第一篇:电动机的点动教案
实验
一、安装三相异步电动机直点动控制电路(教案)
一 教学目标:
1、理解电动机点动控制的意义。
2、明确开关、熔断器、按钮、交流接触器的作用;认识其图形符号并会正确使用;
3、会正确使用通用电工工具; 一 实验目的
1、理解
2、了解三相笼型异步电动机运行时的保护方法。二 概述
三相笼型异步电动机启动时,电源电压全部加在定子绕组,这种启动方法,成为全压启动、也叫直接启动。全压启动时,电动机的启动电流达到额定电流的4~7倍、容量较大的电动机的启动电流对电网具有大的冲击。因此,这种启动方式主要用于小容量电动机的启动。
1、三相笼型异步电动机单向直接启动控制电路
主电路由电源隔离开关QS、熔断器FU、接触器KM的主触头,热继电器FR的热元件与电动机M构成。控制回路由启动按钮SB2、停止按钮SB1,接触器KM的线圈及其常开辅助触头,热继电器FR的常闭触头和熔断器FU2构成。(1)线路的工作原理
启动时,合上QS,引入三相电源。按下SB2,交流接触器KM的线圈通电,接触器主触头闭合,电动机接通电源直接启动运转。同时与SB2并联的常开辅助触点KM闭合,使接触器线圈经两条路径通电。这样,当SB2复位时,接触器KM的线圈仍可通过KM的辅助触头继续通电,从而保持电动机的连续运行。这种依靠接触器自身辅助触头、而使其线圈保持通电的现象称为自锁。这一对起自锁作用的辅助触头称为自锁触头。
要使电动机M停止运转,只要按下停止按钮SB1,将控制电路断开即可。这时接触器KM断电释放,KM的常开主触点将三相电源切断,电动机M停止运转。当手松开按钮后,SB1的常闭触头在复位弹簧到 原来的常闭状态,但接触器线圈已不能再靠自锁触头通电了,因为原来闭合的自锁触头已随着接触器线圈的断电而断开了。(2)电路的保护环节
① 熔断器FU作为电路短路保护环节
② 热继电器FR作为电路过载保护环节
③ 欠电压保护与失电压保护是依靠接触器本身的电磁机构来实现的。当电源电压严重欠电压或失电压时,接触器的衔铁自行释放,电动机停止旋转。而当电源电压恢复正常时,接触器线圈也不能自动通电,只有操作人员再次按下启动按钮SB2后,电动机才会启动。
2、点动控制
在生产实际中,有的生产机械需要点动控制,还有生产机械在进行调整工作时采用点动控制,也有些生产机械既需要常规工作,又需要点动控制。图1—2所示为能实现点动控制的几种电气控制线路。
图1—2a是最基本的点动控制线路。控制启动按钮SB的闭合与断开,即可以控制接触器KM的吸合与断开,来实现电动机M的运转与停止。
图1—2b是带手动开关SA的点动控制线路,当需要点动时,将开关SA打开,操作SB2即可实现点动控制。当需要连续工作时,合上开关SA,将自锁触头接入,即可实现连续控制。
图1—2C中增加了一个复合控制按钮SB3。点动控制时,按下点动按钮SB3其常闭触头先断开自锁电路,常开触头后闭合,接通启动控制电路,KM线圈通电,主触头闭合,电动机启动旋转。当松开SB3时,KM线圈断电,主触头断开,电动机停止转动。若需要电动机连续运转,则按启动按钮SB2即可,停机时需按停止按钮SB1。
图1—1 注:QS:主电路刀闸开关 FU1:熔断器 KM:接触器的主触点 FR:热继电器 SB1:停止按钮 SB2:启动按钮
三 实验内容
1、三相笼型异步电动机直接启动控制(1)按图1—1接线。
(2)合上电源开关,操作按钮SB2和SB1,使电动机启动和停止。
(3)拆除控制电路的自锁触头,在按下启动按钮SB2,体会自锁触头的作用。四 实验设备
1、DJK—1交流调速实验台
1台
2、DQ1—1电气控制技术实验箱 1台
3、DQ1—2电气控制技术实验箱 1台
4、交流电动机
1台 五 预习要求
1、认真阅读实验指导书中各项内容、复习交流接触器、热继电器、按钮等元件的基本结构和工作原理。
2、分析图中电路的工作原理。六 实验报告要求
1、分析直接起动电路中的短路、过载和失压三种保护功能是如何实现的?
