第一篇:对于解决动点问题的总结
对于解决动点问题的总结
西湖镇中心学校 吕德娇
动点问题的解答从以下四个方面入手
1、化动为静;
2、数形结合;
3、找不变的量;
4、函数的思想。
常见类型有
1、最短路径;
2、面积的最大最小问题;
3、已知了3点形成平行四边形的问题。解决的方法:
1、解决最短路径问题中,无论是周长最小,还是怎样找到一个点有最短路程,基本上用到的是轴对称的知识,两点之间直线最短。造桥的问题则有平移的方法含在里面。
2、对于面积最大最小的问题,一般都与函数效果结合。一般要求出函数的解析式,找它们的公共点。
3、对于已知3个点,形成平行四边形找到第4个点的问题,解决的办法让学生在脑海中形成图形再到数学知识,最后又回到图形的过程。找3点中任意两点为对角线,然后建立平行四边形,通过已知两个点形成的边的变化规律来找到第四个点。总的来说,找到不变的量,根据不变量的点的特点来确定变量。
第二篇:动点问题解题总结
解题关键是动中求静
一.建立动点问题的函数解析式(特点:动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?)1.应用勾股定理建立函数解析式 2.应用比例式子建立函数解析式
3.应用求图形面积的方法建立函数关系式
二.动态几何型压轴题(特点:问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性,如特殊角、特殊图形的性质、图形的特殊位置。动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。)此类题型一般考察点动问题、线动问题、面动问题。解题方法:
1、特殊探路,一般推证。
2、动手实践,操作确认。
3、建立联系,计算说明。
三.双动点问题。点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力。主要分一下四种。
1.以双动点为载体,探求函数图像问题
2.以双动点为载体,探求结论开放性问题
3.以双动点为载体,探求存在性问题
4.以双动点为载体,探求函数最值问题
四.函数中因动点产生的相似三角形问题
五.以圆为载体的动点问题
第三篇:初中数学动点问题总结
初二动点问题
1.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?
分析:
(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.
所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.
解答:
解:(1)∵四边形PQCD平行为四边形 ∴PD=CQ ∴24-t=3t 解得:t=6 即当t=6时,四边形PQCD平行为四边形.
(2)过D作DE⊥BC于E 则四边形ABED为矩形 ∴BE=AD=24cm ∴EC=BC-BE=2cm ∵四边形PQCD为等腰梯形 ∴QC-PD=2CE 即3t-(24-t)=4 解得:t=7(s)
即当t=7(s)时,四边形PQCD为等腰梯形.
(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2 解得:t=6.5(s)
即当t=6.5(s)时,四边形PQCD为直角梯形.
点评:
此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.
2.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.
分析:
(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.
(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.
解答:
解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.
(2)当点O运动到AC中点处时,四边形AECF是矩形. 如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF=(∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.
(3)△ABC是直角三角形 ∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.
点评:
本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.
3.如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;(4)探究:t为何值时,△PMC为等腰三角形.
分析:
(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM; 四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;
(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值.(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论: ①当MP=MC时,那么PC=2NC,据此可求出t的值. ②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值. ③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.
综上所述可得出符合条件的t的值.
解答: 解:(1)∵AQ=3-t ∴CN=4-(3-t)=1+t 在Rt△ABC中,AC2=AB2+BC2=32+42 ∴AC=5 在Rt△MNC中,cos∠NCM= =,CM=(2)由于四边形PCDQ构成平行四边形 ∴PC=QD,即4-t=t 解得t=2.
(3)如果射线QN将△ABC的周长平分,则有: MN+NC=AM+BN+AB 即:(1+t)+1+t=(3+4+5)解得:t=(5分)而MN= NC=(1+t)
. ∴S△MNC=(1+t)2=(1+t)2
×4×3 当t= 时,S△MNC=(1+t)2= ≠ ∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.
(4)①当MP=MC时(如图1)则有:NP=NC 即PC=2NC∴4-t=2(1+t)解得:t=
②当CM=CP时(如图2)则有:(1+t)=4-t 解得:t=
③当PM=PC时(如图3)则有:
在Rt△MNP中,PM2=MN2+PN2 而MN= NC=(1+t)PN=NC-PC=(1+t)-(4-t)=2t-3 ∴[(1+t)]2+(2t-3)2=(4-t)2 解得:t1= ∴当t=,t=,t2=-1(舍去),t=
时,△PMC为等腰三角形
点评:
此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类 讨论和数形结合的数学思想方法.
4.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.
(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;
(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;
(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.
分析:
以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20cm,BQ+MC=BC即x+3x=20cm.所以可以根据这两种情况来求解x的值.
以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MC,BQ=ND;当点P在点N的右侧时,AN=MC,BQ=PD.所以可以根据这些条件列出方程关系式.
如果以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形.
解答:
解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形. ①当点P与点N重合时,由x2+2x=20,得x1=-1,x2=--1(舍去). 因为BQ+CM=x+3x=4(-1)<20,此时点Q与点M不重合. 所以x=-1符合题意.
