探究动点轨迹问题

时间:2019-05-15 12:46:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《探究动点轨迹问题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《探究动点轨迹问题》。

第一篇:探究动点轨迹问题

探究动点轨迹问题(2)

福州时代中学戴炜

一、实验内容 探究圆锥曲线中两直线交点的轨迹问题

掌握利用超级画板进行动态探究的常用方法

二、设计理念

本讲意在通过具体任务,驱动学生进行主动探究,发现规律性质,并能总结出一般结论。最后能体会利用超级画板探究动态几何问题的一般方法,并将其应用到更加广泛的探究过程中去。

三、实验过程

1.探究问题(轨迹为定点型)x2

y21,过椭圆的右焦点F作与x轴不垂直的直线L,交椭圆于已知椭圆方程为5

A、B两点,C是点A关于x轴的对称点,试用超级画板探究直线BC与x轴的交点N的轨迹。

探究过程

(1)求出椭圆的右焦点2,0

x2

y21和过点2,0的直线xmy2,用画笔标出交点A、B(2)作出椭圆:5

(3)作出点A关于x轴的对称点C,作直线BC,找出其与x轴的交点N

(4)拖动关于m的滑动块,观察点N的轨迹

(5)猜测点N的坐标,你能用数学方法加以说明吗?

探究结果

直线BC与x轴的交点N是定点,定点的坐标为5,0 2

x2y2

拓展探究:若椭圆的方程为221,试用超级画板探究N点的轨迹是否仍是定点。ab

2.探究问题(轨迹为圆锥曲线型)

x2

y21,点A、B是椭圆长轴的两个端点,直线(1)已知椭圆C的方程为4

xm(2m2)与椭圆C交于P,Q两点,且AP和BQ交于S点,试用超级画板探究,当m变化时S的轨迹,并求出该轨迹方程。

x2x2y22

y1改为椭圆221,点A、B是椭圆长轴的两个端(2)若将椭圆C:4ab

点,直线xmaxa与椭圆C交于P,Q两点,且AP和BQ交于S点,试求S的轨迹方程。

x2y2x2y2

(3)若将椭圆C:221改为双曲线221,点A、B是双曲线实轴的两

abab

个端点,直线xm与双曲线C交于P,Q两点,且AP和BQ交于S点,试求S的轨迹方程。

探究过程

x2

y21和点A(-2,0)(1)作出椭圆:,点B(2,0)4

(2)作出直线xm,用画笔标出交点P、Q(3)作直线AP、BQ,用画笔标出交点S(4)拖动关于m的滑动块,观察点S的轨迹(5)你能求出S的轨迹方程吗?

x2y2x2y2

(6)用类似的方法探究椭圆方程为221和双曲线方程为221时S的轨

abab

迹。

探究结果

x2

y21(1)S的轨迹为双曲线,方程为4x2y2

(2)S的轨迹为双曲线,方程为221

ab

x2y2

(3)S的轨迹为椭圆,方程为221

ab

互动交流:结合“交轨法”求轨迹方程做相应讨论和总结。

x2y2x2y2

以问题(3)为例,若将椭圆C:221改为双曲线221,点A、B是双

abab

曲线实轴的两个端点,直线xm与双曲线C交于P,Q两点,且AP和BQ交于S点,试求S的轨迹方程。

解析过程:设P点的坐标为x1,y1,则Q点的坐标为x1,y1.又有Aa,0,Ba,0 则直线AP的方程为y

y1

xa① x1a

y1

xa② x1a

直线BQ的方程为y

y1222

①×②得y2③ xa2

x1a

x12y12

又因点P在双曲线上,故221

abm222

即y2x1a

n

x2y2

代入③并整理得221,此即为点S的轨迹方程.ab

拓展探究:(1)若直线xm改为垂直于y轴的直线,最终的轨迹如何?

