商不变的规律教学设计及反思(五篇模版)

时间:2019-05-12 22:31:39下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《商不变的规律教学设计及反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《商不变的规律教学设计及反思》。

第一篇:商不变的规律教学设计及反思

《商不变规律》公开课教案

学习目标: 1.理解和掌握商不变的规律,并能运用这一规律口算有关除法,培养学生的观察、概括以及提出问题、分析问题、解决问题的能力。2.学生在参与观察、比较、概括、验证等学习过程中,体验成功,收获学习的快乐。学习重难点: 1重点:理解归纳出商不变的规律。

2.难点:会初步运用商不变的规律进行一些简便计算。活动方案:

一、创设情境,激发兴趣导入:同学们想玩游戏吗?今天我们就一起玩一个自编除法的游戏。老师这有三个数字——8、2、0、,每个数字在一道算式中可以出现一次、两次或多次,也可以一次也不出现,但是要求每一道算式中的商必须等于4,限时一分钟,看谁写得多!预测:8÷2=4 80÷ 20=4 800÷ 200=4 8000÷ 2000=4 88÷ 22=4 888÷ 222=4 发现:我们无论编出多少道不同的算式,什么是不变的?(板书:商

8888÷ 2222=4 88888÷ 22222=4 880 ÷220=4 8800 ÷2200=4 88000÷ 22000=4 不变)

商不变,是什么在变呢?(板书:被除数和除数)

探究:被除数和除数究竟有怎样的变化,商却不变呢?这节课我们一起来研究商不变的规律(板书课题)

二、合作学习、探究规律

探究:请观察我们自己编的一组算式,看看被除数和除数究竟是怎样变化的而商却不变?

要求:可以自己研究,也可以小组内共同探究。交流:说出自己的发现。

预测1:学生对于“同时”、“相同”的用词不一定能用的准,理解不一定能非常透彻。

解决:让学生在自己充分的理解,叙述的基础上提炼出“同时”、“相同”一词。

预测2:对于“零除外”,有些同学可能会想到这一情况,但对于其原因不是很清楚。

解决:让学生实际举例,使其充分理解——零不能做除数。

三、应用规律,检测反馈

1.在○里填上运算符号,在 里填上适当的数。(1)16÷ 8=(16× 2)÷(8 ×□)(2)480÷80=(480÷10)÷(80○10)(3)150÷25=(150○□)÷(25○□)2口算。竞赛:一分钟内能完成几道题,并说说做的快的原因。3简算

400÷25=你会算吗?怎样变成我们学过的形式在计算呢? 预测:400÷25=(400× 4)÷(25× 4)=1600÷ 100=16 400÷25=(400÷5)÷(25÷5)=80÷5=16

四、总结延伸,应用拓展

今天我们一起研究了商不变的规律,请同学们大胆猜测一下,在乘法,加法、减法中会不会也有积、和、差不变的规律呢?请同学们利用课余时间与学习伙伴一起研究、思考。五:预留作业:补充习题有关练习。

第二篇:商不变规律教学反思

在本节课教学的时候,我让学生经历了探究规律——验证规律——抽象概括规律的过程,这样不仅有利于学生认识规律,还有利于培养学生初步的逻辑思维能力,以及学习数学的方法,商不变规律教学反思。总体来看,学生对商不变的规律已有了很好的掌握和理解,学生参与活动的积极性很高,教学反思《商不变规律教学反思》。

但是,在教学中,我发现本节课还有很多不足之处:如整个教学内容,到后面规律的得出,学生掌握的还好;学生语言的综合,概括能力还有待提高,总体看还是比较顺其自然。可到最后简便计算的时候,发现时间已经来不及了,我想是不是需要压缩一下在前半段规律发现的教学,因为在规律发现,举例的时候,只要举两三个列子就可以了,而不是顺着学生的思维继续下去,那么我想本堂的教学任务就能完成了,而且本堂课的深度也会加深,比如在详细讲同时扩大几倍的时候,而在接下来讲除法的时候,可以加快速度,让他们比较后直接总结规律,而不需要像乘法一样的,最后再总结规律,讲0的排除。

那么再用节约下来的时间讲简便计算,那这一节课可能就比较有秩序,深度也会加深,而且数学的课堂效率也会增强。

第三篇:商不变规律教学设计

《商不变规律》教学设计

明招小学

朱君卓

教学目标:1.理解和掌握商不变规律,并能运用这一规律口算相关的除法。

2.培养学生观察、分析能力和合作探究的意识和解决问题的初步能力。

3.学生在观察、比较、猜想、概括、验证等学习活动过程中,体验成功;通过体会“变”与“不变”的数学现象,渗透初步的辩证唯物主义思想启蒙教育。

教学过程:

一、直接引题

1.写出课题,让学生读一读,问:你觉得这节课上什么?

