第一篇:17.1勾股定理第一课时教学设计
17.1《勾股定理》教学设计
【教学内容解析】本节课是人教版八年级下册第十八章第一节勾股定理第一课时.本节之前学生已经学习了三角形一些知识,勾股定理研究的是直角三角形三边之间特有的数量关系,将形与数密切联系起来,是解直角三角形的主要依据,在生产和生活实际中应用广泛.本节课我从学生实际出发,创设有助于学生自主学习的问题情境,引导学生自主地经历一条由观察猜想到实践验证到推理论证的科学探索之路.我期望通过本节课达成四个一,为此我确定本节课教学目标为: 【教学目标】
知识与技能:掌握一个定理——勾股定理,并会用定理解决简单问题.过程与方法:
1、经历一次由特殊到一般的探索过程,通过观察、思考、尝试猜想结论,发展合情推理能力.
2、体验一种利用几何图形的面积证明代数恒等式的数形结合的思想,感受数学思维的严谨性. 情感与态度:通过对勾股定理历史的了解,感受数学文化,增添一份民族自豪感.在探究活动中,培养学生的合作交流意识和探索精神.
【学生学情】八年级学生已经具备了一定的观察、归纳、猜想和推理能力,已经学习了一些几何图形的面积的计算方法,但是运用面积法和割补思想解决问题的意识和能力还不够,对于如何将形与数有机的结合起来还有待提高.【教学重点】勾股定理的证明与运用. 【教学难点】用拼图法证明勾股定理.【教学策略】本节课主要采用启发式、探究式教学,由浅入深,由特殊到一般的提出问题,引导学生采用观察思考、动手实践、自主探索、合作交流的学习方法,使学生主动获得知识并发展能力. 【教学过程】 问题情境 师生活动 设计意图
教师出示情景图片提出问题,学生实践思考、探索交流等.一、设置情景 引发思考
从A地到B地有两条路,并且AC垂直于BC.
问题一:哪条路近?为什么?
问题二:你能知道走第一条比走第二条近几米吗?为什么? 那么在Rt△ABC中,已知AC=8,BC=6,能否求出AB的 长呢?
带着这个问题我们开始第十八章《勾股定理》的学习.本章我们将探索直角三角形三边之间特有的数量关系,并运用所得的结论解决问题.今天我们学习第十八章第一节——勾股定理.从简单的生活实例入手,引领学生预知本章的研究主题,引出课题. 问题情境
师生活动 设计意图
二、探索定理 获得知识
勾股定理给同学们设了三关,大家有没有信心冲过这三关!冲过这三关,我们就能获得知识,解决问题. 使教学内容富有挑战性.观察猜想
首先由毕达哥拉斯带领我们进入第一关.(学生读题)2500年前,古希腊著名数学家毕达哥拉斯非常善于观察和思考,经常能够从平淡的生活现象中发现数学问题.(教师提问,学生发表见解)观察:这个地面是由什么图形拼成的? 观察:这些直角三角形都什么关系?
毕达哥拉斯发现以直角三角形三边为边长都可做出一个正方形.观察:图中两个小正方形与大正方形的面积之间有什么关系? 如果中间直角三角形的两直角边分别为a, b,斜边为c,思考:直角三角形三边之间有什么关系?
问题:对于任意直角三角形如果两直角边分别为a, b,斜边为c,那么三边之间是否也有a2+b2=c2这样的关系呢?得出猜想,猜想之后进入第二关.
从观察生活中常见的地砖入手,让学生感受到数学就在身边.通过设计问题串,让探索过程由浅入深,使学生从观察中得到猜想.适时穿插毕达哥拉斯这一人文背景,使学生获得新知,同时也感染学生养成善于观察勤于思考的科学的学习品质.2、实践验证:
图中每个小方格的面积均为1,请分别算出正方形A,B,C的面积,利用面积关系验证三边关系.(同样的图形学案中有,让学生先独立完成,再小组交流,然后全班展示)给学生充分的自主探索、合作交流的空间,鼓励学生尝试用不同的方式解决问题.问题情境 师生活动
设计意图 学生活动:
分别求出图
1、图2中三个正方形的面积.学生动脑思考,动手做,动口说想法.师生总结:
图1: 9 + 16 = 25 图2: 4 + 9 = 13 所以: SA + SB = SC 所以: a2 +b2=c2
讨论中发表自己的看法,提高语言表达能力.通过交流总结出用面积割补法求大正方形的面积,为定理的证明做铺垫,突破本节课的难点.3、推理论证
特殊数据不能代表一般规律,我们猜想的这个结论要作为定理必须经过推理论证.学生活动:
通过动手合作拼正方形,并利用所拼的图形完成此猜想的证明.学生探索交流之后展示自己的拼图,解释自己的想法.由猜想到验证到论证,有效地启发学生的思考,使学生成为学习的主体,经历知识的形成过程.