2、分析自锁点的作用。
第二篇:正反转点、动教案
三相异步电动机正反转点动、起动控制电路
【组织教学】
1.检查学生出勤情况。
2.调整课堂气氛,集中学生注意力。【导入新课】
在实际生产过程中,常常需要电动机能够正反转,如万能铣床的主轴需要正转与反转,起重机的吊钩需要上升和下降。这是需要控制电动机实现正反转,而要改变电动机的转向,只要改变通入电动机定子绕组的三相电源相序,即把接入电动机三相电源进线中的任意两项对调即可,在实际生产中,常用按钮、接触器来控制电动机的正反转。【讲授新课】
1、电路组成
(1)主电路:断路器QS、熔断器FU1、交流接触器主触头KM1和KM2、热继电器热元件FR1、电动机M。
(2)控制电路:熔断器FU2、热继电器常闭触点FR、按钮SB1— SB5、交流接触器线圈KM1和KM2、交流接触器辅助常开触点KM1和KM2。
(3)接线相序:KM1:L1-L2-L3;KM2:L3-L2-L1。
(4)注意:为避免两个接触器KM1和KM2同时得电动作造成短路,将上图中的正转按钮SB2和反转按钮SB3换成复合按钮,并将复合按钮的常闭触点串接在对方支路中,实现联锁,图中虚线即表示联锁关系。即一个闭合时,虚线另一端的即断开。主要元件作用
(1)低压断路器(自动开关)
低压断路器从总体来说就是接通和断开电流的作用。一般断路器具有过流保护和短路保护;增加欠压线圈即可具有欠电压保护;增加漏电模块可具有漏电保护;
低压断路器外观
(2)按钮
它是一种短时接通或断开小电流电路的电器,不直接控制电路的通断,而是通过在控制电路中发出“手动”指令去控制接触器、继电器等器件,实现对主电路的控制。
(3)交流接触器
交流接触器广泛用作电力的开断和控制电路。交流接触器利用主接点来 开闭电路,用辅助接点来执行控制指令。
交流接触器外观
(4)热继电器
热继电器是利用流过继电器的电流所产生的热效应而使其触头动作的 自动保护电器,在使用时,将热元件串联在主电路中,常闭触头串联在控制 电路中。当电动机过载时,热元件受热发生弯曲,通过传动机构推动常闭触 头断开,分段电路,再通过接触器切断主电路,实现对电动机的过载保护。
热继电器外观
3、控制原理
电路如图所示SB1 为停止按钮,SB2 为KM1 继电器的启动按钮,SB3为
KM2 继电器的启动按钮,SB4 为KM1 点动按钮,SB5 为KM2 的点动按钮。当 按SB2时KM1 交流接触器线圈通电,KM1 自锁。KM1 主触头闭合,电动机通电
连续运转。当按SB4 时,SB4 按钮常闭触点断开,切断KM1 的自锁。SB4 按钮 常开点闭合,点动实现KM1 交流接触器的控制,KM2 交流接触控制原理同KM1 交流接触器相同。KM1、KM2 交流接触器可实现电动机的正反转控制。
【布置作业】
1、理解正反转点动、起动控制的工作原理并会画控制原理图;
2、根据控制原理图会安装正反转点动、起动控制电路。
【技能训练】
一.练习课题
安装正反转点动、起动控制线路 二.训练步骤
(1)识读正反转点动、起动控制线路原理图,明确线路所用电器元件及作用,熟悉线路的工作原理;
(2)安装所用电器元件,并注意元件与其编号对应正确;(3)按控制原理图要求连接电路;
(4)将三相电源接入控制开关,经教师检查合格后进行通电试车。三.注意事项
(1)电动机的金属外壳等必须可靠接地,同时接触器联锁触头接线必须正确,否则将造成主电路中两相短路事故。
(2)接线时,必须先接负载端,后接电源端;先接接地线,后接三相电源相线。(3)熔断器的额定电压不能小于线路的额定电压,熔断器的额定电流不能小于 所装熔体的额定电流。
