激光的特性及应用教案

时间:2019-05-12 22:05:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《激光的特性及应用教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《激光的特性及应用教案》。

第一篇:激光的特性及应用教案

《6.2 激光的特性及应用》教学设计

【教学内容】

第六单元第2节。

【教学目标】

知识与技能:了解激光的产生机理,掌握激光的基本特性,知道激光的常见应用;通过延伸阅读,收集整理行业内激光应用的相关资料,了解行业内对激光的应用。

过程与方法:通过对激光的特点及应用的学习,培养应用物理知识解决实际问题的意识与能力;通过课外阅读收集整理有关激光应用的资料,培养学生收集、加工、整理、应用信息的能力。

情感态度价值观:通过对激光应用的学习,使学生感受到科学知识的无穷力量,感受科技进步对社会文明进程的推进作用,培养学生热爱科学、献身科学的品质。

【教学重点】

激光的特性及应用。

【教学难点】

激光的产生机理。

【教具准备】

激光器等。

【教学过程】

◆创设情境──引出课题

1.引导学生说说自然界及生产生活中见到的各种光现象

太阳光,烛光,各式各样的电灯发光,物体燃烧发光,炽热的固体、液体、气体发光,霓虹灯发光,雷电发光等等。

2.光是怎样产生的?

是由光源发出的。

3.光源是怎样发光的?

各种光源发光的机理不同,发出的光的特性也会不同。这节课我们了解一种在自然界本来不存在,在人们使用了一种特殊刺激的方法,从原子内部激发出光的方法及激发出的光的特性和应用。

◆合作探究──新课学习

一、激光

1.什么是激光?

学生阅读课文,归纳小结,得出结论:

激光:原子受到特定刺激,内部结构发生变化时发出的光。对于激光的理解,有三个方面,一是激光在自然界原本不存在,二是激光是从原子内部发出的,三是原子内部发出激光不是自发进行的,需要特定的刺激。

1964年,我国科学家钱学森建议,中文中用“激光”一词。

2.世界上第一台激光器

1964年,人类制造出了第一台红宝石激光器。

3.激光技术

将激光应用于生产、生活、科技、军事等的技术。

二、激光的特性

1.学生阅读课文,思考问题:激光具有什么特性?各个特性有何应用?

2.组织学生讨论,得出结论

(1)方向性好

激光器发出的光是较好的平行光,传播过程中可以较好的保持平行,不发生散射。利用激光的这一特性,人类从地球表面向月球表面发射激光,成功接收到了被月面反射回的激光,利用光速和测出的激光从发出到接受经历的时间,计算出了月地距离。

(2)亮度极高

激光的能量极高,如果将激光束利用特殊“透镜”聚焦到一点上,这一点的能量极高,可以融化物质。利用激光的这一特性,加工行业中可以用激光进行切割、焊接、打孔,医学上可以利用激光切除病灶或杀死病变组织。

(3)单色性好

激光的颜色纯,可以获得特定颜色的单色光,作为光学研究中的单色光,也可制作广告牌、装饰舞台等等。

(4)相干性好

光是电磁波,具有波的一切特性,比如两列频率相等、振动方向相同、相位一致的两列光波相遇,会发生干涉现象。由于激光的单色性好,容易获得满足干涉条件的两列光波。

三、激光的应用

1.医学应用

(1)激光美容:利用激光去除皮肤色斑、纹身图案等。

(2)激光手术:利用激光束作为手术刀,完成手术,手术创口小、出血少、愈合快。

(3)激光治癌:利用激光束杀死癌变组织。

(4)激光戒烟:激光束刺激人体特定穴位,提高烟民体内吗啡激素的分泌水平,减少戒烟初期造成的各种不适反应。

2.工业应用

机等焊接,激光切割,激光钻孔等。

3.信息技术中的应用

传输信息:光纤通讯中,将传输的信息通过调制加载在激光上,利用激光在光纤中的全反射传递出去。

记录、读取信息:利用激光束在光盘上刻录信息,读取信息,实现海量信息的方便存储与读取;制作商品的防伪标识,读取商品条码信息。

激光全息照相:利用激光束的干涉,拍摄物体的全息照片;在利用激光的干涉立体显示拍摄物体的像,即使照片损伤,利用激光干涉,从照片任一碎片,也可显出物体的整个立体像。

4.测量地形地貌,获取地理信息。

5.军事应用──激光武器:

(1)激光炮、激光枪:发射高能激光束,利用激光能量摧毁目标。

(2)激光瞄准:狙击步枪等配置激光瞄准器,提高射击精度。

(3)地形地貌测绘:了解战场情况,敌情侦查等。

6.农业上的应用

利用激光照射农作物种子,改善作物品质,提高产量等。

◆交流评价──巩固总结

1.讨论问题:课本第172页“复习与巩固”1、2、3。

2.归纳小结本节要点(见板书设计)。

【布置作业】

1.复习课文,书面完成课本第172页“复习与巩固”1。

2.查阅有关激光特性与应用的资料,撰写小论文《激光的工业(或医学、农业、军事)应用》。

【板书设计】

第二篇:激光原理与应用教案

激光原理与应用教案

一.绪论

本节课教学目标:

让学生了解激光的历史,激光形成及发展、理论体系的形成。

让学生了解激光科学的分支及激光在军事、信息技术、医疗等方面的应用;

本节课教学内容:

1.激光的概念:

光——利用受激辐射的光放大。

LASER——Light Amplification by Stimulated Emission of Radiation 2. 激光的发现:

最早在1917年——Einstein首次预言受激辐射激光,历史上首先在微波波段实现量子放大(1953),1954年——C.H.Townes, I.P.Gorden, H.J.Zeiger 使用NH3分子射束实现Maser向更短波长进发——ammonia beam maser,1958年——A.L.Schawlow, C.H.Townes, A.M.PoxopoB提出将Maser原理推广到光波段——laser,1960年——T.H.Maiman of Bell Lab 红宝石 首次实现laser l=6943Å 红光(早期的名称:莱塞、光量子振荡器、光激射器 受激光,“激光”——钱学森在1963年提出。61年 中国(亚洲)第一台激光器诞生在长春(长春光机所和光机学院),由王之江院士发明。

激光科学技术发展的基础学科——光谱学,物理光学,固体物理,物质结构,无线电电子学。推动力——广阔的应用领域:核聚变,加工,热处理,通讯,测距,计量,医疗可调谐性和超短脉冲——高时间、空间分辨、能量分辨。

3.激光与普通光源的区别?

(1)良好的单色性。单色性指光源发射的光波长范围很小,测距。(2)良好的方向性。激光的光束几乎只沿着一个方向传输。测距,通信。(3)高亮度。激光功率集中在极小的空间范围内。切割,手术,军事。(4)极好的相干性。各列波在很长的时间内存在恒定的相位差。精确测距。4.激光的应用。

(1)信息科学领域。激光雷达,空间通信。

(2)医学领域。激光穿心术,激光眼科手术,激光牙科手术。

(3)工业领域。激光切割,激光打孔,飞秒激光微加工,激光全息,激光电视。(4)能源方面。激光受控核聚变,神光装置。

(5)军事领域。低能和高能激光武器,太空武器等,激光测距。

5.激光器的组成

激光器由泵浦源,工作物质和谐振腔组成。

由外界激励源的激发在工作物质的能级之间实现粒子数反转分布是形成激光的内在依据。光学谐振腔是形成激光的外部条件。

本节课教学手段与方法:

采用多媒体形式。播放了世界上第一台激光器的发明电影短片,并采用丰富的图片总结性地讲述激光与普通光源的区别和激光广泛的应用。

第一章 辐射理论概要与激光产生的条件

§1.光的波粒二象性

本节课教学目标:

让学生光的本质及光的经典理论。

本节课教学内容: 1.光波

电磁波理论虽然使光的波动说一度占领了光学领域,但19世纪末,实践中遇到的光与物质相互作用的许多 现象却无法解释,如黑体辐射、光的吸收与发射、光电效应、光化学反应等。1905年,爱因斯坦发展了普朗克的量子假说,在一种全新的物理意义上提出了光子学说。爱因斯坦认为光子既是粒子、同时又是波。光在与物质相互作用时粒子性明显,光在传播中则波动性突出。光的这种粒子性和波动性相互对立又并存的性质,叫做光的“波粒二象性”。

光波是一种电磁波,是E和B的振动和传播。习惯上把电矢量叫做光矢量。光速、频率和波长三者的关系

υcυ(0)2.单色平面波

波面——相位相同的空间各点构成的面

平波面——波面是彼此平行的平面,且在无吸收介质中传播时,波的振幅保持不变。

单色平波面——具有单一频率的平面波。

实际上任何光波都不可能是全单色的,总有一定的频率宽度。当△v<<v0时,就叫准单色波。

简谐波——理想单色平面波

简谐波方程: UU0cos(t)U0cos(tzc)