(2)若将问题架构在抛物线上,如抛物线y2x上任意一点P向其准线l引垂线,垂足为Q,连接顶点O与P的直线和连接焦点F与Q的直线交于R点,则R点的轨迹如何?

结果:轨迹方程为y2xx 3.探究问题(轨迹为直线型)

前面的探究问题中,直线的平移是生成点M轨迹的因素之一,若将直线的平移改为旋转,点S的轨迹如何?

x2

y21,已知曲线C的方程为曲线C与x轴的交点分别为A、B,设直线xmy14

与曲线C交于P,Q两点,且AP和BQ交于S点,试用超级画板探究,当m变化时,S的轨迹是不是恒在一条直线上?如果是,请求出该直线方程。

探究过程

x2

y21和直线xmy1,用画笔标出点A、B和交点P、Q,(1)作出曲线C:4

作直线AP、PQ,找出交点S,拖动关于m的滑动块,观察S的轨迹,判断S的轨迹是不是恒在一条直线上,并求出该直线方程。

x2y2

(2)插入变量尺a、b,作出椭圆221;控制椭圆的长短轴大小,观察轨迹变

ab

化;

(3)猜测影响轨迹位置与形状的因素,你能用数学方法加以说明吗? 探究结果

(1)m改变时,S的轨迹为一条直线,直线方程为x4

x2y2

(2)插入变量尺,作出椭圆221,改变a的值,轨迹位置发生改变,改变b

ab的值,轨迹位置不变;

x2y22

(3)假设椭圆方程为221,则按上述方法做出的点S的轨迹为直线xa

ab

拓展探究

x2y2

(1)若曲线C由椭圆变为双曲线221,S的轨迹是不是仍在一条直线上?你

ab

能否求出该直线方程。

x2y2

(2)假设椭圆方程为221,前面的探究问题中,A、B点为曲线和x轴的交点,ab

现在若将A、B点改为x轴上的定点(-2,0)和(2,0),则点S的轨迹还是直线吗?请试用超级画板探究,判断S的轨迹为何种类型的曲线。

结果:当a2时,S的轨迹为一个椭圆

当1a2时,S的轨迹为一个双曲线

第二篇:平面动点的轨迹说课[推荐]

平面 动 点 的 轨 迹 说 课 稿

杜重成 福州第三中学

一、教学目标

(一)知识与技能

1、进一步熟练掌握求动点轨迹方程的基本方法。

2、体会数学实验的直观性、有效性,提高几何画板的操作能力。

(二)过程与方法

1、培养学生观察能力、抽象概括能力及创新能力。2、体会感性到理性、形象到抽象的思维过程。

3、强化类比、联想的方法,领会方程、数形结合等思想。

(三)情感态度价值观

1、感受动点轨迹的动态美、和谐美、对称美

2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气

二、教学重点与难点

教学重点:运用类比、联想的方法探究不同条件下的轨迹 教学难点:图形、文字、符号三种语言之间的过渡

三、、教学方法和手段

【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。

【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。

【教学模式】重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。

四、教学过程

1、创设情景,引入课题

生活中我们四处可见轨迹曲线的影子 【演示】这是美丽的城市夜景图

【演示】许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多

【演示】建筑中也有许多美丽的轨迹曲线

设计意图:让学生感受数学就在我们身边,感受轨迹 曲线的动态美、和谐美、对称美,激发学习兴趣。

2、激发情感,引导探索

靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1;

1、线段AB长为2a,两个端点B和A分别在x轴和y轴上滑动,求线段AB的中点M的轨迹方程。

第一步:让学生借助画板动手验证轨迹 第二步:要求学生求出轨迹方程

法一:设M(x,y),则A(0,2y),B(2x,0)由|AB|2a得4x24y22a,化简得x2y2a2

法二:设M(x,y),由|OM|a得x2y2a

化简得x2y2a2

法三:设M(x,y),由点M到定点O的距离等于定长a,AMxy根据圆的定义得x2y2a2; OB第三步:复习求轨迹方程的一般步骤(1)建立适当的坐标系(2)设动点的坐标M(x,y)(3)列出动点相关的约束条件p(M)(4)将其坐标化并化简,f(x,y)=0(5)证明