4、总结定理
学生总结:定理的文字表达形式,和符号推理形式.教师介绍:我国古代学者把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.早在3000年前的《周髀算经》就记载勾三股四弦五的说法。所以我国把这个定理叫做——勾股定理.我国三国时期的赵爽利用弦图证明了勾股定理,巧妙的用图形的面积证明了代数恒等式,这种数形结合的思想,在数学史上有着非常重要的作用.这幅弦图是我国古代数学成就的象征,是我们所有中国人的骄傲!在北京召开的国际数学家大会把它作为会徽.介绍勾股定理的历史,让学生感受数学文化,增添民族自豪感,激发学习热情.问题情境 师生活动 设计意图
三、学以致用 解决问题
勾股定理精确地刻画了直角三角形三边的数量关系,条件十分简单,只需要(直角三角形)结论却很丰富,应用非常广泛.学生活动: 自己动手利用勾股定理已知两边求第三边.两道计算由学生独立完成,让学生自己体会勾股定理的用途,并发现应注意的问题.
引导学生回顾引例,前后呼应,实际问题中,感受到知识的应用价值.指导学生如何把实际问题转化成数学问题,训练学生有条理的表述自己的思考过程.
解决引入问题.
利用勾股定理可以解决很多问题.教师出示两到应用,先由解决问题一总结方法,然后让学生独立分析试一试.学生活动:想怎样通过.(模型演示).教师指导学生解决实际问题的方法: 先根据题意画出几何图形.再根据题意结合图形找已知什么,求什么.然后利用所学知识解决问题.学生活动:
学生先独立分析,再同桌交流各自的想法,然后全班展示.分析后整理解题过程. 教师总结: 勾股定理的应用非常广泛,下节课我们还要专门研究.
四、共享收获 布置作业
勾股定理被称为人类最伟大的科学发现之一,是数学史上最完美的定理.让我们来感受它的美:图中所示的三角形都是直角三角形,四边形都是正方形,正方形M,N的面积和是多少?
请同学们想象按照此规律不断滋生下去会有什么现象? 感受数学之美 问题情境 师生活动 设计意图
欣赏美丽的勾股树,(动画演示).随着直角三角形边长的变化,勾股树的形状千变万化.
思考:不管形状怎样改变,不变的是什么? 就让我们在这课美丽的勾股树下共享收获.(学生总结收获)
简要梳理本节课的知识点和重要的思想方法, 使学生在知识和能力上都进一步得到提升.(教师总结)
这节课我们在中外古人的引领下认识了一个定理——勾股定理;经历了一次探索——由特殊到一般的探索过程;体验了一种思想——数形结合的思想;通过了解勾股定理的历史,增添了一份身为中国人的自豪.鼓励同学们在今后的学习中,不断地用自己聪明的头脑去思考,去探索,去创造.布置作业,必做题巩固定理,研究题是对勾股定理证明的再研究,拓展题丰富学生知识,提高学生能力.作业的多层次,多元化,为学生提供不同的发展空间.
整节课的设计,我将活动带入课堂,将静态的教学内容,设计成师生积极参与、交往互动、共同发展的动态过程.从学生实际出发组织教学,充分发挥教师的引导作用,使学生始终以积极进取的态度自主的去探索去发现,给学生更多的时间和空间,使学生真正成为课堂的主人.