二、导学尝试 1.独立完成

师:请大家拿出导学案,“猪八戒吃西瓜”的故事看过了吗?(课前完成)

老庄主和手下人为什么笑了?

师:谁来展示一下你的列式计算。4÷2=2个

8÷4=2个

16÷8=2个 2.师:观察这些算式,什么在变,什么没变? 3.师:被除数和除数究竟怎么变时,商才会不变呢?

下面我们以“60÷20=3”为例,研究一下“被除数60”和“除数20”怎么变化时,商才不变?请同学们根据导学提纲完成1,先独立探索后小组交流(十分钟)4.师:谁来汇报这些算式的答案,运算顺序读法。我们来看看分类,同时乘:

(60×2)÷(20×2)=

(60×3)÷(20×3)=

同时除:

(60÷4)÷(20÷4)=

(60÷10)÷(20÷10)=(1)师:观察这类算式,你有什么发现?

(2)师:什么是同时?什么是相同的数?能将他们合成一句话吗? 5.师:像这样商不变的算式,你能再举举例子吗? 6.读一读句子,你觉得哪些词比较重要?为什么?

7.师:回过头来看看其他不等于3的例子,为什么不等于3? 8.师:你还有哪些疑问?

老师的疑问:“猪八戒吃西瓜”中,他每天都吃了2个,这是怎么回事? 你能填出括号中的变化吗?

4÷2=2个

16÷8=2个

()÷()=2个

()÷()=2个()÷()=2个

()÷()=2个 9.当堂检测

(1)P75“试一试”,解释小女孩为什么这么做?有什么好处? 师:学着小女孩的做法自己算一遍(2)P76“观察与思考” 师:看得懂吗?什么意思? 自己尝试下面的题目,写出过程。10.小结:这节课我们研究了什么规律? 11.我们是怎样开展研究的? 观察猜想——归纳总结——举例验证 12.总结:你有什么收获?

第四篇:商不变规律教学设计

《商不变规律》的教学设计

唐河县第三小学 刘晓闯

设计理念:《数学课程标准》在课程实施建议中明确指出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设各种情景,为学生提供从事数学学习活动的机会,激发对数学的兴趣,以及学好数学的愿望。在数学课堂教学中创设一定的生活情景,数学走进学生生活,让他们亲近数学,进而引导学生在生活中发现数学,让数学与生活结合,在真实或模拟的生活情景中学习数学、运用数学。同时,在课堂教学过程中,通过学生自主互助合作获取知识,参与知识发生发展的过程,深刻理解所学知识并能灵活运用。本节课主要是学习商不变规律。通过情景设置,逐渐让学生发现计算当中的规律,再通过学生合作学习总结出商不变规律。让学生充分完成现象分析,初步感知;比较观察,概括规律;举例验证,加深理解;解决问题,运用规律。

教学内容:

人教版九年义务教育六年制小学数学第七册P84。教学目标:

1.理解和掌握商不变规律,并能运用这一规律口算相关的除法。2.培养学生观察、分析、概括以及发现规律、探索新知的能力。教学过程:

1.故事导入

师:花果山风景秀丽,气候宜人,那儿住着一群猴子。有一天,猴王让小猴分桃子。猴王说:“给你8个桃子,平均分给2只小猴子。”小猴子一听,连连摇头,“不行,太少了!太少了!”“那就给你80个桃子,平均分给20只猴子。”小猴子喊道:“还少,还少。”“还少呀?那就给你800个桃子,平均分给200只猴子吧。”小猴子得寸进尺,试探地说:“大王开恩,再多给点行不行呀?”猴王一拍桌子,显出慷慨的样子:“那好吧,给你8000个桃子平均分给2000只小猴子,这下你该满意了吧。”小猴子笑了,猴王也笑了。

师:同学们谁的笑是聪明的一笑,为什么?