2t2zUU0cos(tz)U0cos()cT3.光子

在真空中一个光子的能量为,动量为P,则它们与光波频率,波长之间的关系:

hνhνhh2hPn0n0n0kc22式中h是普朗克常数,h=6.63×10-34J•S 本节课教学手段与方法:

采用多媒体形式。用丰富的图片来说明光的经典理论。

§2.原子的能级和辐射跃迁

本节课教学目标:

理解原子能级和简并度、原子状态的标记; 掌握玻尔兹曼分布、辐射跃迁和非辐射跃迁

本节课教学内容:

1.原子中电子的状态由下列四个量子数来确定

(1)主量子数n,n=1,2,3,„代表电子运动区域的大小和它的总能量的主要部分。

(n(2)辅量子数l, l 

0 ,1 ,2 

 1)代表轨道的形状和轨道角动量,这也同电子的能量有关。

(3)磁量子数(即轨道方向量子数)m=0,±1,±2,±l„ 代表轨道在空间的可能取向,即轨道角动量在某一特殊方向的分量

(4)自旋量子数(即自旋方向量子数)ms= ±1/2,代表电子自旋方向的取向,也代表电子自旋角动量在某一特殊方向的分量

2.电子具有的量子数不同,表示有不同的电子运动状态

(1)电子的能级,依次用E0,E1,E2,„ En表示(2)基态:原子处于最低的能级状态

(3)激发态:能量高于基态的其它能级状态

3.玻尔兹曼分布

现考虑由n0个相同原子(分子或离子)组成的系统,在热平衡条件下,原子数按能级分布服从波尔兹曼定律

nigieEi kT

nmgmenngn(EmEn)kT分别处于Em和En能级上的原子数nm和nn必然满足下一关系

4.辐射跃迁和非辐射跃迁

(1)辐射跃迁:发射或吸收光子从而使原子造成能级间跃迁的现象

(2)非辐射跃迁:原子在不同能级跃迁时并不伴随光子的发射和吸收,而是把多余的能量传给了别的原子或吸收别的原子传给它的能量。

本节课教学手段与方法:

采用多媒体形式。

先复习原子的四个量子数,再对简并、简并度进行定义。阐明在热平衡情况下,处于高能态的粒子数总是小于处于低能态的粒子数的这一规律。最后介绍原子的辐射跃迁和非辐射跃迁。

§3.光的受激辐射

本节课教学目标:

了解光与物质的相互作用,掌握这种相互作用中的受激辐射过程是激光器的物理基础,根据光与物质的相互作用物理模型分析空腔黑体的热平衡过程,从而导出爱因斯坦三系数之间的关系。

本节课教学内容:

一、经典的辐射理论引用偶极子的概念,反映了光的发射和吸收过程的规律;

二、黑体热辐射的实验现象;

三、光和物质的相互作用(重点、难点)

1.爱因斯坦粒子模型——粒子只有间距为hv=E2-E1(E2>E1)的二个能级,且它们符合辐射跃迁选择定则。

2.光频电磁场与物质的三种相互作用过程——(1).自发发射、(2).受激辐射、(3).受激吸收以及各个过程的特点、系数、各系数的物理意义;

四、爱因斯坦三系数的相互关系的推导,五、自发辐射功率与受激辐射功率的计算(重点)

讨论: 创造条件,增大受激辐射程度的方法。

本节课教学手段:

采用多媒体形式。

先介绍经典的辐射理论,反映了光的发射和吸收过程的规律、再介绍黑体热辐射,重点介绍光和物质的相互作用过程、爱因斯坦粒子模型,讲解清楚电磁场与物质的三种相互作用过程的特点、系数、各系数的物理意义。最后导出自发辐射功率与受激辐射功率的计算和比较,引导学生讨论创造怎样的条件,可增大受激辐射程度,达到激光的目的。

§4.光谱线增宽

本节课教学目标:

了解光谱线型对光与物质的作用的影响,分析引起谱线加宽的各种物理机制,并根据不同的物理过程求出g(ν,ν。)的具体函数形式。

本节课教学内容:

一、光谱线,线型和光谱线宽度

1.原子辐射的波不是单色的,而是分布在中心频率(E2-E1)/h附近一个很小的频率范围内。

2.就每一条光谱线而言,在有限宽度的频率范围内,光强的相对强度也不一样。

二、自然增宽(重点)

1.经典理论——描述原子内部电子的运动,其物理模型就是按简谐振动或阻尼振动规律运动的电偶极子,称为简谐振子。

2.衰减振动不是简谐振动,因此原子辐射的波不是单色的,谱线具有有限宽度。

3.自然增宽: 作为电偶极子看待的原子作衰减振动而造成的谱线增宽。

νN2fN(ν)

4.自然增宽的谱线型函数:(难点)

(νν0)2(νN2)2

5.量子解释——测不准关系,对原子的能级来说,时间的不确定值就是原子的平均寿命,则能级有一定宽度。

三、碰撞增宽(重点)

1.自然增宽是假设原子彼此孤立并且静止不动所造成的谱线增宽。而碰撞增宽是考虑了发光原子间的相互作用造成的,碰撞使原子发光中断或光波位相发生突变,即使发光波列缩短。fc(ν)2.碰撞增宽的谱线型函数:

四、多普勒增宽

多普勒增宽——光源与接收器相对运动引起的频移导致的谱线增宽。

νc2(νν0)2(νc2)2本节课教学手段:

采用多媒体形式。

先介绍原子在发辐射过程中,各种因素的影响,自发辐射并不是单色的,而是分布在中心频率(E2-E1)/h附近一个很小的频率范围内。引入谱线加宽的概念。定义线型函数为

f()I()I0I()I()d再分析引起谱线加宽的各种物理机制,并根据不同的物理过程求出f(ν)的具体函数形式。

§5.激光形成的条件

本节课教学目标:

掌握产生激光的基本条件 ——激发射占优势、产生激光必须具备的三个条件;

本节课教学内容:

一、介质中光的受激辐射放大(重点、难点)

1.要能形成激光,首先必须使介质中的受激辐射大于受激吸收。

2.光束在介质中的传播规律

3.介质中产生受激光放大的条件、增益介质与增益系数。

二、光学谐振腔和阈值条件

1.满足了以上两个条件后,还要采取什么措施使受激辐射成为增益介质中的主要发光过程,而不是自发辐射?

2.要使受激辐射几率远大于自发辐射几率,3.光学谐振腔的作用;

4.产生激光必须具备的条件(重点)

(1)激励能源——把介质中的粒子不断地由低能级抽运到高能级去

(2)增益介质——能在外界激励能源的作用下形成粒子数密度反转分布状态

本节课教学手段:

采用多媒体形式。

介绍光放大的条件——集居数反转。一定的条件下物质的光吸收可以转化为自己的对立面——光放大;引进光放大物质的增益系数与增益曲线;再介绍自激振荡概念,以及激光器应包括光放大器和光谐振腔两部分,最后导出产生激光必须具备的条件。

第二章 激光器的工作原理

§1.光学谐振腔结构与稳定性

本节课教学目标:

了解光学谐振腔的作用,它是理解激光的相干性、方向性、单色性等一系列重要特性,进行激光器件的设计和装调的基础,也是研究和掌握激光本技术和应用的基础。根据几何偏折损耗的高低.开放式 光腔可以分为稳定腔和非稳腔。

本节课教学内容:

一、光学谐振腔结构与稳定性 1.光腔的作用 2.光腔的构成和分类

二、腔 —— 开放式共轴球面光学谐振腔的构成(重点)

三、腔按几何损耗(几何反射逸出)的分类:

四、共轴球面谐振腔的稳定性条件

五、轴球面谐振腔的稳定图及其分类(重点)

六、稳定图: 稳定条件的图示

七、定图的应用(重点、难点)

例(a)要制作一个腔长L=60cm的对称稳定腔,反射镜的曲率半径取值范围如何?