(4)通电试车时,必须先空载点动后再连续运行;当运行正常时如需要再接上 负载运行;若发现异常情况应立即断电检查。
四.学生分组练习
1.分6组进行。
五.巡回指导
1.提醒学生注意操作安全。
2.检查学生工具使用不当行为。讲解方法运用合理。3.对学生提出的问题,耐心,细致的讲解。六.结束指导
1.对学生尊守纪律和安全进行讲评。
2.公布练习结果、表扬练习表现较好的小组和同学。3.分析、讲评练习中的情形。
第三篇:电动机教案
【课题】电动机
【教学目标】 1.知识与技能
①了解磁场对通电导线的作用;
②初步认识科学与技术、社会之间的关系。2.过程与方法
经历制作模拟电动机的过程,通过实验方法探究直流电动机的结构和工作原理。
3.情感、态度与价值观
通过了解物理知识如何转化成实际技术应用,进一步提高学生学习科学技术知识和应用物理知识的兴趣。【重点、难点】 重点:
①通电导线在磁场中受到力的作用,力的方向跟电流的方向、磁场的方向都有关;
②直流电动机的能量转化。
难点:
电动机能够持续转动的原因。【教学环节】
复习提问:
奥斯特实验说明了什么? 新课引入: 引导学生举出尽可能多的用电器,从这些用电器中找到使用电动机的用电器。出示电动机模型,提出问题: 电动机是如何工作的?
新课教学
一、通电导体在磁场中的作用 提出问题:
通电导体与磁场之间到底有什么作用?
引导学生进行猜想,设计实验,进行实验验证。1.通电导体在磁场中受到力的作用
设计实验 观察:
(1)未闭合开关时,导体在磁场中的情况;(2)未加磁场时,通电导体的情况;
(3)闭合开关,观察导体在磁场中的情况 提出问题:
从上述现象,你可以获得什么样的结论? 小结:通电导体在磁场中会受到力的作用。
2.通电导体在磁场中受到力的方向与电流方向和磁场方向有关 引导学生讨论通电导体在磁场中的运动方向与什么因素有关 引导学生进行实验设计,引导学生观察:
(1)改变电流方向对于通电导体在磁场中的运动方向的影响(2)改变磁场方向对于通电导体在磁场中的运动方向的影响
(3)同时改变磁场的方向和通入电流的方向对于通电导体在磁场中的运动方向的影响
小结:通电导体在磁场中的受力方向与电流方向和磁场方向有关。
二、通电线圈在磁场中的作用 提出问题:
通电导体在磁场中受到力的作用会运动,那么通电线圈在磁场中又会受到什么作用?
演示实验探究
小结:通电线圈在磁场中会扭转 提出问题:
怎么样才能让线圈在磁场中转起来?
引导学生进行讨论,注意分析线圈的受力变化,引导学生找到办法。演示实验:让线圈在磁场中连续转动
三、电动机 1.电动机的构造
⑴定子:固定不动的部分 ⑵转子:能够转动的部分 2.换向器 说明:直流电动机的换向器的作用,注意利用课件和实物进行说明 小结: 作用:通过改变通入线圈的电流的方向来改变通电导体在磁场中的运动方向,使线圈在磁场中不停地转动。3.电动机的工作原理
提出问题:
电动机的工作原理是什么?
电动机的工作原理:通电线圈在磁场中会转动。4.电动机的能量转化
提出问题:能量怎样转化? 小结:电能转换成机械能。
5.电动机的应用:引导学生举例 小结:
知识小结:
一、通电导体在磁场中的作用 1.通电导体在磁场中受到力的作用
2.通电导体在磁场中受到力的方向与电流方向和磁场方向有关
二、通电线圈在磁场中的作用:使线圈转动
三、电动机 1.电动机的构造 2.换向器
3.电动机的工作原理 4.电动机的能量转化
电动机的应用 方法小结:
1.思维程序:提出问题——猜想——实验检验——得出结论——实际应用 2.研究方法:控制变量法、转换法。
作业:动手动脑学物理:1.2.4.