第二篇:勾股定理(第一课时)教学设计
1.1探索勾股定理(1)
备课人:闫治春
【教学目标】
1.知识与技能目标:经历探索勾股定理及验证勾股定理的过程;运用勾股定理解决实际问题;了解有关勾股定理的历史。
2.过程与方法目标:在探索勾股定理的过程中培养学生的思维能力和语言表达能力;通过问题的解决,提高学生的运算能力。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。【教学重点】勾股定理及其应用。【教学难点】勾股定理的探索过程。【教学方法】
讲授法、启发式教学法。【学习方法】
讨论交流法、自主探索法。【教学工具】
多媒体、三角板。【教学过程】
一、课前预习
(1)三角形三边关系:。(2)直角三角形角的关系。
二、课内探究
(一)预习导学
自学课本P2—P3内容回答下列问题:
(1)用直尺量出图1一 1中直角三角形三边的长度。
(2)观察图1一2,正方形A中有 个小方格,即A的面积为个面积单位。正方形 B 中有个小方格,即B的面积为个面积单位。正方形 C 中有个小方格,即C的面积为个面积单位。
(二)自主探究
(1)图 l一2 中,A、B、C的面积之间有什么关系?(2)图1一 3中,A、B、C的面积之间有什么关系?(3)以直角三角形直角边为边的正方形面积和,等于以边的正方形面积。
(三)研讨交流
1.如果直角三角形的两直角边为a、b,斜边为c,则,我国古代称直角三角形的较短的直角边为,较长的直角边为,斜边为,这就是著名的。
2.已知一直角三角形的斜边和一条直角边的长度分别为5cm和4cm,则另一直角边的长度为。
3.求下列直角三角形中未知边的长:
4.求下列图形中阴影部分的面积:
(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆。
(四)达标测评 1.求出右图中A面积。
2.如图,一根旗杆在离地面9米处折裂,旗杆顶部落在离旗杆底部12米处.旗杆原来有多高?
3.求斜边长17厘米、一条直角边长15厘米的直角三角形的面积。
4.等腰△ABC的腰长AB=10cm,底BC为16cm,则面积为。
(五)总结拓展
1.本节课学习的主要内容是什么?
三、课后巩固
A(必做):课本P4知识技能1,2 B(选做):数学理解3,问题解决4 【教学反思】
第三篇:勾股定理第一课时教学设计
教学目标 一)知识与技能
1、了解勾股定理的文化背景,体验勾股定理的探索过程。
2、理解利用拼图和面积法验证勾股定理的方法。
3、利用勾股定理,已知直角三角形的两边求第三边的长。
(二)过程与方法
1、让学生经历用面积法探索勾股定理的过程,体会数形结合的思想,渗透观察、归纳、猜想、验证的数学方法,体验从特殊到一般的逻辑推理过程。
2、经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识
(三)情感态度与价值观
1、通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生学习热情。
2、在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。2学情分析
针对八年级的学生已经熟练地掌握了整式运算的基础知识。他们具有较强的动手能力,语言表达能力,强烈的学习欲望,精力充沛,好奇心强,任何事总想试一试的心理特点。根据学生的这种实际情况,我选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,进行勾股定理的探究和验证。这样教学有利于提高学生的思维能力,能有效地激发学生的思维积极性,借此培养学生动手、动脑、动口的能力,充分发挥学生学习的主体地位。3重点难点
重点:探索和验证勾股定理 难点:勾股定理的验证 4教学过程
4.1 第一学时 教学活动
活动1【导入】勾股定理
2002年在北京召开了第24届国际数学家大会,这就是本届大会的会徽的图案.(1)你见过这个图案吗?(2)它是由什么图形组成的?
(3)三角形具有的什么性质?直角三角形具有什么特殊性质呢?直角三角形的边是否具有特殊的等量关系以及会标有怎样的特殊含义呢?带着这些问题让我们共同来学习本节课勾股定理。
活动2【讲授】勾股定理
相传在2500年以前,毕古希腊著名的数学家、哲学家、天文学家毕达哥拉斯。一次他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性.
(1)现在请你也观察一下,你能有什么发现吗?(2)等腰直角三角形的三边有什么关系?
通过毕达哥拉斯发现图形的面积关系发现勾股定理的命题(3)一般的直角三角形是否也有这样的特点呢?