其中,最关键的一步是根据题意寻求等量关系,并把等量关系坐标化

设计意图:在这里我借助几何画板的动画功能,先让学生直观地、形象地、动态地感受动点的轨迹是圆,接着要求学生求出轨迹方程,最后师生共同回顾求轨迹方程的一般步骤,达到熟练掌握直译法、定义法,体会从感性到理性、从形象到抽象的思维过程。

3、主动发现、主动发展

由上述例1可知,如果人站在梯子中间,则他会划了一段优美的圆弧飞出去。学生很自然就会想,如果人不是站在中间,而是随意站,结果会怎样呢?让学生动手探究M不是中点时的轨迹。

第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)

设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动学习。第二步:分解动作,向学生提出3个问题:

问题1:当M位置不同时,线段BM与MA的大小关系如何? 问题

2、体现BM与MA大小关系还有什么常见的形式? 问题

3、你能类比例1把这种数量关系表达出来吗? 第三步:展示学生归纳、概括出来的数学问题

1、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上 2 的点,满足BMMA1,求点M的轨迹方程。

22、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足BMMABMMA3,求点M的轨迹方程。

3、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足k,求点M的轨迹方程。(说明是什么轨迹)

第四步:课堂完成学生归纳出来的问题1,问题2和3课后完成

4、合作探究、实现创新

改变A、B点的运动方式,同样考虑中点M的轨迹,教师进行适当的指导(这里固定A点,运动B点)

学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。

5、布置作业、实现拓展

1、把上述同学们探究得到的轨迹图形用文字、符号描述出来,(仿造例1),并求出轨迹方程。

2、已知A(4,0),点B是圆

xy4上一动点,AB中垂线与直线OB相

22交于点P,求点P的轨迹方程。

3、已知A(2,0),点B是圆

xy9上一动点,AB中垂线与直线OB相

22交于点P,求点P的轨迹方程。

4若把上述问题中垂线改为一般的垂线与直线OB相交于点P,请同学们利用画板验证点P 的轨迹。

以下是学生课后探究得到的一些轨迹图形

课后有学生问,如果X轴和Y轴不垂直会有什么结果?定长的线段在上面滑动怎么做出来?

可以说,学生的这些问题我之前并没有想过,给了我很大的触动,同时也促使我更进一步去研究几何画板,提高自己的能力。在这里,我体会到了教师不再只是一根根蜡烛,更像是一盏盏明灯,在照亮别人的同时也照亮自己。以下是X轴和Y轴不垂直时的轨迹图形

五、教学设计说明:

(一)、教材

《平面动点的轨迹》是高二一节探究课,轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角、平面几何等基础知识,其中渗透着运动与变化、方程的思想、数形结合的思想等,是中学数学的重要内容,也是历 年高考数学考查的重点之一。

(二)、校情、学情

校情:我校是一所省一级达标校,省级示范性高中,学校的硬件设施比较完 善,每间教室都具备多媒体教学的功能,另外有两间网络教室和一个学生电子 阅室,并且能随时上网。学情:大部分学生家里都有电脑,而且能随时上网。对学生进行了几何画板基 本操作的培训,学生能较快的画出圆、椭圆、双曲线、抛物线等基本的圆锥曲 线。学生对求轨迹方程的基本方法有了一定的掌握,但是对文字、图形、符号 三种语言之间的转换还存在很大的差异,在合作交流意识方面,发展不均衡,有待加强。

