生在书上独立填写,用式子表示天平两边的质量关系。

2、小组同学交流四道算式,最后达成统一认识: X+50>100 X+50=100 X+50<100 X+X=100 根据学生的回答,教师板书这4道算式。

3、把这4道算式分成两类,可以怎样分,先独立思考后再小组 内交流,要说出理由。学生可能会这样分: 第一种:

X+50>100 X+50=100 X+50<100 X+X=100 第二种:

X+50>100 X+X=100 X+50<100 X+50=100 引导学生理解第一种分法:

你为什么这样分,说说你的想法。

小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。

提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式” 那X+50>100、X+50<100为什么不是方程呢? 提问:那等式和方程有什么关系呢,在小组里交流。方程一定是等式,但等式不一定是方程。

三、完成“试一试”“练一练” 学生独立完成。

集体订正时围绕“含有未知数的等式”进一步理解方程的含义

四、课堂作业:练习一的1、2、3。板书:方程的初步认识 X+50=100 X+X=100 像X+50=150、2X=200这样含有未知数的等式是方程。

下载《方程的意义》教学设计word格式文档
下载《方程的意义》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    方程的意义 教学设计

    《方程的意义》 教学目标: 1.结合操作活动理解方程的意义,能用方程表示简单的等量关系。 2.在观察、比较、分类、概括的过程中,经历从具体情境中抽象出数学问题,用数学符号表示......

    方程的意义》教学设计

    《方程的意义》教学设计 西岗小学 王霞 教学目标: 1、让学生在具体的情境中,理解方程的含义,初步体会等式与方程的关系。 2、让学生在观察、思考、分析、抽象、概括的过程中,经......

    方程的意义教学设计

    方程的意义教学设计 教学内容:《义教课标实验教科书 数学》(人教版)五年级上册第53至56页方程的意义。 设计理念:本节课试图通过自学、合作交流等数学活动,帮助学生建立方程的概......

    方程的意义教学设计

    《方程的意义》教学设计 普定县坪上镇中心学校黄华 设计理念: 本节课试图通过合作探索,小组交流、观察、分析、概括等方法,帮助学生建立方程的概念,理解方程的含义,培养学生分析......

    《方程的意义》教学设计

    《方程的意义》教学设计 一、教学目标: 1.借助天平及式子的分类操作,正确理解方程的意义,能从形式上判别一个式子是否是方程,体会方程与等式的关系。 2.能根据简单的线段图和......

    《方程的意义》教学设计

    《方程的意义》教学设计 一、教学内容: 人教版《义务教育课程标准实验教科书 数学》五年级(上册)第53~54页 二、教学目标: 1、使学生在具体的情境中,理解方程的含义,初步体会等式与......

    方程的意义教学设计

    方程的意义教学设计 方程的意义教学设计1 教学内容:教科书第1~2页,例1、例2、试一试、练一练,练习一第1~3题。教学目标:1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理......

    方程的意义教学设计

    方程的意义 教学目标: 1.知识目标:在自主探索的过程中,理解与掌握方程的意义,弄清方程和等式两个概念的关系, 2.能力目标:培养学生认真观察、思考分析问题的能力。发展学生思维......