引导学生运用“割补法”求图中正方形的面积。通过以直角三角形三边为边做的正方形的面积关系发现勾股定理这个命题。
活动3【活动】勾股定理
请同学们用手中的四个全等直角三角形拼一个大正方形,并且大正方形中央包含一个空白的小正方形。并根据正方形面积的不同求法验证勾股定理命题的正确。给出加菲尔德的证法的拼图让学生证明。
学生在独立思考的基础上以小组为单位,动手拼图,给出不同的拼法.学生自主证明并展示证明的结果
活动4【讲授】勾股定理的由来
介绍总统证法的由来,2002年国际数学家大会会标是我国汉代数学家赵爽用来证明勾股定理“的赵爽弦图”,勾股定理的命名的由来以及在西方的命名。学生通过观看图片和听取讲解。
活动5【讲授】勾股定理例题
1.已知直角三角形两直角边长分别为3和4,求斜边长。学生练习:
1.已知直角三角形斜边长为10,一条直角边长为6,求另一直角边长。
第四篇:《17.1 勾股定理》教学设计(第1课时)
一、内容和内容解析
1.内容
勾股定理的探究、证明及简单应用.2.内容解析
勾股定理的内容是:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么
.它揭示了直角三角形三边之间的数量关系.在直角三角形中,已知任意两边长,就可以求出第三边长.勾股定理常用来求解线段长度或距离问题.勾股定理的探究是从特殊的等腰直角三角形出发,到网格中的直角三角形,再到一般的直角三角形,体现了从特殊到一般的探探索、发现和证明的过程.证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,教学中要注意引导学生通过探索去发现图形的性质,提出一般的猜想,并获得定理的证明.我国古代在数学方面又许多杰出的研究成果,对于勾股定理的研究就是一个突出的例子.教学中可以介绍我国古代在勾股定理的证明和应用方面取得的成就和作出的贡献,以培养学生的民族自豪感;围绕证明勾股定理的过程,培养学生学习数学的热情和信心.基于以上分析,确定本节课的教学重点:探索并证明勾股定理.二、目标和目标解析
1.教学目标
(1)经历勾股定理的探究过程.了解关于勾股定理的文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感.(2)能用勾股定理解决一些简单问题.2.目标解析
(1)学生通过观察直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.理解赵爽弦图的意义及其证明勾股定理的思路,能通过割补法构造图形证明勾股定理.了解勾股定理相关的史料,知道我国古代在研究勾股定理上的杰出成就.(2)学生能运用勾股定理进行简单的计算,关键是已知直角三角形的两边长能求第三条边的长度.三、教学问题诊断分析
勾股定理是反映直角三角形三边关系的一个特殊的结论.在正方形网格中比较容易发现以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系.但要从等腰直角三角形过渡到网格中的一般直角三角形,提出合理的猜想,学生有较大困难.学生第一次尝试用构造图形的方法来证明定理存在较大的困难,解决问题的关键是要想到用合理的割补方法求以斜边为边的正方形的面积.因此,在教学中需要先引导学生观察网格背景下的正方形的面积关系,然后思考没有网格背景下的正方形的面积关系,再将这种关系表示成边长之间的关系,这有利于学生自然合理地发现和证明勾股定理.本节课的教学难点是:勾股定理的探究和证明.四、教学过程设计
1.创设情境 复习引入
国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的奥运会.2002年在北京召开了第24届国际数学家大会.右图就是大会会徽的图案.你见过这个图案吗?它由哪些我们学过的基本图形组成?这个图案有什么特别的意义?前面我们学习了有关三角形的知识,我们知道,三角形有三个角和三条边.问题1 三个角的数量关系明确吗?三条边的数量关系明确吗?
师生活动 教师引导,学生回答。
【设计意图】回顾三角形的内角和是180以及三角形任何两边的和大于第三边,由三角形三边的不等关系引导学生思考,三角形三边之间是否存在等量关系.我们学习过等腰三角形,知道等腰三角形是两边相等的特殊的三角形,它有许多特殊的性质.研究特例是数学研究的一个方向,直角三角形是有一个角为直角的特殊三角形,中国古代人把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.直角三角形中最长的边是哪条边?为什么?它们除了大小关系,有没有更具体的数量关系呢?这就是我们要研究的问题.2.观察思考,探究定理
问题2 相传2500多年前,毕达哥拉斯有一次在朋友家作客,发现朋友家用砖铺成的地面图案反映了直角三角形三边的某种数量关系.三个正方形A,B,C的面积有什么关系?
毕达哥拉斯(公元前572---前492年),古希腊著名的哲学家、数学家、天文学家。
师生活动 学生观察图形,分析、思考其中隐含的规律.通过直接数等腰直角三角形的个数,或者用割补的方法将小正方形A,B中的等腰直角三角形补成一个大正方形,得出结论:小正方形A,B的面积之和等于大正方形C的面积.追问 由这三个正方形A,B,C的边长构成的等腰直角三角形三条边长之间有怎样的特殊关系?