生1:猴王的笑是聪明的一笑。桃子的总数与猴子的总只数变了,但每只小猴子每次分到桃子的个数没有变。

生2:猴王的笑是聪明的一笑。因为猴王把小猴子给骗了,每只小猴子还是分的4个桃子。

【设计意图】:针对小学生喜欢听故事的特点,新课以学生熟悉的感兴趣的故事形式开头,创设一种符合孩子心理的情景,激发起孩子的积极性和探究新知识的欲望。为整堂课的顺利进行打下坚实的感情基础。

2.探索规律

先让学生通过故事中给出的信息提出问题,老师顺势出示问题:平均每只猴子分得几个桃子?然后课件出示自学提示: 小组合作,完成以下问题:

8÷2=4

80÷20=4

800÷200=4 8000÷2000=4 从上往下或从下往上仔细观察四个算式,你发现了什么?学生开始小组活动。

【设计意图】:设计这个环节,让学生通过观察四个算式,通过小组的合作研讨,发现从上往下看,被除数和除数都乘相同的数,商不变。从下往上看,被除数和除数都除以相同的数,商不变。在这个过程中,充分发挥小组合作的优势,让学生通过研讨,观察、分析,归纳,发现商不变的规律。

各小组汇报交流

通过交流汇报,互相补充,学生得出:被除数和除数同时扩大或缩小相同的倍数,商不变。

为了让学生说出“乘或除以相同的数”,我引导学生:扩大就是怎样运算?缩小就是怎样运算?学生总结出:被除数和除数同时乘或除以相同的数,商不变。

3.验证规律 师:同学们发现的这个规律是否具有普遍性呢?请你们接下来再举几个例子,看被除数和除数同时乘或除以相同的数,商变不变?

课件出示题目: 小芳、小刚、小红三个小朋友也各自列了一个式子来验证这一规律。

小芳:(80×100)÷(20×100)=4 小刚:(80 ÷ 20)÷(20 ÷ 20)= 4 小红:(80×0)÷(20×0)=4 通过同桌间讨论,使学生知道必须“0除外”。得出完整的商不变规律,课件出示商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变。

【设计意图】:设计这个环节,主要是让学生通过不同的例子验证商不变规律的适应性、普遍性,证明我们通过分析、归纳,得出的商不变规律结论是正确的。以后可以使用这个商不变规律解决问题。

4.应用规律解决问题(1)基础练习想一想,算一算

72÷9= 36÷9= 80÷40= 720÷90= 360÷90= 800÷400= 7200÷900= 3600÷900= 8000÷4000= 【设计意图】:通过口算的基础练习,让学生学会应用商不变规律进行计算,而不是用以前的方法计算

(2)认真观察,填一填。20÷5=4(20 ×6)÷(5 ×)=4(20 ÷)÷(5 ÷5)=4(20 ×)÷(5×8)=4

16÷8=2(16÷)÷(8○2)=2(16○3)÷(8×)=2(16÷)÷(8÷)=2 【设计意图】:通过观察,填写适当的数或运算符号,使学生进一步理解商不变规律的内涵。

(3)根据已知算式,判断正误。

已知48÷12=4,判断下列各式是否正确。如果不对,怎样改一下就对了。

①(48×5)÷(12×5)=4()②(48×3)÷(12×4)=4()③(48÷6)÷(12×6)=4()④(48÷4)÷(12÷4)=4()