(b)稳定腔的一块反射镜的曲率半径R1=4L,求另一面镜的曲率半径取值范围。

本节课教学手段:

采用多媒体形式。

先回顾产生激光的必要条件,引进对光腔问题的研究在激光技术中具有重要的理论和实践意义。再介绍开放式共轴球面光学谐振腔的构成,并根据光腔按几何损耗进行分类以及光腔稳定条件、轴球面谐振腔的稳定图。重点介绍对称共焦腔是最重要和最具有代表性的一种稳定腔。最后用图直观地表示稳定条件——稳定图及稳定图的应用。

§2.速率方程组与粒子数反转

本节课教学目标:

掌握速率方程方法以及速率方程的求解步骤,通过求解速率方程组,了解可实现粒子数反转的几种量子系统。从而知道在光频区, 二能级系统不可能实现粒子数反转;而三能级系统虽然可以实现粒子数反转,但因为下能级为基态,极易积累粒子,对抽运的要求很高,所以不易实现粒子数反转;而四能级系统的下能级不是基态,故阈值抽运强度比三能级系统小,有时甚至可以小3~4个数量级,所以四能级系统较容易实现粒子数反转。

本节课教学内容: 一、二能级三能级系统和四能级系统(重点)

画出各能级系统能级图、列出各能级系统能的速率方程组,求解速率方程组,从

而得到数学解和物理解;分析各能级系统的数学解和物理解,得出结论——二能级系统

不可能产生激光,而四能级系统产生激光要比三能级系统容易得多。

二、考虑谱线增宽再讨论以上情况。(重点)

三、稳态工作时的粒子数密度反转分布

四、小信号工作时的粒子数密度反转分布

1.小信号粒子数密度反转分布

2.小信号粒子数反转的物理条件

五、均匀增宽型介质的粒子数密度反转分布(难点)

六、均匀增宽型介质粒子数密度反转分布的饱和效应(难点)

本节课教学手段:

采用多媒体形式。

先回顾实现粒子数反转的两个必要条件,引入速率方程方法,求解速率方程组,分析粒子系统能否实现粒子数反转的数学解,确定粒子数反转的物理条件。进一步讨论稳态工作时的粒子数密度反转分布,导出小信号粒子数反转的物理条件,再研究均匀增宽型介质的粒子数密度反转分布△n,讨论△n与各种因素的关系,引出△n饱和效应的概念、饱和原因。最后导出饱和光强(饱和参量)Is 的物理意义。

§3.均匀增宽介质的增益系数和增益饱和

本节课教学目标:

从速率方程出发导出激光工作物质的增益系数表示式,分析影响增益系数的各种因素,着重讨论光强增加时增益的饱和行为,导出的增益系数表示式。从而得到结果——在均匀加宽谱线情况下,由于每个粒子对谱线不同频率处的增益都有贡献,所以当某一频率(ν

1)的受激辐射消耗了激发态的粒子时.,也就减少了对其他频率(ν)信号的增益起作用的粒子数。其结果是增益在整个谱线上均匀地下降。于是在均匀加宽激光器中,当一个模振荡后,就会使其他模的增益降低,因而阻止了其他模的振荡。

本节课教学内容

一、均匀增宽介质的增益系数

二、增宽饱和:在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的光强增大到一定程度后,增益系数随光强的增大而减小。

三、对增益饱和分几种情况讨论(重点)

例.He-Ne激光器中,Ne原子数密度n0=n1+n2=l012 cm-3,1/f()=15×109 s-1,λ=0.6328m,=10-7s,g2=3,g1=5,又知E2、E1能级数密度之比为4,求此介质的增益系数G值。

本节课教学手段:

采用多媒体形式。

从速率方程出发导出激光工作物质的增益系数表示式,分析影响增益系数的各种因素,着重讨论光强增加时增益的饱和行为。让学生明确:在均匀加宽谱线情况下,由于每个粒子对谱线不同频率处的增益都有贡献,所以当某一频率(ν1)的受激辐射消耗了激发态的粒子时.,也就减少了对其他频率(ν)信号的增益起作用的粒子数。其结果是增益在整个谱线上均匀地下降。于是在均匀加宽激光器中,当一个模振荡后,就会使其他模的增益降低,因而阻止了其他模的振荡。

§4.非均匀增宽介质的增益饱和

本节课教学目标:

因为具有均匀加宽谱线和具有非均匀加宽谱线的工作物质的增益饱和行为有很大差别,由它们所构成的激光器的工作特性也有很大不同,因此将分别予以讨论。所以必须掌握非均匀增宽介质的特点,即不同发光粒子只对光源光谱线的相应部分有贡献。从而导出的增益系数表示式以及反转粒子数—— 烧孔效应。分析可以得到:光波I 使均匀增宽型介质对各种频率的光波的增益系数都下降同样的倍数;而对非均匀增宽型介质它只能引起某个范围内的光波的增益系数下降,并且下降的倍数不同。

本节课教学内容:

一、非均匀增宽介质的增益饱和

1.由于介质内的粒子在作紊乱的热运动,粒子运动的速度沿腔轴方向的分量满足麦克斯韦速度分布律。

2.因为在非均匀增宽工作物质中,每一种特定类型的粒子,只能同某一定频率v 的光相互作用。因此反转粒子数密度△n0 按频率v有一个分布.二、增益系数的计算(重点、难点)

方法:把一条非均匀增宽谱线看作大量线宽极窄的均匀增宽谱线的叠加。

三、非均匀增宽介质稳态粒子数密度反转分布

四、反转粒子数烧孔效应(重点)

五、非均匀增宽介质稳态情况下的增益饱和

本节课教学手段:

采用多媒体形式。

先回顾非均匀增宽特点——不同发光粒子只对光源光谱线的相应部分有贡献。分析影响增益系数以及粒子数反转分布的各种因素,让学生明确:因为在非均匀增宽工作物质中,每一种特定类型的粒子,只能同某一定频率v 的光相互作用。因此反转粒子数密度n0 按频率v有一个分布.着重讲解非均匀增宽增益系数的计算,方法是:把一条非均匀增宽谱线看作大量线宽极窄的均匀增宽谱线的叠加。再介绍非均匀增宽介质稳态粒子数密度反转分布、非均匀增宽介质稳态情况下的增益饱和。引进—— 烧孔效应的概念。让学生了解到(烧孔面积)常用来估算输出激光功率。§5.激光器的损耗与阈值条件

本节课教学目标:

如果谐振腔内工作物质的某对能级处于集居数反转状态,则频率处在它的谱线宽度内的微弱光信号会因增益而不断增强。另一方面,谐振腔中存在的各种损耗,又使光信号不断衰减。能否产生振荡,取决于增益与损耗的大小。本节由增益饱和效应出发估算稳态工作时的腔内平均光强,推导激光器自激振荡的阈值条件。并在此基础上给出粗略估算输出功率的方法。

本节课教学内容:

一、损耗

1.内部损耗——增益介质内部由于成分不均匀、粒子数密度不均匀或有缺陷而使光产生折射、散射等使部分光波偏离原来的传播方向,造成光能量的损耗。2.镜面损耗

二、激光器内形成稳定光强的过程(重点)

三、阈值条件

四、对介质能级选取的讨论

例:实验测得He-Ne激光器以波长 λ=0.6328工作时的小讯号增益系数为G0=310-4/d(cm-1),d为腔内毛细管内径(cm)。以非均匀增宽计算腔内光强I=50W/cm2的增益系数G(设饱和光强Is=30W/cm2时,d=1mm),并问这时为保持振荡稳定,两反射镜的反射率(设r1=r2,腔长0.1m)最小为多少(除透射损耗外,腔内其它损耗的损耗率a内=910-4cm-1)?又设光斑面积A=0.11mm2,透射系数t=0.008,镜面一端输出,求这时输出功率为多少毫瓦。

本节课教学手段与方法:

采用多媒体形式。

先回顾 ——产生激光的三个必要条件:1.工作物质 2.激励能源3.光学谐振腔再讨论对光学谐振腔, 要获得光自激振荡, 须令光在腔内来回一次所获增益,至少可补偿传播中的损耗.,研究谐振腔的损耗与阈值条件。通过研究激光器内形成稳定光强的过程,推导出形成激光所要求的增益系数的条件、激励能源对介质粒子的抽运一定要满足的条件,然后对介质能级选取进行讨论,并通过例题加深学生对这些问题的认识。

第三章 激光器的输出特性

§1.光学谐振腔的衍射理论

本节课教学目标:

本节将讨论光腔模式问题。模式问题在激光技术中具有重要的理论和实践意义。它是理解激光的相干性、方向性、单色性等一系列重要特性,自再现模的求解是谐振腔衍射理论的重要部分,自再现模积分的数学基础是菲涅耳——基尔霍夫衍射积分公式,我们的目的是弄清楚激光模式的基本特征及其与腔的结构之间的具体依赖关系。

本节课教学内容:

一、惠更斯-基尔霍夫衍射公式

二、光学谐振腔的自再现模积分方程(重点)

1.自再现模概念

2.腔与模的一般联系

3.横模的形成

4.孔阑传输线、自再现模(横模)的形成过程

三、菲涅耳-基尔霍夫衍射积分(重点、难点)

首先要解决的一个问题是,如果已知某一镜面上的场分布u1(x‟,y‟),如何求出在衍射的作用下经腔内一次渡越而在另一个镜面上生成的场u2(x,y)。' 这里,(x„,y‟)、(x,y)分别衰示两个镜面上场点的坐标。知道了光波场在其所达到的任意空间曲面上的振幅和相位分布,就可以求出该光波场在空间其他任意位置处的振幅和相位分布。

四、积分方程解的物理意义(重点)

五、光学谐振腔谐振频率和激光纵模

1.谐振条件、驻波和激光纵模 2.纵模频率间隔

3.选纵模

本节课教学手段:

采用多媒体形式。

先回顾 ——产生激光的三个必要条件:1.工作物质 2.激励能源3.光学谐振腔再从研究谐振腔的衍射理论开始,为了形象地理解开腔中自再现模的形成过程,我们用波在孔阑传输线中的行进,模拟它在平面开腔中的往复反射。这种孔阑传输线由一系列同轴的孔径构成,这些孔径开在平行放置着的无限大完全吸收屏上,相邻两个孔径间的距离等于腔长,孔径大小等于镜的大小。当模拟对称开腔时,所有孔径的大小和形状都应相同。

光学中著名的惠更斯-菲涅耳原理是从理论上分析衍射问题的基础,因而' 也必然是开腔模式问题的理论基础。该原理的严格数学表述是所谓菲涅耳.基尔霍夫衍'射积分,它可以从普遍的电磁场理论推导出来。该积分公式表明,如果知道了光波场在其所达到的任意空间曲面上的振幅和相位分布,就可以求出该光波场在空间其他任意位置处的振幅和相位分布

§2.对称共焦腔内外的光场分布

本节课教学目标:

叙述开腔模的物理概念, 应用惠更斯-菲涅耳原理是从理论上定量讨论衍射问题。介绍平面腔模的迭代解法,求解对称共焦腔中的自再现模积分方程,了解输出激光的具体场的分布。以方型镜面的对称共焦腔为例,求解方程:

mnumn(x,y)K(x,y,x',y')umm(x',y')ds'得出一系列本征函数,它们描述共焦腔镜面上场的振幅和相位分布,同时得出一系列相应的本征值,它们决定模的相移和损耗。

本节课教学内容:

一、共焦腔镜面上的场分布(重点、难点)

1.方形镜面共焦腔自再现模积分方程的解析解

2.镜面上自再现模场的特征: TEMmn模在镜面上振幅分布的特点取决于厄米多项式与高斯函数的乘积。厄米多项式的零点决定场的节线,厄米多项式的正负交替的变化与高斯函数随着x、y的增大而单调下降的特征决定着场分布的外形轮廓。

二、共焦腔中的行波场与腔内外的光场分布(重点)

腔内的光场可以通过基尔霍夫衍射公式计算,由镜面M1上的场分布在腔内造成的行波求得。腔外的光场则就是腔内沿一个方向传播的行波透过镜面的部分。即行波函数乘以镜面的透射率t。

上式是共焦腔模式理论的最基本的结果。

2222umnx,y,zCmnHmxH12wn12wss2x2y2 exp12w2expix,y,zsy本节课教学手段:

采用多媒体形式。

前面已经叙述了开腔模的物理概念,先回顾自再现模积分方程解的物理意义、建立激光模式的概念。再求解对称开腔中的自再现模积分方程,了解输出激光的具体场的分布。让学生了解到解积分方程问题就是要求出一些本征值与本征函数。它们决定着开腔自再现模的全部特征,包括场分布及传输特性,并以符号TEMmn表示共焦腔自再现模。共焦腔反射镜面本身构成光场的一个等相位面。

§3.高斯光束的传播特性,稳定球面腔的光束传播特性

本节课教学目标:

1.在求解对称开腔中的自再现模积分方程,了解输出激光的具体场的分布的基础 上,研究高斯光束的传播特性。

2. 共焦腔模式理论不仅能定量说明共焦腔震荡模本身的特性,更重要的是它能够被推广到一般稳定球面腔系统。本节将证明:任何一个共焦腔与无穷多个稳定球面腔等价,而任何一个球面腔唯一地等价于一个共焦腔。

本节课教学内容:

一、高斯光束的振幅和强度分布(重点)

1.基横模TEM00的场振幅U00和强度I00分布分别为:

2.光斑半径

3.模体积

二、高斯光束的相位分布(共焦场的等相位面的分布图)

三、高斯光束的远场发散角

四、高斯光束的高亮度

五、稳定球面腔的光束传播特性(重点、难点)

1.稳定球面腔的等价共焦腔

2.稳定球面腔的光束传播特性

本节课教学手段:

采用多媒体形式

1.先回顾求解对称开腔中的自再现模积分方程,了解输出激光的具体场的分布,再研究高斯光束的传播特性。引导学生了解到高斯光束与普通光束有着很大的区别,因此研究高斯光束在空间的传输规律.以及光学系统对高斯光束的变换规律,就成为激光的理论和实际应用中的重要问题。

2.共焦腔模式理论不仅能定量地说明共焦腔振荡模本身的特征,更重要的是,它能被推广到整个稳定球面腔系统,这一推广是谐振腔理论中的一个重大进展。任何一个共焦腔与无穷多个稳定球面腔等价。而任何一个稳定球面腔唯一地等价于→个共焦腔。这里所说的“等价”,就是指它们具有相同的行波场。这种等价性深刻地揭示出各种稳定腔(共焦腔也是其中的一种)之间的内在联系,它使得我们可以利用共焦腔模式理论的研究结果来解析地表述一般稳定球面腔模的特征。

§4.激光器的输出功率,激光器的线宽极限

本节课教学目标:

1由于激活介质中的光放大作用、谐振腔内损耗系数的不均匀分布以及驻波效应和光波场的横向高斯分布,腔内光强是不均匀的。精确计算腔内各点光强是个复杂的问题。本节由增益饱和效应出发估算稳态工作时的腔内平均光强,并在此基础上给出粗略估算输出功率的方法。

2.激光线宽及频率牵引也是激光器的要特性

线宽是由于自发辐射的存在而产生的,因而是无法排除的,所以称它为线宽极限。

本节课教学内容:

一、均匀增宽型介质激光器的输出功率

1.稳定出光时激光器内诸参数的表达式

2.激光器的输出功率

二、非均匀增宽介质稳态情况下的增益饱和(重点、难点)

三、非均匀增宽型介质激光器的输出功率

四、激光器的线宽极限

1.造成线宽的原因

2.激光线宽与激光器输出功率成反比

输出功率越大,线宽就越窄。这是因为输出功率增大就意味着腔内相干光子数增多,受激辐射比自发辐射占更大优势,因而线宽变窄。减小损耗和增加腔长也可使线宽变窄。例如半导体激光器由于腔长只有数百微米而具有较宽的激光线宽。若将它与一外反射镜构成外腔半导体激光器则可使线宽显著减小。PAIout12LG0t1IsA(1)2a1t1本节课教学手段:

采用多媒体形式

讲解让学生明白:1激光器在外界激发作用很弱时,激活介质的小信号增益系数小于阈值增益系数,激光器无输出。如果外界激发作用增强到小信号增益系数超过阈值增益系数,腔内光强便会不断增大.但是腔内光强不会无限制地增加下去,因为当光强越强,消耗的反转粒子数便越多,由于激活介质的增益饱和作用而使增益系数下降.只要增益系数尚未降至阈值,上述过程就会继续下去,即光强继续增大,增益系数继续下降.直到增益系数下降到阈值时,增益与损耗达到平衡,光强不在增大,这时,激光器建立起了稳定的工作状态。2因此激光器的净损耗以及单纵模的线宽似乎应等于零,但这只是对激光器内物理过程的一种理想化的近似描述。这种理想情况的物理图像是:腔内的受激辐射能量补充了损耗的能量,且由于受激辐射产生的光波与原来的光波具有相同的相位,二者相干叠加使腔内光波的振幅始终保持恒定,因而输出激光在理想情况下为一无限长的波列,其线宽应等于零。这一矛盾的原因是,我们在分析激光器振荡过程时,忽略了自发辐射的存在,而实际上自发辐射是始终存在的。由于和受激辐射相比自发辐射的贡献极其微弱,因而在讨论阈值及输出功率等问题时可以忽略不计;但在考虑线宽问题时却必须考虑自发辐射的影响。

第四章 激光的基本技术

§1.激光器输出的选模

本节课教学目标:

从一台简单激光器出射的激光束,其性能往往不能满足应用的需要,为了改善激光器输出光的时间相性或空间相干性,发展了模式选择。本节介绍如何设计与改进激光器的谐振腔以获得单模输出的原理

本节课教学内容:

一、激光单纵模的选取

1.均匀增宽型谱线的纵模竞争

2.非均匀增宽型谱线的多纵模振荡

3.单纵模的选取

二、激光单横模的选取

1.衍射损耗和菲涅耳数

2.衍射损耗曲线

3.光阑法选取单横模

4.聚焦光阑法和腔内望远镜法选横模

本节课教学手段:

采用多媒体形式

讲解让学生明白:1.激光的优点在于它具有良好的方向性、单色性和相干性。理想激光器的输出光束应只具有一个模式,然而若不采取选模措施,多数激光器的工作状态往往是多模的。含有高阶横模的激光束光强分布不均匀,光束发散角较大。含有多纵模及多横模的激光束单色性及相干性差。激光准直、激光加工、非线性光学研究、激光中远程测距等应用均需基横模激光束。而在精密干涉计量、光通信及大面积全息照相等应用中不仅要求激光是单横模的,同时要求光束仅含有一个纵模。因此,如何设计与改进激光器的谐振腔以获得单模输出是一个重要课题。然后介绍实现横模选择的几种具体方法、如何在特定跃迁谱线宽度范围内获得单纵模振荡的方法。

§2.激光调Q技术,激光锁模技术

本节课教学目标:

本节讨论了用调Q技术压缩激光脉冲宽度以获得高功率脉冲的方法。为了得到更窄的脉冲,还可以利用锁模技术对激光束进行特殊的调制,使光束中不同的振荡纵模具有确定的相位关系,从而使各个模式相干叠加得到超短脉冲。锁模激光脉冲宽度可达10-11~10-14s,相应的具有很高的峰值功率。本节还对锁模激光器工作原理作简单介绍。

本节课教学内容:

一、激光调 Q 技术

1激光谐振腔的品质因数Q

2调 Q原理(重点)

调Q 激光器的基本原理:就是通过某种方法使谐振腔的损耗值按规定的程序变化,从而压缩光脉冲的宽度,大大提高输出峰值功率。调Q 的基本过程:在泵浦开始时,使谐振腔的损耗增大, Q 值降低,此时器件振荡阈值变高,振荡不能形成,上能级反转粒子数密度便有可能大量积累.当积累到最大值(饱和值)时,突然使谐振腔的损耗变小, Q 值突增,这时器件振荡阈值突然变低,激光器振荡迅速建立,腔内象雪崩一样以极快的速度建立起极强的振荡,在短时间内反转粒子数大量被消耗,转变为腔内的光能量,同时输出一个极强的激光脉冲。

3电光调 Q

4声光调 Q

5染料调Q

二、激光锁模技术

锁模是进一步对激光进行特殊的调制。技术上利用多纵模输出的激光束,经过特殊的调制,使其各个纵模之间有了确定的位相关系。

1主动锁模

2被动锁模 本节课教学手段:

采用多媒体形式 通过讨论让学生明白:

为了得到高的峰值功率和窄的单个脉冲,采用了Q调制技术,它的基本原理是通过某种方法使谐振腔的损耗δ(或Q值)按照规定的程序变化,在泵浦激励刚开始时,先使光腔具有高损耗δH,激光器由于阈值高而不能产生激光振荡,于是亚稳态上的粒子数便可以积累到较高的水平。然后在适当的时刻,使腔的损耗突然降低到δ,阈值也随之突然降低,此时反转集居数大大超过阈值,受激辐射极为迅速地增强。于是在极短时间内,上能级储存的大部分粒子的能量转变为激光能量,在输出端有一个强的激光巨脉冲输出。普通的脉冲激光器,光脉冲的宽度约在ms级,峰值功率也只有几十kW.调 Q 激光器,光脉冲的宽度可以压到ns级,峰值功率也已达到MW.而锁模是进一步对激光进行特殊的调制。

第五章 典型激光器介绍

§1.固体激光器

本节课教学目标:

一般固体激光器是指没有调Q、倍频、锁模等特殊功能的固体激光器,它是固体激光器的最基本组成形式。本节重点讨论固体激光器的共同部分,即讨论固体工作物质、泵浦系统、冷却与滤光以及连续和长脉冲固体激光器的阙值、激光输出能量(功率)和效率。在泵浦系统中着重讨论当前最常用的灯泵浦系统和时可国内外重点发展的激光二极管泵浦系统。

本节课教学内容:

一、固体激光器的基本结构与工作物质(重点)

固体激光器基本上都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成的。

红宝石激光器属于三能级系统,红宝石激光器的优点和主要缺点。

二、固体激光器的泵浦系统

固体激光工作物质是绝缘晶体,一般都采用光泵浦激励。常用的泵浦灯在空间的辐射都是全方位的,固体激光器的泵浦系统还要冷却和滤光。

三、固体激光器的输出特性

固体激光器的激光脉冲特性

四、新型固体激光器

1.半导体激光器泵浦的固体激光器

2.可调谐固体激光器

3.高功率固体激光器

本节课教学手段:

采用多媒体形式 通过讨论让学生明白:

红宝石突出的缺点是阈值高(因是三能级)和性能易随温度变化。但具有很多优点,如:机械强度高,能承受很高的激光功率密度;容易生长成较大尺寸;亚稳态寿命长,储能大,可得到大能量输出;荧光谱线较宽,容易获得大能量的单模输出;低温性能良好,可得到连续输出;红宝石激光器输出的红光(0.6943um),不仅能为人眼可见,而且很容易被探测接收(目前大多数光电元件和照相乳胶对红光的感应灵敏度较高)。因此,红宝石仍属一种优良的工作物质而得到广泛应用。用红宝石制成的大尺寸单脉冲器件输出能量已达上千焦耳。单级调Q器件很容易得到几十兆瓦的峰值功率输出(用这类器件已成功地对载有角反射器的人造卫星进行了测距试验)。多级放大器件的输出峰值功率已达数千兆瓦到一万兆瓦。红宝石在激光发展上是贡献比较大的一种晶体。

§2.气体激光器

本节课教学目标:

本节重点讨论He-Ne激光器的结构和激发机理、输出特性、CO2激光器的结构和激发过程 Ar+激光器的结构、Ar+激光器的工作持性。

本节课教学内容:

一、氦-氖(He-Ne)激光器

1.He-Ne激光器的结构和激发机理

2.He-Ne激光器的输出特性二、二氧化碳激光器

1.CO2激光器的结构和激发过程

2.CO2激光器的输出特性

三、Ar+离子激光器

1.Ar+激光器的结构

2.Ar+激光器的激发机理

本节课教学手段:

采用多媒体形式

通过讨论让学生明白:与其他种类的激光器相比较,气体激光器的突出优点是输出光束的质量好(单色性、相干性、光束方向性和稳定性等)。

§3.染料激光器,半导体激光器,其他激光器

本节课教学目标:

本节重点讨论染料激光器、半导体激光器的结构和激发机理、输出特性、工作持性等。

本节课教学内容:

一、染料激光器的激发机理

1.染料分子能级

2.染料分子的光辐射过程

3.染料分子的三重态“陷阱”

二、染料激光器的泵浦

1.闪光灯脉冲泵浦

2.激光脉冲泵浦

三、染料激光器的调谐

四、半导体的能带和产生受激辐射的条件

五、PN结和粒子数反转

六、半导体激光器的工作原理和阈值条件

七、同质结和异质结半导体激光器

八、准分子激光器 本节课教学手段:

采用多媒体形式

通过讨论让学生明白各种激光器的特点及优缺点。

激光在信息技术中的应用

本节课教学目标:

激光在信息领域的应用,包括以激光为信息载体,将声音、图象、数据等各种信息通过激光传送出去,或者通过激光将信息存储在光学存储器里,以及通过激光将信息打印或显示出来,等等。本节介绍激光通信、激光显示、激光存储等领域的技术和应用,让学生了解到激光在上述各方面应用的新思想、新概念、新技术、新进展。

本节课教学内容:

一、光纤通信系统中的激光器和放大器

1.半导体激光器 2.光纤激光器 3.光放大器

二、激光全息三维显示

1.全息术的历史回顾

2.激光全息术的基本原理和分类

3.白光再现的全息三维显示 4.计算全息图

5.计算全息三维显示的优点

三、激光存储技术

1.激光存储的基本原理、分类及特点

2.激光光盘存储

3.激光体全息光存储

4.激光存储技术的新进展

四、激光扫描和激光打印机

1.激光扫描

2.激光打印机

本节课教学手段:

采用多媒体形式

通过学习让学生了解到激光在上述各方面应用的新思想、新概念、新技术、新进展。

复习课

本节课教学目标:

系统复习本学期所学习的内容,帮助学生总结本课程的重点、难点及解决问题的办法。让学生了解到:在光信息科学与技术知识体系中,激光在信息产生、获取和处理中均起到重要作用。

本节课教学内容:

重点:辐射半经典理论、光谱线形及加宽机制、增益饱和、阈值条件、连续激光器的稳态建立、谐振腔的稳定条件、谐振腔的衍射理论及高斯光束的解析特性、等价共焦腔、调Q及锁模技术原理

难点:增益饱和、谐振腔的衍射理论及高斯光束的解析特性

解决办法:针对教学内容中的重点和难点内容,采取重点复习,认真阅读教科书,通过比较多样化解题方式,并借助上课时发下去的多媒体课件的直观化,真正理解和掌握重点、难点内容,握激光器运转的基本物理原理及激光应用技术的理论基础。为后续专业课程的进一步学习奠定基础,为今后在光电子学及相关的电子信息科学等领域从事学术研究和教学工作奠定扎实的理论基础。