(三)学法

观察、实验、交流、合作、类比、联想、归纳、总结

(四)、教学过程

1、创设情景,引入课题

2、激发情感,引导探索

由梯子滑落问题抽象、概括出数学问题

第一步:让学生借助画板动手验证轨迹 第二步:要求学生求出轨迹方程

第三步:复习求轨迹方程的一般步骤

3、主动发现、主动发展 探究M不是中点时的轨迹

第一步:利用网络平台展示学生得到的轨迹 第二步:分解动作,向学生提出3个问题: 第三步:展示学生归纳、概括出来的数学问题

4、合作探究、实现创新

改变A、B点的运动方式,同样考虑中点M的轨迹,教师进行适当的指导(这里固定A点,运动B点)

学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。

5、布置作业、实现拓展

(五)、教学特色:

借助网络、多媒体教学平台,让学生自己动手实验,发现问题并解决问题,同时把学生的学习情况及时的展现出来,做到大家一起学习,一起评价的效果。同时节省了时间,提高了课堂效率。

整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。

本节课学生精神饱满、兴趣浓厚、合作积极,与我保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。

第三篇:平面动点的轨迹优质课比赛教案

《平面 动 点 的 轨 迹》

杜重成 福州第三中学

一、教学目标

(一)知识与技能

1、进一步熟练掌握求动点轨迹方程的基本方法。

2、体会数学实验的直观性、有效性,提高几何画板的操作能力。

(二)过程与方法

1、培养学生观察能力、抽象概括能力及创新能力。2、体会感性到理性、形象到抽象的思维过程。

3、强化类比、联想的方法,领会方程、数形结合等思想。

(三)情感态度价值观

1、感受动点轨迹的动态美、和谐美、对称美

2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气

二、教学重点与难点

教学重点:运用类比、联想的方法探究不同条件下的轨迹 教学难点:图形、文字、符号三种语言之间的过渡

三、、教学方法和手段

【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。

【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。

【教学模式】重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。

四、教学过程

1、创设情景,引入课题

生活中我们四处可见轨迹曲线的影子 【演示】这是美丽的城市夜景图

【演示】许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多

【演示】建筑中也有许多美丽的轨迹曲线

设计意图:让学生感受数学就在我们身边,感受轨迹 曲线的动态美、和谐美、对称美,激发学习兴趣。

2、激发情感,引导探索

靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1;

1、线段AB长为2a,两个端点B和A分别在x轴和y轴上滑动,求线段AB的中点M的轨迹方程。

第一步:让学生借助画板动手验证轨迹 第二步:要求学生求出轨迹方程

法一:设M(x,y),则A(0,2y),B(2x,0)由|AB|2a得4x24y22a,化简得x2y2a2

法二:设M(x,y),由|OM|a得x2y2a

化简得x2y2a2

法三:设M(x,y),由点M到定点O的距离等于定长a,AMxy根据圆的定义得x2y2a2; OB第三步:复习求轨迹方程的一般步骤(1)建立适当的坐标系(2)设动点的坐标M(x,y)(3)列出动点相关的约束条件p(M)(4)将其坐标化并化简,f(x,y)=0(5)证明

其中,最关键的一步是根据题意寻求等量关系,并把等量关系坐标化

设计意图:在这里我借助几何画板的动画功能,先让学生直观地、形象地、动态地感受动点的轨迹是圆,接着要求学生求出轨迹方程,最后师生共同回顾求轨迹方程的一般步骤,达到熟练掌握直译法、定义法,体会从感性到理性、从形象到抽象的思维过程。

3、主动发现、主动发展

由上述例1可知,如果人站在梯子中间,则他会划了一段优美的圆弧飞出去。学生很自然就会想,如果人不是站在中间,而是随意站,结果会怎样呢?让学生动手探究M不是中点时的轨迹。

第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)

设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动学习。第二步:分解动作,向学生提出3个问题:

问题1:当M位置不同时,线段BM与MA的大小关系如何? 问题

2、体现BM与MA大小关系还有什么常见的形式? 问题

3、你能类比例1把这种数量关系表达出来吗? 第三步:展示学生归纳、概括出来的数学问题

1、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足BMMA1,求点M的轨迹方程。

22、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足BMMABMMA3,求点M的轨迹方程。

3、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足k,求点M的轨迹方程。(说明是什么轨迹)