【设计意图】:通过判断,并说理由,使学生进一步理解商不变规律的内涵。

(4)拓展练习

根据给出的例子,你能很快算出下面算式的结果吗? 例:400÷25 =(400×4)÷(25×4)= 1600÷100 = 16

150÷25 200÷25 【设计意图】:通过拓展练习,拓宽学生视野,培养学生知识迁移及灵活运用的能力,为后面学习除法简便运算奠定基础。

5.课堂小结

人教版九年义务教育六年制小学数学第七册P87。

《商不变规律》的教学设计

唐河县第三小学 刘晓闯

第五篇:商不变规律反思

《商不变规律》教学设计及反思

设计意图:本节课是在学习了比算乘法和笔算除法的基础上进行教学的,研究了商不变的规律引导学生探讨被除数不变上随除数的变化而变化的规律和除数不变商虽被除数的变化而变化的规律。本节课从乘法变化规律入手,利用乘除法的密切关系,使学生不由自主的想到:在除法中是否也存在着这样的变化规律?它们可能是什么?从而激起学生一探究竟的兴趣。但只有猜测是不够的,要想证明猜测是否正确,就必须予以事实证明,通过对三次验证过程不同角度的指导,促使学生在理解、掌握本课知识点的同时,经历猜测——验证——结论——应用的数学研究过程,尝试大胆合理猜测、举例加以验证的数学研究方法。这既是本节课的教学设计目标,也是新课改所倡导的教学理念。

教学内容:

冀教版小学数学四年级上册商不变规律。

教学目标:

1.通过猜测、探究引导学生发现并掌握被除数、除数和商的变化规律,并能运用规律解决问题。

2.引导学生经历猜测验证结论应用的一般研究过程,培养学生研究问题、解决问题的能力。

3.培养学生善于观察、勇于发现、积极探索的好习惯。

教学重点:

帮助学生发现并理解商的变化规律。

教学难点:

正确理解被除数不变,除数和商之间的变化规律。

教具准备:

实物投影、计算器。

教学过程:

一、利用迁移、大胆猜测。

师: 在前面的学习中,我们已经学习了积的变化规律谁还记得?

生1:一个因数不变,另一个因数扩大或缩小若干倍,积也随之扩大或缩小相同的倍数。

生2:一个因数扩大若干倍,另一个印数缩小相同的倍数,积不变。

师:我们都知道乘法和除法有着密切的关系,现在我们发现了乘法中有这样的规律,大家有什么想法?

生:在除法中是否也存在着类似的规律呢?

师:对呀,我也有这样的疑惑。那么我们能不能大胆的猜测一下:除法中有没有类似的规律?如果有会是什么规律呢?

生1:我觉着除法中肯定有规律,因为乘除法个部分之间是有联系的。

生2:我同意。而且我觉着如果被除数扩大了,除数不变,商也会跟着扩大。

生3:我觉着如果被除数不变,除数缩小、商也跟着缩小,除数扩大、商也跟着扩大。

生4:我猜被除数扩大或缩小、除数缩小或扩大相同的倍数,商不变。

生5:我不同意。我觉着如果被除数不变,除数缩小、商会扩大,除数扩大、商会缩小。

(教师根据学生的猜测进行板书)

(评析:简简单单的复习提问,不经意间将乘、除法之间挂起钩来,打通了知识间的横向联系,巧妙的运用了正迁移,促使学生自己提出问题,从猜测入手启动整个教学活动。)

二、验证猜测、研究规律。

(一)、验证第一个猜测:除数不变,被除数和商的变化规律。

师:合理大胆的猜测是我们研究问题的重要的第一步,但仅仅停留在猜测上还不行,我们下一步应该怎么办?

生:验证。

师:你们打算怎样来验证?

生:可以列算式来试一试。

师:举例实验的方法,确实是个好方法,那么我们就来逐个的验证。先来验证“除数不变,被除数扩大或缩小,商是否也随之扩大或缩小呢?”同学们可以小组合作,把你们所举得算式和结论写在实验报告单上。

(学生小组合作验证)

汇报:

师:哪个小组愿意说说你们的发现?

生1:我们小组举的例子是:10÷2=5,如果2不变,10扩大2倍,商就会变成10,也扩大了2倍,所以我们小组的结论是:除数不变,被除数扩大或缩小若干倍,商也随着扩大或缩小相同的倍数。

生2:我们小组举了3个例子进行验证,4÷2=2,80÷8=10,30÷5=6,每个例子都让除数不变,让被除数扩大、缩小,看商的变化,我们利用了计算器帮助演算,也得到了同样的结论。

师:对这两个小组的汇报大家有什么意见?