师生活动 教师引导学生直接由正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方.【设计意图】从最特殊的直角三角形入手,通过观察正方形面积关系得到三边关系,对等腰直角三角形边长关系进行初步的一般化.问题3 在网格中的一般的直角三角形,以它的三边为边长的三个正方形A,B,C的面积是否也有类似的关系?
师生活动 学生动手计算,分别求出A,B,C的面积并寻求它们之间的关系.追问 正方形A,B,C所围成的直角三角形三条边之间有怎样的关系?
师生活动 学生独立思考后分组讨论,难点是求以斜边为边长的正方形面积,可由师生共同总结得出可以通过割、补两种方法求出其面积,教师在学生回答的基础上归纳方法---割补法.可求得C的面积为13,教师引导学生直接由正方形的面积等于边长的平方归纳出:直角三角形两条直角边的平方和等于斜边的平方.【设计意图】为方便计算,网格中的直角三角形边长通常设定为整数,进一步体会面积割补法,为探究无网格背景下直角三角形三边关系打下基础,提供方法.问题4 通过前面的探究活动,思考:直角三角形三边之间应该有什么关系?
师生活动 教师引导学生表述:如果直角三角形两直角边长分别为,斜边长为,那么
【设计意图】在网格背景下通过观察和分析得出了等腰直角三角形和一般的直角三角形的三边关系后,猜想直角三角形的三边关系是很容易的.问题5 以上直角三角形的边长都是具体的数值,一般情况下,如果直角三角形的两直角边分别为a,b,斜边长为c,我们的猜想仍然成立吗? 师生活动 要求学生通过独立思考,用a,b表示c.如图,用割的方法可得
;用补的方法可得.这两个式子经过整理都可以得到
即直角三角形两直角边的平方和等于斜边的平方.中国人称它为勾股定理,外国人称它为毕达哥拉斯定理.【设计意图】从网格验证到脱离网格,通过割补构造图形和计算推导出一般结论.问题6 历史上各国对勾股定理都有研究,下面我们看看我国古代的数学家赵爽对勾股定理的研究,并通过小组合作完成教科书拼图法证明勾股定理.师生活动 教师展示弦图,并介绍:这个图案是公元3世纪三国时期的赵爽在注解《周髀算经》时给出的,人们称它为赵爽弦图,赵爽根据此图指出:四个全等的直角三角形(朱实)可以如图围成一个大正方形,中间部分是一个小正方形(黄实).我们刚才用割的方法证明使用的就是这个图形,教师介绍勾股定理相关史料,勾股定理的证明方法据说有400多种,有兴趣的同学可以搜集研究一下.【设计意图】通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,发展学生的形象思维,使学生对定理的理解更加深刻,体会数学中数形结合的思想.通过对赵爽弦图的介绍,了解我国古代数学家对勾股定理的发现及证明所做出的贡献,增强民族自豪感,通过了解勾股定理的证明方法,增强学生学习数学的自信心.3.初步应用,巩固新知
例1 画一个直角三角形,它的两直角边分别是,量一量它的斜边
是多少厘米?算一算,你量的结果对吗?
师生活动 学生操作,教师个别指导.【设计意图】通过运算,培养学生的运算能力并正确运用勾股定理解决直角三角形的边长问题.通过测量进一步验证勾股定理所得结论的正确性.例2 在直角三角形中,各边的长如图,求出未知边的长度.师生活动 学生计算,教师检验.【设计意图】勾股定理是通过构造图形法通过面积关系进行证明的.所以勾股定理本质上是反映面积关系的.如果直角三角形的两条直角边长分别为,斜边长为,那么.通过对等式变形,可以得出直角三角形三边之间的关系:;;
.在直角三角形中,已知两边,求第三边,应用勾股定理求解,也可建立方程解决问题,渗透方程思想.例3 蚂蚁沿图中的折线从A点爬到D点,一共爬了多少厘米?
师生活动 学生观察、思考、计算,教师检验.【设计意图】设计实际问题背景,提高学生分析问题和解决问题的能力.4.归纳小结,反思提高
师生共同回顾本节课所学主要内容,并请学生回答以下问题:
(1)勾股定理总结的是什么数量关系?
(2)勾股定理有什么作用?
