鸽巢问题集体备课

时间:2019-05-12 23:25:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《鸽巢问题集体备课》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《鸽巢问题集体备课》。

第一篇:鸽巢问题集体备课

集体备课《鸽巢问题》

《鸽巢问题》的实质就是《抽屉原理》,也有些教材把这个问题的命名为《抽屉原理》,首先我认为要合理地确定这节课的三维目标,教学重难点。其次是如何实施教学环节。

我认为这节课的三维目标是: 知识技能:

1、初步了解鸽巢原理,会用“鸽巢原理”解决实际问题。过程与方法:

1、通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。

情感态度与价值观

1、让学生经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

2、通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。教学重点:鸽巢原理的理解和应用。

教学难点:判断谁是鸽,谁是巢,或者判断谁是物体,谁是抽屉。在如何实施教学环节上,我觉得就按照三维目标中提出的过程与方法的描述来进行。因为,当下流行对一堂课的评价往往是侧重于把探究的主动权交给学生,而老师只起引导的作用。这就是我们常说的课堂上要发挥“老师为主导,学生为主体的地位”。那么这节课就要求老师要备好实物教具,让学生在老师的引导和提示下去完成问题的操作与探究,然后再引导学生得出结论。让学生充分体验探究问题的乐趣,从而实现第一维目标知识技能的掌握和第三维目标情感态度与价值观的实现,因此,过程与方法的把握是实现好这一节课的关键。那么实施这一课的过程中,方法是以学生探究为主,老师只起引导辅助作用,这个好实现。但是要让这堂课能上得生动出彩的话,老师在语言和组织形式上还得想点子出新招,力求让这节课能生动,我想这就能算上一堂好课。以前我们所听的优质课中给我感觉就是,在能把握教学过程中的各个环节的前提下,尽量能让课堂气氛活跃,师生互动频繁有序有效,教学中有那么一到两个亮点,这就足以让这节课成为一堂优质课,有时候真的是“一招鲜”吃遍天。在我听过的优质课中,我记得若干年前孝南区新铺镇中心小学的喻海燕执教的《元、角、分的认识》在当时是没有电脑多媒体辅助教学,只有幻灯片和老式投影仪,但她凭借自己制作的实物教具和扎实的课堂教学基本功,在课堂上与学生有效互动简真“嗨翻”全场,整节课给所有在场听课老师的感觉就象是在录制一场电视互动节目,结果这节课由镇里选送到区里,由区里选送到市里,由市里选送到省里,一路下来获奖不少,最终获得省级一等奖。所以,我在这儿举这个例子的目的是要告诉大家,一节出彩的课,除了能把握教学的各个环节以外,还应该有感染力。

鉴于陈维设计的这篇教案,我觉得这节课有几个问题需要探讨。第一是教学难点需要商榷,对于鸽巢问题的教学难点应该是:判断谁是“鸽”,谁是“巢”,或者判断谁是物体,谁是抽屉。这个问题应该是学生在做鸽巢问题的相关题型时最不会判断的问题,有些这类型的题出得很“坑爹”往往搞出一些数据扰乱学生的判断。例如:你的情境导入中的那道题,有52张扑克牌,你们5人每人随意抽一张,你知道至少有几张牌是同花色的吗?这道题中判断谁是“鸽”,谁是“巢”?估计就会有很多同学会把52张扑克牌当作“鸽”把5个人当作“巢”估计也有相当一部分学生不会去发掘题目中的隐含条件,就是除去大小王的52张扑克牌中花色只有4种。也不会去判断5个人是“鸽”,4种花色是“巢”。那么在推出“鸽巢原理”的结论后,在后面巩固练习阶段,多设计一点像这种不是很直观就能找出“鸽”和“巢”的问题,让学生来判断练习,例如:有红黄两种颜色球各7个放入一个口袋中,有3个人分别摸出一个球,至少有几个学生能摸出颜色相同的球?等等这一类型的题。来强化学生对“鸽”和“巢”的判断。