②当点Q与点M重合时,由x+3x=20,得x=5. 此时DN=x2=25>20,不符合题意. 故点Q与点M不能重合. 所以所求x的值为-1.
(2)由(1)知,点Q只能在点M的左侧,①当点P在点N的左侧时,由20-(x+3x)=20-(2x+x2),解得x1=0(舍去),x2=2.
当x=2时四边形PQMN是平行四边形. ②当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4.
当x=4时四边形NQMP是平行四边形.
所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.(3)过点Q,M分别作AD的垂线,垂足分别为点E,F. 由于2x>x,所以点E一定在点P的左侧.
若以P,Q,M,N为顶点的四边形是等腰梯形,则点F一定在点N的右侧,且PE=NF,即2x-x=x2-3x. 解得x1=0(舍去),x2=4.
由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,所以以P,Q,M,N为顶点的四边形不能为等腰梯形.
点评:
本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.
5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.
(1)当t为何值时,四边形MNCD是平行四边形?(2)当t为何值时,四边形MNCD是等腰梯形?
分析:(1)根据平行四边形的性质,对边相等,求得t值;
(2)根据等腰梯形的性质,下底减去上底等于12,求解即可.
解答:
解:(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;(2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形
点评:
考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容.
6.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s).
(1)设△BPQ的面积为S,求S与t之间的函数关系;
(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?
分析:
(1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PM×QB=96-6t;
(2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由 PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出;
②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出;
③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出.
解答:
解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形. ∴PM=DC=12,∵QB=16-t,∴s= •QB•PM=(16-t)×12=96-6t(0≤t≤
(2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况).
:
①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得 ;
②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,此方程无解,∴BP≠PQ.
③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得 合题意,舍去). 综上所述,当 形.
或
时,以B、P、Q为顶点的三角形是等腰三角,t2=16(不点评: 本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.
7.直线y=-34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.
(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;
(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.
分析:
(1)分别令y=0,x=0,即可求出A、B的坐标;(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A的时间是8秒,点P的速度是2,从而可求出,当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得 PD=48-6t5,利用S= 12OQ×PD,即可求出答案;(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.
解答:
解:(1)y=0,x=0,求得A(8,0)B(0,6),(2)∵OA=8,OB=6,∴AB=10. ∵点Q由O到A的时间是 81=8(秒),∴点P的速度是 6+108=2(单位长度/秒). 当P在线段OB上运动(或O≤t≤3)时,OQ=t,OP=2t,S=t2.
当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,如图,做PD⊥OA于点D,由 PDBO=APAB,得PD= 48-6t5. ∴S= 12OQ•PD=-35t2+245t.
(3)当S= 485时,∵ 485>12×3×6∴点P在AB上 当S= 485时,-35t2+245t= 485 ∴t=4 ∴PD= 48-6×45= 245,AD=16-2×4=8 AD= 82-(245)2= 325 ∴OD=8-325= 85 ∴P(85,245)M1(285,245),M2(-125,245),M3(125,-245)
点评:
本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.
第四篇:动点问题教学设计
《动点问题》教学设计
郭华俊
【教学目标】
1、知识目标:能够对点在运动变化过程中相伴随的数量关系、图形位置关系等进行观察研究。
2、能力目标:进一步发展学生探究性学习能力,培养学生动手、动脑、手脑和谐一致的习惯。
3、情感目标:培养浓厚的学习兴趣,养成与他人合作交流的习惯。【重点难点】
1、教学重点:化“动”为“静”
2、教学难点:运动变化过程中的数量关系、图形位置关系 【教学方法】
实践操作、引导探究 【教学用具】 多媒体
【教学过程】
一典例分析
已知:如图①,在Rt△ACB中,C90,AC4cm,BC3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0t2),解答下列问题:
(1)当t为何值时,PQ∥BC?
(2):当t为何值时,△APQ是等腰三角形?
A变式2:把△APQ沿AQ翻折,得到四边形PQP'A,那么是否存在某一时刻t,使四边形PQP'A为菱形?
BP QC(3)设△AQP的面积为y(cm2),求y与t之间的函数关系式;
(4)是否存在某一时刻t,使S△APQ:S△ABC=2:5若存在,求出t的值,若不存在,说明理由;
变式:是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;
二、总结提高:小组交流学习收获和解题思路
三、直击中考,实战演练
已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系(1)求过A、B、O三点的抛物线解析式;
(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值,如果有,请求出最大值,如果没有,请说明理由.
(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.
第五篇:探究动点轨迹问题
探究动点轨迹问题(2)
福州时代中学戴炜
一、实验内容 探究圆锥曲线中两直线交点的轨迹问题
掌握利用超级画板进行动态探究的常用方法
二、设计理念
本讲意在通过具体任务,驱动学生进行主动探究,发现规律性质,并能总结出一般结论。最后能体会利用超级画板探究动态几何问题的一般方法,并将其应用到更加广泛的探究过程中去。
三、实验过程
1.探究问题(轨迹为定点型)x2
y21,过椭圆的右焦点F作与x轴不垂直的直线L,交椭圆于已知椭圆方程为5
A、B两点,C是点A关于x轴的对称点,试用超级画板探究直线BC与x轴的交点N的轨迹。
探究过程
(1)求出椭圆的右焦点2,0
x2
y21和过点2,0的直线xmy2,用画笔标出交点A、B(2)作出椭圆:5
(3)作出点A关于x轴的对称点C,作直线BC,找出其与x轴的交点N
(4)拖动关于m的滑动块,观察点N的轨迹
(5)猜测点N的坐标,你能用数学方法加以说明吗?