(3)阅读教科书,总结教科书提供的勾股定理的其他证明方法.了解中国人的伟大和外国人的智慧.【设计意图】让学生从不同角度谈本节课学习的主要内容,在学习过程中感受到中国数学文化博大精深和数学的美,感悟数形结合的思想,增强对数学学习的自信.5.布置作业
(1)教科书第28页第1题;
(2)通过互联网收集定理的多种证法.自主探究定理的证明.五、目标检测设计
1.直角三角形的周长为12,斜边长为5,其面积为()
A.12 B.10 C.8 D.6
【设计意图】勾股定理的简单计算,结合三角形的周长和面积知识进行求解.2.等边三角形的高是h,则它的面积是()
A.B.C.D.【设计意图】勾股定理的应用和三角形的面积公式.3.直角三角形中,,求和.【设计意图】考查学生运用勾股定理的能力.
第五篇:勾股定理教学设计1
《勾股定理》教学设计
阜南县经济开发区中心学校
王崇禄
一、内容和内容解析
本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:2002年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生进行爱国主义教育的良好素材。教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理进行了详细的论证;课后习题18.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。
勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。
学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。学生接受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法进行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。
本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,教学重点:勾股定理的内容 教学难点:勾股定理的论证
二、教学目标及目标解析
1、教学目标
①、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。②、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。③通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。
④、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。
2、目标解析
①、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿接受这一理论事实并能简单运用。
②、通过面积法探究勾股定理,让学生感触到直角三角形这一图形与a2+b2=c2 数量关系建立对应关系,同时不同图形从面积角度的论证得到面积的割补是形的变化而面积这一数量不变。更深层次的建立数形结合的方法。
③、通过观察、探究的活动让学生感触知识的产生过程,学生从中学会合作交流,协作探究、归纳总结的学习方法,提高学生的探索能力。④、勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。
三、教学问题诊断分析
学生对勾股定理的形式容易接受甚至利用结论进行有关的计算难度也不大,但究其缘由有难度,这正是数学学习活动中学生要具备的基本的学习品质和学习技能。所以,在学习勾股定理由来的教学时,应有针对性地设计图形形式的多样呈现,让学生亲自动手拼接图形来揭示概念的由来及正确性。
对于图形面积的计算学生有基本的技能,但如何最合理的进行分割或补全一时是不易理解,这属于思想方法层面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我进行精心的设计,充分展示“分割、补全、拼凑”以发挥教师的引导作用,为学生探究一般的直角三角形的三边关系做好铺垫,为数学多渠道多方法的探究证明做好引导。
四、教学支持条件分析
根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现、动手操练、演算探究为主,多媒体演示为辅的教学组织方式.在教学过程中,给学生提供充足的活动时间和空间,以我设计探究实验和带有启发性及思考性的问题串,创设问题情景,启发学生思维,学生亲自动手操作、测量、演算,让学生亲身体验知识的产生、发展和形成的过程.
五、教学过程设计
(一)创设情境,导入新课。
问题1:请同学们欣赏2002年国际数学家大会会场情景的的图片,重点抽取会徽图案,你能发现它是有什么图形构成的?(材料附后)教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”,学生观察、发表意见、聆听介绍。
【设计意图】以国际数学家大会------“赵爽弦图”为背景导入新课,提出问题,首先可以激发学生强烈的好奇心和求知欲,感受我国古代数学知识的伟大,进行爱国教育,增强学好数学的信心;其次让学生在观察、思考、交流的过程中,对勾股定理先有初步的感性认识.
问题2:教师板书课题,介绍直角三角形各边的名称。提问:你知道哪些勾股定理的知识?
视学生回答情况确定下步的教学
方案1:如果学生能够说出勾股定理的相关知识,则直接
进入下一环节的学习。
方案2:如果学生有困难,则安排学生自学教材,再发表意见。
学生发言,教师倾听。视学生回答的重点
板书
:勾三股四弦五
等 【设计意图】教师获得学生的知识储备以便以后的教学定位。再次让学生感触勾股定理的存在、作用即勾股定理是研究直角三角形边之间的关系的定理,明确学习目标。
(二)观察演算,合作探究,初具概念
问题3:介绍毕达哥拉斯发现勾股定理的故事。利用ppt课件展示毕达哥拉斯的发现和他的探究的过程。提问:这三个正方形之间的面积有什么关系?从中可以转化得到等腰直角三角形三边在数量上有什么关系?(故事附后)教师口述故事,ppt课件同步演示;学生借助直观的课件,学生个体或学生间观察交流探究得到结论。
【设计意图】首先,故事中代出问题既激发学生的兴趣又降低了学生探究的难度,让每个学生都可做,可得;其次得到三个正方形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。
问题4:毕达哥拉斯想到:这一结论是不是所有的直角三角形都具备呢?于是展开了进一步的探索。
教师利用ppt课件展示,提出问题;学生利用《学习案》中第1题自己进一步探究,交流;猜测验证。(学习案附后)
【设计意图】问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。
问题5:你是怎样演算的?