本节课教学手段:

借助多媒体课件的直观化,使学生真正理解和掌握重点、难点内容。

第三篇:激光测距应用

激光测距应用

应用领域:

电力、水利、通讯、环境、建筑、地质、警务、消防、爆破、航海、铁路、农业、林业、房地产、休闲/户外、反恐/军事 主要应用方向:

 在钢铁厂和轧钢厂用于过程监控  料位、液位的测量

 行车定位系统、装卸处理设备的定位系统

 对人力所不能到达部位的测量,如罐装物、管道、集装箱等  车辆、船舶的定位监控系统  起重安装设备位置控制  不宜接近的物体测量

 距离、位置、液位、料位、生产线料坯传送定位  行吊XY定位  电梯运行测量  大型工件装配定位  运动物体位置监控  大型货架库存管理  超大物体几何计量  靶距自动控制  电气化铁路接触网测量

 铁路建筑物限界测量以及江河湖海等的水位测量。测距发展路线:  民用,手持式  工业用,高可靠性 市场开拓方式:  大客户

 代理商,借助代理商的客户群 具体应用示例: 1.汽车防撞探测器

一般来说,大多数现有汽车碰撞预防系统的激光测距传感器使用激光光束以不接触方式用于识别汽车在前或者在后形势的目标汽车之间的距离,当汽车间距小于预定安全距离时,汽车防碰撞系统对汽车进行紧急刹车,或者对司机发出报警,或者综合目标汽车速度、车距、汽车制动距离、响应时间等对汽车行驶进行即时的判断和响应,可以大量的减少行车事故。在高速公路上使用,其优点更加明显。2.车流量监控及车轮廓描画

这种使用方式一般固定到高速或者重要路口的龙门架上,激光发射和接收垂直地面向下,对准一条车道的中间位置,当有车辆通行时,激光测距传感器能实时输出所测得的距离值的改变,进而描绘出所测车的轮廓。这种测量方式一般使用的激光束发散角度较小,测距范围一般小于30米即可,且要求激光测距速率比较高,一般要求达到几百赫兹就可以了。这对于在重要路段监控可以达到很好的效果,能够区分各种车型,对车身扫描的采样率可以达到10厘米一个点,且对车流限高,限长等都能实时输出结果。如图3。在没有车辆到来时,激光测距传感器测出的是一个距离常量,也就是测距仪到地的距离,当有车辆从测距仪下面经过时,距离值改变,当距离值再次回到常量就认为有一辆车通过,根据这种方式我们可以对通过一些路段的车流量进行监控。现在常用的方法是对一段时间内的车流进行统计平均的方法,带有很大的估计成分,而视频统计的方法还有很多现实应用的困难,因此,激光测距统计方法为车流量统计提供了一种可行的方案。3.车辆行人违法监测

由于激光测距传感器的光束不是实质性的障碍,在利用激光测距传感器对路面进行监控的时候,并不会阻碍交通的正常运行。因此,在一些禁停或者禁止行人车辆通行的路段,用激光束平行路面以一定高度进行固定发射或者以一定角度进行扫描,当遇到有车辆违法停车闯红灯或者行人违法跨越护栏等,激光测距距离值改变,可以进行报警或者警示。这种应用光束不必要太宽,但一般要求测距距离比较长,以确保一定路段长度的防护距离。这种方式构成的智能交通违法监控系统将在交通物联网中得到很大的应用。4.激光测速传感器

激光测距传感器是激光测距技术在交通管理领域最早的一种形式,因为其卓越的性能,在实际应用中逐渐得到普及。激光测距传感器是采用激光测距的原理,是对被测物体进行两次有特定时间间隔的激光测距,取得在此时间间隔内被测物体的距离变化,从而得到该被测物体的移动速度。激光测速仪分为固定式的和移动式两种,固定式的一般固定在路边或者龙门架上,以一个比较小的角度迎向来车,一般通过车牌反射进行测量,测量精度比较高,可以达到±1公里/小时,测速范围可达250公里/小时,测距范围在此应用中不用太长,一般80到100米即可。移动式激光测速仪对操作要求比较高,一般光束发散角度要大于3 mrad,鉴于激光测速的原理,激光光束必须要瞄准垂直与激光光束的平面反射点,又由于车辆处于移动状态,车体平面不大,且测速需要一定时间,只能作为临时测速,取证应用。激光测距传感器由于光束发散角度较小,便于测速取证,不像雷达多普勒测速仪,在多车道测量时不能确知超速的具体车辆,且由于激光测速传感器发射的是近红外的光波,不能被雷达探测器、电子狗等探侧,且不易受市区雷达杂波干扰。鉴于激光测距传感器的上述优点,在智能交通中的应用将越来越普及。如图2。

5.测量传送带上箱子的宽度

使用两个发散型传输时间激光测距传感器,在传送带的两侧面对面安装。因为尺寸变化的箱子落到传送带上的位置是不固定的,这样,每个激光测距传感器都测量出自己与箱子的距离,设一个距离为L1,另一个为L2。此信息送给PLC,PLC将两个激光测距传感器间总的距离减去L1和L2,从而可计算出箱子的宽度W。6.在港口码头上的使用 使用激光测距传感器,可以测量船只到船只的距离和船只到船只的相对速度。在一艘船只移动的过程中,用来检测船只到码头或到另外的船只的的相对距离和速度,船只根据激光测距传感器输出的数字信号,调整船只行进的速度和航线。如果使用云台可以测量一定角度范围的物体的距离,并且可以知道在那个角度有物体,其距离和相对速度。7.在火车站上的使用

使用激光测距传感器,可以测量火车到站台的的距离和火车到火车到站台的相对速度。

8.在石油钻机上的使用

使用激光测距传感器,可以测量游车到塔顶的距离和相对速度,防止“上碰下砸”事故的发生。

9、保护液压成型冲模 机械手把一根预成型的管材放进液压成型机的下部冲模中,操作者必须保证每次放的位置准确。在上部冲模落下之前,一个发散型传感器测量出距离管子临界段的距离,这样可保证冲模闭合前处于正确位置。

10、二轴起重机定位

用两个反射型传感器面对反射器安装,反射器安装在桥式起重机的两个移动单元上。一个单元前后运动,另一个左右运动。当起重机驱动板架辊时,两个传感器监测各自到反射器的距离,通过PLC能连续跟踪起重机的精确位置。