探究结果
直线BC与x轴的交点N是定点,定点的坐标为5,0 2
x2y2
拓展探究:若椭圆的方程为221,试用超级画板探究N点的轨迹是否仍是定点。ab
2.探究问题(轨迹为圆锥曲线型)
x2
y21,点A、B是椭圆长轴的两个端点,直线(1)已知椭圆C的方程为4
xm(2m2)与椭圆C交于P,Q两点,且AP和BQ交于S点,试用超级画板探究,当m变化时S的轨迹,并求出该轨迹方程。
x2x2y22
y1改为椭圆221,点A、B是椭圆长轴的两个端(2)若将椭圆C:4ab
点,直线xmaxa与椭圆C交于P,Q两点,且AP和BQ交于S点,试求S的轨迹方程。
x2y2x2y2
(3)若将椭圆C:221改为双曲线221,点A、B是双曲线实轴的两
abab
个端点,直线xm与双曲线C交于P,Q两点,且AP和BQ交于S点,试求S的轨迹方程。
探究过程
x2
y21和点A(-2,0)(1)作出椭圆:,点B(2,0)4
(2)作出直线xm,用画笔标出交点P、Q(3)作直线AP、BQ,用画笔标出交点S(4)拖动关于m的滑动块,观察点S的轨迹(5)你能求出S的轨迹方程吗?
x2y2x2y2
(6)用类似的方法探究椭圆方程为221和双曲线方程为221时S的轨
abab
迹。
探究结果
x2
y21(1)S的轨迹为双曲线,方程为4x2y2
(2)S的轨迹为双曲线,方程为221
ab
x2y2
(3)S的轨迹为椭圆,方程为221
ab
互动交流:结合“交轨法”求轨迹方程做相应讨论和总结。
x2y2x2y2
以问题(3)为例,若将椭圆C:221改为双曲线221,点A、B是双
abab
曲线实轴的两个端点,直线xm与双曲线C交于P,Q两点,且AP和BQ交于S点,试求S的轨迹方程。
解析过程:设P点的坐标为x1,y1,则Q点的坐标为x1,y1.又有Aa,0,Ba,0 则直线AP的方程为y
y1
xa① x1a
y1
xa② x1a
直线BQ的方程为y
y1222
①×②得y2③ xa2
x1a
x12y12
又因点P在双曲线上,故221
abm222
即y2x1a
n
x2y2
代入③并整理得221,此即为点S的轨迹方程.ab
拓展探究:(1)若直线xm改为垂直于y轴的直线,最终的轨迹如何?
(2)若将问题架构在抛物线上,如抛物线y2x上任意一点P向其准线l引垂线,垂足为Q,连接顶点O与P的直线和连接焦点F与Q的直线交于R点,则R点的轨迹如何?
结果:轨迹方程为y2xx 3.探究问题(轨迹为直线型)
前面的探究问题中,直线的平移是生成点M轨迹的因素之一,若将直线的平移改为旋转,点S的轨迹如何?
x2
y21,已知曲线C的方程为曲线C与x轴的交点分别为A、B,设直线xmy14
与曲线C交于P,Q两点,且AP和BQ交于S点,试用超级画板探究,当m变化时,S的轨迹是不是恒在一条直线上?如果是,请求出该直线方程。
探究过程
x2
y21和直线xmy1,用画笔标出点A、B和交点P、Q,(1)作出曲线C:4
作直线AP、PQ,找出交点S,拖动关于m的滑动块,观察S的轨迹,判断S的轨迹是不是恒在一条直线上,并求出该直线方程。
x2y2
(2)插入变量尺a、b,作出椭圆221;控制椭圆的长短轴大小,观察轨迹变
ab
化;
(3)猜测影响轨迹位置与形状的因素,你能用数学方法加以说明吗? 探究结果
(1)m改变时,S的轨迹为一条直线,直线方程为x4
x2y2
(2)插入变量尺,作出椭圆221,改变a的值,轨迹位置发生改变,改变b
ab的值,轨迹位置不变;
x2y22
(3)假设椭圆方程为221,则按上述方法做出的点S的轨迹为直线xa
ab
拓展探究
x2y2
(1)若曲线C由椭圆变为双曲线221,S的轨迹是不是仍在一条直线上?你
ab
能否求出该直线方程。
x2y2
(2)假设椭圆方程为221,前面的探究问题中,A、B点为曲线和x轴的交点,ab
现在若将A、B点改为x轴上的定点(-2,0)和(2,0),则点S的轨迹还是直线吗?请试用超级画板探究,判断S的轨迹为何种类型的曲线。
结果:当a2时,S的轨迹为一个椭圆
当1a2时,S的轨迹为一个双曲线