A
教师关注学生之间的交流,关注学生借助面积法探究问题的不同解法,选取代表性的方法演示。学生个体或小组探究、交流。
视学生的学习情况确定下步的教学:
方案1:学生能够用面积分割法如图一或用面积补全法如图二的方法验证了结论,则直接进行下一步的教学。
方案2:学生不能够得到,探究学习有困难,则教师借助ppt课件演示,精讲点拨面积的割补法,对命题进行验证。
【设计意图】教无定法,视学定教;学生是学习的主人,教师是学生学习的合作者。学生亲自画图,演算,利于对结论的理解。亲身感受知识的产生、形成,初步体会面积法;再次了解勾股定理。
问题6:通过我们大家一起的实验,你得到任意直角三角形的三边之间有什么关系吗?试用语言描述。
学生描述,教师板书。
【设计意图】加深对勾股定理内容的叙述、理解,达成目标。体会数学观察---探究---整理----归纳的数学方法,体验学习的成功。
(三)引导实验,探究论证,形成体系。
问题7:我们已经对直角三角形三边之间关系有了充分的认识。但它的正确性需要数学理论做基础,我国古代数学家赵爽就对该命题进行了严谨的论证。我们刚才欣赏的会徽就是他的论证方法。下面我们一起进行论证。教师用ppt课件演示拼凑过程,精讲强调面积的无缝、不重叠拼接得到面积相等。
【设计意图】上一环节是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。让学生学懂面积法,再次加深对勾股定理的理解。感受我国数学知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。
问题8:学生用4个全等的直角三角形重新拼凑图形并根据排放 画出图形并用面积法进行论证。
学生或小组间进行合作实验,共同协作探究;教师巡视指导。
【设计意图】学生自主探究,再次理解勾股定理,学会面积法论证勾股定理。培养学生的动手探究能力,养成严谨的学习习惯;学会交流,达到知识、方法共享,体验合作的乐趣、合作的成功。
问题9:教师选取代表性的拼接方法,全班展示。
【设计意图】共享知识,拓展思路,体会一题多解,更深层次的了解掌握勾股定理。
(四)归纳提高,巩固运用,形成能力。
问题10:我们这节课研究的勾股定理是对什么的研究?它侧重是研究直角三角形的什么关系?以前学习直角三角形的哪些知识?
学生回忆,发言。教师强调:勾股定理的前提条件是直角三角形,也就是说其他的三角形是不具备的,但要解决其他三角形的计算问题,我们要借助辅助线(特别是高线)把它转化为直角三角形。教师板书。
【设计意图】更新知识系统,逐渐完善知识脉络,提高分析问题解决问题的能力。
问题11:完成以下练习题 教材69页第1题、学生独立完成;教师巡视指导,板书得数,介绍勾股数。
【设计意图】第1题针对勾股定理的直接运用。提高学生对新知识的理解、运用。巩固目标。
(五)归纳小结,反思提高
问题12:通过本节课的学习,你有哪些收获?
学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法及评价学生在课堂上的表现对学生进行思想教育。
【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对直角三角形有一个整体全面认识,同时感受数形结合的数学思想。
布置作业.教材70页2、8题。
六、目标检测设计
1.在等边三角形中边长为10,则该三角形的面积是多少?
【设计意图】综合题,考查等边三角形的三线合一、30度角所对的直角边等于斜边的一半、勾股定理、三角形面积知识;培养学生的转化意识。
2.在一个直角三角形中两边的长为3、4,则第三条边长度是多少? 【设计意图】分类讨论。考查直角三角形的斜边最长及勾股定理。
3、湖中直立一荷花,花朵高水1m整,忽然一阵风吹来,荷花吹离2m处,斜于水面齐,问湖水几许深?
【设计意图】诗情画意的情景呈现数学问题增强美的感受,在愉悦、放松的氛围中感受数学在生活中的作用,体验数学是一门基础学科,增强学好学生的决心。培养学生的数学建模意识,提高解决问题的能力。
七、板书设计