激光轮廓扫描仪

应用方向: 港口应用 1.岸吊大梁防撞

防止大梁与轮船上的烟囱、天线等相撞。2.岸吊集卡定位

通过测量集装箱的轮廓来判断卡车位置,通过面板显示司机应前进或后退的距离。

3.轮胎吊地面防撞

通过区域保护功能,防止轮胎吊的前进方向上与卡车、人物等障碍物碰撞,同时可起到防止两台轮胎吊相撞的目的。4.倒车雷达

通过区域保护功能,防止港口重型车辆在倒车时与卡车、人物等障碍物碰撞。

5.轮胎吊/轨道吊防打保龄

通过测量堆场中集装箱的轮廓,控制吊具的提升高度,确保吊具及吊具上的集装箱不与堆场中的集装箱碰撞,同时做到优化操作路线,提高效率的功能。交通应用 1.车辆超限检测

通过轮廓测量功能,测量过往车辆的最高,最宽值。2.货车体积测量

通过轮廓测量功能,测量过往车辆的最高,并计算车辆的体积。3.铁路货运安全检测门

通过轮廓测量功能,测量过往车辆的截面,将截面数据与设定值对比,检测是否超出。4.铁轨障碍物检测

通过轮廓测量功能,测量在铁轨上是否有障碍物及障碍物的大小、位置。其它应用

1. 机器人和AGV自动导航车

通过轮廓测量功能,实现机器人自动导航或防撞,或地图扫描。2. 船闸应用

通过区域检测功能,检测航道上是否有船经过,以避免与船闸相撞。3. 盘煤系统

安装在堆取料机上,自动盘煤。4. 人数统计

监控人流密度,控制区域安全及节能等作用。5. 安防

通过人眼不可见的红外扫描,广泛应用于核电、军队、监狱、博物馆等重要场合的安防应用。6. 地图构建

通过轮廓测量功能,实现无人车的自动避障或周围环境的轮廓扫描。7. 机器人轮廓扫描及定位

通过轮廓测量功能,扫描物体的轮廓及位置,方便机器人抓取。市场开拓方式:  大客户

 代理商,借助代理商的客户群

具体应用: 港口应用 1.岸吊大梁防撞

防止大梁与轮船上的烟囱、天线等相撞。

2.岸吊集卡定位

通过测量集装箱的轮廓来判断卡车位置,通过面板显示司机应前进或后退的距离。

3.轮胎吊地面防撞

通过区域保护功能,防止轮胎吊的前进方向上与卡车、人物等障碍物碰撞,同时可起到防止两台轮胎吊相撞的目的。

4.倒车雷达

通过区域保护功能,防止港口重型车辆在倒车时与卡车、人物等障碍物碰撞。

5.轮胎吊/轨道吊防打保龄

通过测量堆场中集装箱的轮廓,控制吊具的提升高度,确保吊具及吊具上的集装箱不与堆场中的集装箱碰撞,同时做到优化操作路线,提高效率的功能。

交通应用 1.车辆超限检测

通过轮廓测量功能,测量过往车辆的最高,最宽值。

2.货车体积测量

通过轮廓测量功能,测量过往车辆的最高,并计算车辆的体积。

3.铁路货运安全检测门

通过轮廓测量功能,测量过往车辆的截面,将截面数据与设定值对比,检测是否超出。

4.铁轨障碍物检测

通过轮廓测量功能,测量在铁轨上是否有障碍物及障碍物的大小、位置。

其它应用

1. 机器人和AGV自动导航车

通过轮廓测量功能,实现机器人自动导航或防撞,或地图扫描。

2. 船闸应用

通过区域检测功能,检测航道上是否有船经过,以避免与船闸相撞。

3. 盘煤系统

安装在堆取料机上,自动盘煤。

4. 人数统计

监控人流密度,控制区域安全及节能等作用。

5. 安防

通过人眼不可见的红外扫描,广泛应用于核电、军队、监狱、博物馆等重要场合的安防应用。

6. 地图构建

通过轮廓测量功能,实现无人车的自动避障或周围环境的轮廓扫描。

7. 机器人轮廓扫描及定位

通过轮廓测量功能,扫描物体的轮廓及位置,方便机器人抓取。

第四篇:激光加工应用范围

主要可广泛应用于:

1: 汽车机械行业:轴承,钢套,活塞环,发动机标签,汽车面板按键,机床配件等; 2: 电子通讯行业:手机按键,键盘,电子元器件,家电面板,光缆,电缆等;

3: 五金工具行业:工具,量具,刃具,卫浴洁具,餐具,锁,刀剪,医疗器械,健身器材,不锈钢制品等;

4: 饰扣标牌行业:钮扣,箱包扣,皮带扣,金银饰品,指示牌,胸牌,考勤卡,名片贺卡,日历,相片,皮包,皮带,笔及笔盒,奖状,奖杯各种证书,收藏器,艺术品,图章,牌匾等;

5: 仪表眼镜行业:金属表壳,表底,眼镜框,仪器仪表面板等;

6: 木器工艺行业:木制工艺品,字画复制及装表,家具工艺装饰等;

7: 包装瓶盖行业:烟草,食品,药品等内外包装,金属瓶盖,易拉罐等。

第五篇:激光的发展及应用

激光的发展及应用

13材料C1 安海山 20134865620 前言:激光作为新能源代表,在许多领域都有更广泛应用,激光器的发明是20世纪中能与原子能、半导体、计算机相提并论的重大科技成就。自诞生到现在得到了迅速发展,激光光源的出现是人工制造光源历史上的又一次革命。我国激光技术在起步阶段就发展迅速,无论是数量还是质量都和当时国际水平接近。一项创新性技术能够如此迅速地赶上世界先进行列,这在我国近代科技发展史上并不多见。能够将物理设想、技术方案顺利地转化成实际激光器件,主要得力于长春光机所多年来在技术光学、精密机械方面的综合能力和坚实基础。一项新技术的开发,没有足够技术支撑很难形成气候。

摘要:激光是20世纪60年代出现的最重大科学技术成就之一,它的 出现深化了人们对光的认识,扩大了光为人类服务的天地。激光是基于受激发射放大原理而产生的一种相干辐射。能够发射出激光的实际装置,称之为激光器,普通光由原子群中的原子无秩序地、个体自发发光产生,而激光的产生,则是控制了原子群,使之集体化地,有组织有纪律地发光,就是说,激光是由原子群的集体化受激发光产生的。

关键词:激光、激光产业、发展趋势 1.激光的应用现状

1.1激光在自然科学研究上的应用

1.1.1非线性光学反应

在熟悉的反射、折射、吸收等光现象中,反射光、折射光的强度与入射光的强度成正比,这类现象称为线性光学现象。如果强度除了与入射光强度成正比外,还与入射光强调成二次方、三次方乃至更高的方次,这就属非线性光学效应。这些效应只有在入射光足够大时才表现出来。高功率激光器问世后,人们在激光与物质相互作用过程中观察到非线性光学现象,如频率变换,拉曼频移,自聚焦,布布里渊散射等。

1.1.2用激光固定原子

气态原子、分子处于永不停息运动中(速度接近340 m/s),且不断与其它原子,分子碰撞,要“捕获”操作它们十分不易。1997年华裔科学家、美国斯坦福大学朱棣文等人,首次采用激光束将原子数冷却到极低温度,使其速度比通常做热运动时降低,达到“捕获”操作的目的。具体做法是,用六路俩俩成对的正交激光束,用三个相互垂直的方向射向同一点,光束始终将原子推向这点,于是约106个原子形成的小区,温度在240μκ以下。这样使原子的速度减至10 m/s两级。后来又制成抗重力的光-磁陷阱,使原子在约1s内从控制区坠落后被捕获。此项技术在光谱学、原子钟、研究量子效应方面有着广阔的应用前景。

1.2激光测距、激光雷达

利用激光的高亮度和极好的方向性,做成激光测距仪,激光雷达和激光准直仪。激光测距的原理与声波测距原理类似。激光雷达与激光测距的工作原理相似,只是激光雷达对准的是运动目标或相对运动目标。利用激光雷达又发展了远距离导弹跟踪和激光制导技术,这些在1991年海湾战争中都已投入使用。激光制导导弹,头部有四个排成十字形的激光接收器(四象限探测仪)。四个接收器收到的激光一样多,就按原来方向飞行;有一个接收器接受的激光少了,它就自动调整方向。另一类激光制导是用激光束照射打击目标,经目标反射的激光被导弹上的接收器收到,引导导弹击中目标。激光准直仪起到导向作用,例如在矿井坑道的开挖过程中为挖掘机导向。激光 准直仪还被用在安装发动机主轴系统等对方向性要求很高的工作中。

1.3激光在工业应用

激光加工代表精密加工装备未来的发展方向,体现着一个国家的生产加工能力、装备水平和竞争能力。目前,激光加工技术在各种仅金属与非金属材料加工中的应用非常广泛。工业激光器目前主要包括CO2激光器、固体激光器、半导体激光器等。这几种激光器各具优点,如CO2激光器的成本最低,固体激光器的光束质量好,半导体激光器的出光效率高。光纤激光器是未来新一代激光技术的发展方向,它具有常规固体激光器所不具备的许多优点。然而激光器服务的机床企业非常谨慎,终端用户对激光器本身的印象远不及对系统那么深刻。在现代重工业中,如材料切割、焊接、快速成型等过程中,激光技术体现出了优越性。激光可以通过软件来控制轨迹。激光加工属于非接触加工,因此稳定性和寿命都比较好。在当今半导体行业,光科技术已成为半导体工业的“领头羊”。激光器在线加工已成为不可或缺的一部分。例如激光调阻机可达到产能70万只/小时,芯片光刻已实现65nm的制程。

1.4激光在医学应用

激光在医疗领域有着非常广泛的应用。激光与生物体的作用产生多种效应,如热效应、压力效应、光化效应、电磁效应。有时,这几种效应在作用是同时存在。激光类医疗器材产品被定义为:为了手术、治疗或医疗诊断目的而进行人体照射的那些种类的医疗器材产品。激光医疗设备可分为激光治疗器、激光诊断仪器和激光检测设备。激光美容、激光切除肿瘤、激光眼科手术、激光心肌血管再造等等都得到了迅速发展。在世界激光医疗市场,中国已成为仅次于美国和日本的世界第3大激光医疗市场。弱激光对生物组织有刺激、阵痛、消炎、扩张血管等作用,用弱激光照射病灶,有治疗效果。利用弱激光照射穴位。可以产生类似针灸的效果。低强度的He-Ne激光血管内照射可以治疗脑梗塞、颈椎病、冠心病等缺血性疾病]。研究表明,紫光激光器对软组织治疗有着很好的疗效,打破了CO2激光器最适合治疗这类疾病的常规认识。

1.5激光通信

激光通信主要是利用激光的单色性和方向性好的特点。根据传输媒质的不同,激光通信可分为宇宙通信、大气通信、水下通信以及光纤通信。目前在军事领域使用较为广泛的是大气通信。大气激光通信保密性能好,难以截获和干扰。诺·格公司已完成卫星激光通信系统兼容性实验,2007年进行下一阶段试验,该系统能够为多种用户提供更强的通信能力。民用光纤通信的容量很大,且成本低。目前光纤通信蓬勃发展,已成为重要的民用领域之一。