生1:我们也得到了同样的结论。

生2:我觉着第2组举了3个例子,更全面一些。

师:举例验证的方法确实应尽可能的多举例,这样才能更全面、正确率才更高,如果我们把全班的例子合在一起就更能说明问题。

(评析:猜测、验证是基本的数学研究方法之一,教师将这一研究思想作为整节课的核心贯穿始终,可见用心良苦。同时借助第一个层次的验证活动使学生体会到:列举法的应用要考虑它的全面性,仅靠一个例子是不能得结论的。)

(二)验证第二个猜测:被除数不变,除数扩大或缩小,商会随之缩小或扩大吗?

师:通过举例验证的方法,我们发现刚才的第一个猜想是正确地的!再来看第二个猜测:被除数不变,除数扩大或缩小,商真的会随之缩小或扩大吗?请大家继续验证。

(学生小组合作验证)

汇报:

生1:我们小组找了2个例子,并用计算器进行了验证:

发现被除数不变,除数扩大几倍,商反而缩小相同的倍数,除数缩小几倍,商就扩大几倍。

生2:我们小组也发现刚才的猜测不对,当被除数不变时,除数与商的变化方向是不一样的。

师:大家知道为什么会这样吗?

(学生茫然)

师:其实在我们生活中,有许多事例能够很好的体现出大家所发现的规律,比如:有一个蛋糕,如果平均分给10个人吃,每人只吃它的,是一小块,如果平均分给5个人吃,每人吃它的,是一大块,如果平均分给2个人吃,每人就会吃它的,更大的一块;这就像被除数不变,除数扩大商就缩小,除数缩小商就扩大的道理是一样的。

(评析:当被除数不变时,除数与商之间的变化规律是学生最难理解的,这与乘法中的一个因数不变,另一个因数与积的变化规律正好相反。教师巧妙的利用生活中学生熟悉的事例,变抽象为形象,突破了难点,起到了画龙点睛的作用。)

师:通过验证我们发现刚才的猜测不对,正确的结论应该是:被除数不变,除数扩大或缩小若干倍,商反而缩小或扩大相同的倍数(板书)。

(三)验证第三个猜测:被除数扩大或缩小、除数缩小或扩大相同的倍数,商不变。

师:同学们,咱们还有一个猜测呢,怎么办?继续验证。

(学生小作合作,继续验证。)

汇报:

生1:我们小组发现“被除数扩大或缩小若干倍,除数缩小或扩大相同的倍数,商不变”这个猜测也是错误的。比如:20÷10=2,如果变成40÷5商是8,不是2。

我们又按照另一种方法去实验:20÷10=2,如果被除数扩大2倍变成40,要想让商不变还是2,除数只能是20,也就是说也扩大了2倍。所以我们认为:被除数和除数同时扩大或缩小相同的倍数时,商才不会变。

生2:我们小组也是这样想的,只是我们组又举了几个例子验证了“被除数和除数同时扩大或缩小相同的倍数时商不变”是正确的。

师:这两个小组的研究思路真好,当他们小组发现有些猜测不正确时,能迅速做出合理的调整,而且还能主动地对新的调整再进行实验验证,这种研究思路值得大家学习。希望同学们在以后遇到类似的情况时,也能像他们一样,决不轻言放弃,及时调整思路,继续深入研究。

师总结:我要忠心的祝贺大家:通过合理的猜测、反复的验证,成功地发现了除法算式中,被除数、除数、商之间的变化规律,大家真了不起!

(评析:教师借助这个层次,使学生体会到:科学研究并不都是一帆风顺的,它需要不断的修正、反复的实验,这有利于培养学生科学严谨、锲而不舍的优秀品质。)

三、运用规律、解决问题。

练习1:

师:这些规律在平时的计算中有什么作用呢?能不能对计算有帮助呢?我们来看这样一组题,(出示):

3420÷57=60

76800÷240=320

34200÷57=

76800÷24=

342÷57=

76800÷2400=

(学生迅速口答出得数,教师记录答案。)

师:这么大的数,大家怎么做得这么快?