第四步:课堂完成学生归纳出来的问题1,问题2和3课后完成

4、合作探究、实现创新

改变A、B点的运动方式,同样考虑中点M的轨迹,教师进行适当的指导(这里固定A点,运动B点)

学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。

5、布置作业、实现拓展

1、把上述同学们探究得到的轨迹图形用文字、符号描述出来,(仿造例1),并求出轨迹方程。

2、已知A(4,0),点B是圆

xy4上一动点,AB中垂线与直线OB相

22交于点P,求点P的轨迹方程。

3、已知A(2,0),点B是圆

xy9上一动点,AB中垂线与直线OB相

22交于点P,求点P的轨迹方程。

4若把上述问题中垂线改为一般的垂线与直线OB相交于点P,请同学们利用画板验证点P 的轨迹。

以下是学生课后探究得到的一些轨迹图形

课后有学生问,如果X轴和Y轴不垂直会有什么结果?定长的线段在上面滑动怎么做出来?

可以说,学生的这些问题我之前并没有想过,给了我很大的触动,同时也促使我更进一步去研究几何画板,提高自己的能力。在这里,我体会到了教师不再只是一根根蜡烛,更像是一盏盏明灯,在照亮别人的同时也照亮自己。以下是X轴和Y轴不垂直时的轨迹图形

五、教学设计说明:

(一)、教材

《平面动点的轨迹》是高二一节探究课,轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角、平面几何等基础知识,其中渗透着运动与变化、方程的思想、数形结合的思想等,是中学数学的重要内容,也是历年高考数学考查的重点之一。

(二)、校情、学情

校情:我校是一所省一级达标校,省级示范性高中,学校的硬件设施比较完 善,每间教室都具备多媒体教学的功能,另外有两间网络教室和一个学生电子 阅室,并且能随时上网。学情:大部分学生家里都有电脑,而且能随时上网。对学生进行了几何画板基 本操作的培训,学生能较快的画出圆、椭圆、双曲线、抛物线等基本的圆锥曲 线。学生对求轨迹方程的基本方法有了一定的掌握,但是对文字、图形、符号 三种语言之间的转换还存在很大的差异,在合作交流意识方面,发展不均衡,有待加强。

(三)学法

观察、实验、交流、合作、类比、联想、归纳、总结

(四)、教学过程

1、创设情景,引入课题

2、激发情感,引导探索

由梯子滑落问题抽象、概括出数学问题

第一步:让学生借助画板动手验证轨迹 第二步:要求学生求出轨迹方程 第三步:复习求轨迹方程的一般步骤

3、主动发现、主动发展 探究M不是中点时的轨迹

第一步:利用网络平台展示学生得到的轨迹 第二步:分解动作,向学生提出3个问题: 第三步:展示学生归纳、概括出来的数学问题

4、合作探究、实现创新

改变A、B点的运动方式,同样考虑中点M的轨迹,教师进行适当的指导(这里固定A点,运动B点)

学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。

5、布置作业、实现拓展

(五)、教学特色:

借助网络、多媒体教学平台,让学生自己动手实验,发现问题并解决问题,同时把学生的学习情况及时的展现出来,做到大家一起学习,一起评价的效果。同时节省了时间,提高了课堂效率。

整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。

本节课学生精神饱满、兴趣浓厚、合作积极,与我保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。

第四篇:动点问题解题总结

解题关键是动中求静

一.建立动点问题的函数解析式(特点:动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?)1.应用勾股定理建立函数解析式 2.应用比例式子建立函数解析式

3.应用求图形面积的方法建立函数关系式

二.动态几何型压轴题(特点:问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性,如特殊角、特殊图形的性质、图形的特殊位置。动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。)此类题型一般考察点动问题、线动问题、面动问题。解题方法:

1、特殊探路,一般推证。

2、动手实践,操作确认。

3、建立联系,计算说明。

三.双动点问题。点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力。主要分一下四种。

1.以双动点为载体,探求函数图像问题

2.以双动点为载体,探求结论开放性问题

3.以双动点为载体,探求存在性问题

4.以双动点为载体,探求函数最值问题

四.函数中因动点产生的相似三角形问题

五.以圆为载体的动点问题

第五篇:动点问题教学设计

《动点问题》教学设计

郭华俊

【教学目标】

1、知识目标:能够对点在运动变化过程中相伴随的数量关系、图形位置关系等进行观察研究。

2、能力目标:进一步发展学生探究性学习能力,培养学生动手、动脑、手脑和谐一致的习惯。

3、情感目标:培养浓厚的学习兴趣,养成与他人合作交流的习惯。【重点难点】

1、教学重点:化“动”为“静”

2、教学难点:运动变化过程中的数量关系、图形位置关系 【教学方法】

实践操作、引导探究 【教学用具】 多媒体

【教学过程】

一典例分析

已知:如图①,在Rt△ACB中,C90,AC4cm,BC3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0t2),解答下列问题:

(1)当t为何值时,PQ∥BC?

(2):当t为何值时,△APQ是等腰三角形?

A变式2:把△APQ沿AQ翻折,得到四边形PQP'A,那么是否存在某一时刻t,使四边形PQP'A为菱形?

BP QC(3)设△AQP的面积为y(cm2),求y与t之间的函数关系式;

(4)是否存在某一时刻t,使S△APQ:S△ABC=2:5若存在,求出t的值,若不存在,说明理由;

变式:是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;

二、总结提高:小组交流学习收获和解题思路

三、直击中考,实战演练

已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系(1)求过A、B、O三点的抛物线解析式;

(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值,如果有,请求出最大值,如果没有,请说明理由.

(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.

下载探究动点轨迹问题word格式文档
下载探究动点轨迹问题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    点的轨迹说课稿

    点的轨迹(一)说课稿 各位老师,今天我说课的内容是:义务教育人教版六三学制初三几何第七章7.1圆中“点的轨迹”(第一课时)。 下面,我从教材分析、教学目标、教法和学法、教学流程、......

    动点问题、存在性问题小结

    动点问题和存在性问题小结训练 一、基础训练 1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为X=﹣.下列结论中,正确的是() A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b 2.二次函数y=ax2+......

    初中数学 几何动点问题

    初中数学 几何动点问题 动点型问题是最近几年中考的一个热点题型,从你初二的动点问题就不是很好这 点来看,我认为你对动点问题缺乏技巧。所谓“动点型问题”是指题设图形中存......

    全等三角形动点问题[大全]

    全等三角形动点问题专练 班级: 姓名:1. 已知:AB⊥BD, ED⊥BD, AC=CE, BC=DE。 (1)试猜想线段AC与CE的位置关系,并证明你的结论. (2)若将CD沿CB方向平移至图2情形,其余条件不变,......

    初中数学动点问题总结

    初二动点问题 1. 如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点......

    对于解决动点问题的总结

    对于解决动点问题的总结 西湖镇中心学校 吕德娇 动点问题的解答从以下四个方面入手1、化动为静;2、数形结合;3、找不变的量;4、函数的思想。 常见类型有1、最短路径;2、面积的最......

    数学中考专题复习——《动点问题》教案

    中考专题复习——动点问题 【学情分析】 动点一般在中考都是压轴题,步骤不重要,重要的是思路。动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后......

    《平行四边形中的动点问题》教学反思

    在学习了平行四边形这章后,安排了一节关于动点问题的专题课,这一节课的问题设计环环相扣,体现出教师扎实的数学功底、精湛的上课艺术,思路清晰,层层递进,结构严谨,充分调动学生积极......