1.6激光与能源

激光具有高亮度的特点,在能源利用上也有其自身独特的优势。目前,激光与核能的应用紧密相关:一是激光分离同位素,用于核燃料的提纯工作;二是激光核聚变。能源现已成为社会发展中的中的重要问题之一。最理想的能源应是既洁净又取之不竭的核能,这当然是聚变能的利用。据估计,地球海洋中的聚变资源可够人类用1千亿年,可以说是取之不尽,用之不竭,同时又不会污染环境的能源。可见,可控聚变核反应是一个非常理想的核能来源,已引起各国科学家的高度重视,但尚未能够做成实用的能源来发电。目前,强激光功率已达到聚变的点火条件。俄罗斯实验物理科研所已成功研制出用于热核反应的新型大功率激光器。该激光器的功率达到了1015W/cm2,能量达300 000 J,可代替实验室条件下的核试验。用于激光传输不需要介质,因而可作为远距离作用能源。据报道,日本一个研究小组以实验成功用激光驱动机器人。机器人电源一般使用电池,然而在核电站和化学污染严重的场所,对正在作业的机器人更换电池有一定的困难,而用激光驱动十分便利。此外在宇宙空间用激光驱动机器人也比使用电池优越。目前,日本正在进行激光推进技术、跟踪和控制小型车辆的实验研究,进展良好。此外,激光还有许多用途,在军事、科研、文化、国防、公安侦破等领域均有广泛用途。

2.激光的发展趋势

激光器自问世30余年以来,以日新月异的面貌改变着自身的功能,令人瞠目结舌,也令世人刮目相看,接下来再看看激光未来发展走向以及激光产业发展。

2.1激光器发展趋势 2.1.1功率越来越高

美国、法国、德国和日本最近已经完成或正在建造拍瓦新装置(1拍瓦=1015W)。这些高功率激光器都有2种运转方式:可以断续发射几百焦耳的长脉冲(每个约400fs),(1 fs =1015s),或发射不连续的短脉冲(每个约20fs),每个脉冲为几十焦耳。超短超强飞秒激光器可用于激光核聚变实验和高能量密度物理研究,在商用上也有巨大的潜力。飞秒激光器用于光纤通信可扩展通信宽带,到2010年通信系统的传输速率达到5~10Tbps。

2.1.2小型化、集成化激光器

目前,全球固体激光器市场一派兴旺,半导体激光器迅速增长,二极管泵浦的固体激光器成为新的增长点。据研究表明,激光二极管采用脉冲方式供电可以在相当程度上提高其峰值功率,这将有效推进激光二极管在材料处理中的使用。

2.1.3阵列激光器

光通信的迅猛发展极大推动了阵列激光器的出现和进一步发展。据研究表明,阵列激光器非常适合全光互连,采用光子晶体耦合激光器显著提高了出光效率。

2.1.4新波段激光器

近年来,中远红外激光器、极紫外激光器等也得到了发展,现已有近千种工作介质,可产生的激光波长包括从真空紫外到远红外,光谱范围越来越宽。3.1.5高效率 激光器的出光效率越来越高。新型YAG激光器的斜度效率在泵浦功率>20W时约为81%。

2.2全球激光产业发展趋势

世界激光器市场可划分为3大区域:美国(包括北美)、欧洲、日本以及太平洋地区。由于半导体激光器的迅速发展,使二极管泵浦固体激光工业加工设备所占的市场份额越来越大。2002年全球工业激光系统产值约为29.9亿美元,2003年约为31.116亿美元,2004年约为32.11亿美元。2006年用于材料加工的激光器的销售额达到了17亿美元。在世界激光市场上,日本在光电子技术方面处于领先地位,约占50%的份额。追踪世界激光产业发展,可看出其中包含的几点趋势:①在激光源方面,半导体激光器和半导体泵浦固体激光器将成为未来的主导;②激光技术对产品投入产出比和技术基础的优化作用更加明显,融合在产品与服务中的技术含量越来越高;③激光技术与众多新兴学科技术相结合,更加贴近人们的日常生活;④激光产业界并购盛行,各公司力争成为产业巨头。

2.3我国激光产业现状及存在主要问题

我国激光产业具有很好的发展前景和潜力。近年来,中国激光市场呈现出稳定、高速增长的态势。1999年和2005年,中国激光产品市场销售额分别为14.13亿和47.75亿人民币 ]。在行业迅猛发展的同时,我们也该认识到我国激光产业起步晚、基础薄 弱,与世界领先国家的差距还很大。例如,与先进国家的激光加工系统相比,我国的激光加工系统差距甚大,仅占全球销售额的2%左右。主要体现在:高档激光加工系统很少,甚至没有;主力激光不过关;激光微细加工装备缺口较大。目前,存在的主要问题有:(1)核心技术少很多关键性基础性技术没有解决好,甚至某些技术还有退步。目前,国内激光产业的核心技术大多来自于进口,产品竞争力不足。(2)产研结合欠佳 我国的激光学术研究方面仍处于世界领先地位,但产业却非常落后,其中知识产权和专利成果保护不力,很多先进的激光技术没有转换成产业应用。另外,学术的开放性不够,由于担心技术流失,导致创新效率低下。(3)创新能力不足,配套能力较差 系统的配套能力不高,创新能力不足,大多是传统结构类型。现有的产业大多是光机电算综合的产业,而国产激光器和其他行业的结合很不好,智能化、自动化程度太低,增加了用户使用的困难。(4)从技术管理上看,缺少良好的评价系统 缺少国家标准,评价体系“当量”折算不当,华而不实。现有的评价体系是一种自我循环,导致激光产品的质量监督不够,这些都不利于激光产业的发展。

3.结束语

激光在当今世界应用领域越来越广泛,通过对当今不同激光产业现状的了解,对激光以及激光产业发展趋势的把握,有助于我国在激光这一新技术方面处于前列。更好的为经济服务,是我国经济有更大的发展空间。

参考文献

[1] 范滇元.激光技术 [M].北京:高等教育出版社,2002,118~120. [2] 倪光炯.改变世界的物理学[M].复旦大学出版社,200,139~145.

[3] 杨贵铣.激光与光电子学进展[M].苏州大学出版社,2008,6:117~119. [4] 孟红云.激光世界[J].辽宁教育行政学院学报1999,19:1~4. [5] 张玉川.国内外激光医疗仪器的新发展[J].2002,117~119. [6] 罗云.激光与光电子进展[J].2004,41(1):12-14.

[7] 江云发.激光与光电子[M].北京:高等教育出版社.2004,12:22~23. [8] 方东杰.世界物理学[M].浙江大学出版社1998,23~48.

[9] 王涣.激光与光电子学进展[M].人民教育出版社2009,43,8~9.

下载激光的特性及应用教案word格式文档
下载激光的特性及应用教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    激光焊接机的主要特性及工作原理(精)

    激光焊接机的主要特性及工作原理 激光焊接是激光材料加工技术应用的重要方面之一,又常称为激光焊机、镭射焊机,按其工作方式常可分为激光模具烧焊机(手动焊接机)、自动激光焊接......

    浅谈图书馆如何简单应用大数据特性

    浅谈图书馆如何简单应用大数据特性 重庆师范大学涉外商贸学院【摘 要】随着现代社会和科学技术的发展,以及大数据的概念出现以后,大数据已经渐渐融入到我们生活中的各个领域,正......

    激光的话教案

    【教学目标】 1.认识“激、殊、筒、聚、削、剑、缝、武、炮、强、敌、途、且、棒、幻、晰、类”17个生字,会写“且、束、敌、钢、断、实、集、造”8个字。认识“斤字旁”。......

    激光的话教案

    故事激趣,温故引新 小朋友们,喜欢当警察吗?今天,老师就给大家一个当警察的机会,请看(播放录像)。在作案现场,黑猫警长发现了小象的脚印,究竟是哪一只小象干的坏事呢?咦,警长拿着尺子准......

    激光在生活中的应用实例

    光纤传输原理分析 折射定律为折射线位于入射线和法线所决定的平面内,折射线和入射线位于法线的两侧。 光在传播过程中,若从一种介质传播到另一种介质的交界面时,因两种介质的折......

    学习激光的应用心得体会

    《激光的应用》课程是光学工程本科专业的一门重要的专业课,是一门专门讲述激光应用过程中涉及的基本技术的课程。课程教学的目标要求学生了解激光技术的发展历史,掌握激光应......

    激光点状模组应用

    激光点状模组应用 特点1:该产品采用原装进口激光二极管,光学透镜。光斑清晰,发散度低,准直性好,体积小,工业适用性强,具有其他同等产品不可比的优点: 1智能反馈控制电路; 2高效透过率......

    金属激光切割机应用及发展前景

    金属激光切割机应用及发展前景 金属加工业在工业制造中占有很重的分量,对于大多数金属材料来说,不管它们具有怎样的硬度,金属激光切割机都能够进行无变形切割。目前使用最先进......