生:运用了刚才发现的规律……

师:到底算得对不对呢?规律在这里用的合理不合理呢?用计算器来验算一下。(学生运用计算器来验证。)

学生汇报:通过验证,发现正确。

练习2:(独立完成)

240 ÷30 =8

(240 ×4)÷(30 × ?)=8

(240÷6)÷(30? 6)=8

(240

??)÷(30÷5)=8

四、全课总结。

今天这节课,我们不仅通过大胆合理猜测、举例加以验证的方法,研究发现了除法中的三条变化规律;而且更重要的是我们经历了科学研究的一般规律:猜测——验证——结论,这也是科学家们经常采用的一种研究方法,希望今后同学们能利用今天所学的方法,解决更多的数学问题。

五、课后反思

本节课虽然在设计时力求以学生为主体,引导学生进行探究性学习,但由于备课时不够充分,也存在着以下几点不足。

一、引入时的材料不够充分。

课的开始,我先出示了一道题16÷8= 让学生口算。接着又呈现了6道除法算式,让大家口算:(1)48÷24(2)80÷40(3)160÷80(4)96÷48(5)64÷32(6)8÷4 从这6道题不难发现,前5道题同16÷8 比较,都是扩大几倍,而只有第6题是缩小的情况。因此学生在发现缩小几倍的规律概括的不是很好。既然是发现规律,就应该从多个材料中去找相同的地方。如果多出示一些口算题,这里面多数是商是2的,还有几道不是得2的,其中商2的口算扩大或缩小的情况尽可能多一些。然后让学生观察有什么发现,接着再探究商都是2的这些题的被除数和除数是怎样变化的,效果也许会更好一些。

二、小组合作安排得不够恰当。

探究性学习极力倡导学生在新知学习中积极合作、群体参与。这既可以培养学生的探索精神及参与、合作的意识,又有利于学生形成会学、善学的良好习惯,进一步提高学习能力。但是,在教学中,还应根据教学内容进行合作。在本节课上,出示6道商是2的除法算式,然后小组内讨论:被除数和除数是怎样变化的?结果,我发现有的学生心不在焉,有的一言不发,有的学生还在悄悄说话,还有的小组内的同学各写各的。这严重背离了小组合作学习的初衷,从根本上失去了小组合作的意义。因此,在今后的教学中,一定要根据教学内容,创设一定的问题情境,在问题情境中让小组内的每个成员主动参与,真正将合作学习落到实处。

总之,在课堂教学中,教师应努力创设与学生生活实际相联系的问题情境,激发学生主动参与的兴趣,让学生真正参与到知识的发生、发展过程中,从而达到学生整体素质的全面提高。

下载商不变的规律教学设计及反思(五篇模版)word格式文档
下载商不变的规律教学设计及反思(五篇模版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    商不变的规律教学设计及反思

    商不变的规律教学设计及反思2014.11.22一、教材分析“商不变的规律”是小学数学中的重要基础知识,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等......

    商不变的规律教学设计及反思范文

    商不变的规律教学设计及反思 2014.11.22 一、教材分析 “商不变的规律”是小学数学中的重要基础知识,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性......

    商不变的规律教学设计和反思

    商不变的规律教学设计和反思 教学目标:经历探索的过程,发现商不变的规律。 教学过程: 师:从这几个算式中你发现了什么? 8÷2=4 80÷20=4 800÷200=4 8000÷2000=4 生:被除数和除数发生......

    《商不变的规律》教学反思

    《商不变的规律》教学反思《商不变的规律》教学反思 篇1本节课的重难点是让学生通过观察和探索,能够发现理解商不变的规律,并能够灵活运用这个规律解决问题。一、巧妙设计激发......

    《商不变的规律》教学反思

    《商不变的规律》教学反思13篇《商不变的规律》教学反思 篇1这节课最重要的我认为是引导学生经历探索发现“商不变规律”的过程,因此我非常重视和期待生成的过程。在观察4个......

    《商不变的规律》教学反思

    本节课的重难点是让学生通过观察和探索,能够发现理解商不变的规律,并能够灵活运用这个规律解决问题。一、巧妙设计激发兴趣上课伊始,我带来了学生爱吃的糖,一下吸引了孩子的注意......

    《商不变的规律》教学反思大全

    今天的课上得很不顺利,主要是表达方面的问题。我从复习积的变化规律入手,再引出研究除法中的一些规律。我没有采用课本上的例题,而是先让学生口算100÷50,然后让学生依据这道题,......

    《商不变的规律》教学设计

    商不变的规律 教学目标: 知识目标:探索与发现商不变的规律,其次是理解并掌握商不变的规律,而且能利用商不变的规律,进行一些除法运算的简便运算。 能力目标:初步培养学生主动探索,......