第二,在学习例1的过程中,为什么舍弃(4,0,0),(0,1,3),(2,2,0),而选择(2,1,1),这个问题我觉得,应该给学生请清楚,要不然“鸽巢问题”后面内容从逻辑上就不太好讲,那么要讲清这个问题,得紧紧地抠出题目中的已知条件,题目中说“ 把4枝铅笔放进3个文具盒中”请问:(4,0,0)这是将4支笔放入了3个文具盒中吗?这分明是将4支笔放入了1个文具盒中,其余的两个文具盒是空的,就不符合题意了,后面的两种放法也是一样,这样去跟学生解释,那么只有第四种放法(2,1,1)是符合题意的,那么从而就可以发掘出“鸽巢问题”中“鸽”数往往不是“巢”数的倍数,但是我们在将鸽放入巢中时也要尽可能去平均分,肯定会有余数,那么可以得出至少有巢里会装上“商+1”只鸽子。

第二篇:六年级数学集体备课《鸽巢问题》

《鸽巢问题》教学设计

【教学内容】(人教版)数学六年级下册第五单元数学广角。【教学目标】

1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过操作发展学生的类推能力,形成比较抽象的数学思维。

3、通过“抽屉原理”的灵活应用感受数学的魅力。【教学重点】:

经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

【教学难点】:通过操作发展学生的类推能力,形成比较抽象的数学思维。

【教学方法】

借助学具,学生自主动手操作、分析、推理、发现、总结原理。【教学准备】:多媒体课件、铅笔、纸杯等。【教学过程】:

一、情境导入

师:今天我给大家表演一个魔术,想看吗?老师手里有一副扑克牌,大家知道一副扑克牌有54张,如果去掉两张王牌,就是52张,请五名同学上来,每人随意抽一张牌,我猜这五张牌中至少有2张是同一种花色的,你们信吗? 那么我们就来验证一下。请5名同学各抽一张,验证至少有2张是同一种花色的。(学生打开牌让大家看)

师:“至少”是什么意思?

神奇吧?再给你们表演一个,这回请你们任意抽出14张,现在你手里的14张牌至少有一对儿。(让学生打开牌看)

老师为什么能做出准确的判断呢?因为这个有趣的魔术中蕴含着一个数学原理,这节课我们就一起来研究这个原理——鸽巢问题(板书课题)。

二、情境认知

1.教学例1.(课件出示例题1情境图)

思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思?

师:把4支笔放进3个笔筒里,请小组的同学摆摆看,在动手之前请看活动要求:

① 分组摆一摆,要求将所有的笔全部放进笔筒里,允许某个笔筒空着,不考虑笔筒的顺序,只考虑笔筒内笔的支数。② 想一想,怎样做才能做到既不重复,又不遗漏。

③ 边摆边记录下来,(记录时:可以用 1 表示笔,用 0表示笔筒(画一画)看看一共有几种摆法? 2.汇报展示

要求学生边摆边说,老师同时在黑板上板书。可能会出现以下几种放法:

0 0 3 1 0 2 2 0 2 1 1

引导学生观察4种方法,从而得出:总有一个笔筒里面至少有2支笔。

师:再次观察四种方法,哪种方法能直接得到这个结论。(引导平均分)

师:既然用平均分的方法就可以解决这个问题,会用算式表示这种方法吗?

生:4÷3=1……1(让学生说说这个算式所表示的意义)小结:先平均分,余下1支,不管放在那个笔筒里,一定会出现“总有一个笔筒里至少有2支笔”。3.思考:

把5支笔放进4个笔筒里,总有一个笔筒里至少有()支笔。把6支笔放进5个笔筒里,总有一个笔筒里至少有()支笔。把100支笔放进99个笔筒里,总有一个笔筒里至少有()支笔。师:这么大的数字,同学们这么快就得出了结论,你是不是发现了什么规律了?(笔的数量与笔筒的数量有什么关系?))还要操作验证吗?说说你的想法。

引导学生发现:只要放的铅笔数比文具盒的数量多1,不论怎么放,总有一个文具盒里至少放进2枝铅笔。

请学生继续思考:如果要放的铅笔数比文具盒的数量多2呢?多3呢?多4呢? 4.做一做

出示题目:5只鸽子飞进了三个鸽笼,总有一个鸽笼至少飞进了

2只鸽子。为什么? 说说你的想法。

让学生再次体会要保证“至少”必须要平均分,余下的数要进行二次平均分,就能保证“至少”。5.教学例2 思考问题:把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢?如果有8本书会怎样呢?10本书呢? 引导学生分析:把7本书平均分成3份,7÷3=2(本)......1(本),若每个抽屉放2本,则还剩1本。如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。

8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。

10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。

总结:物体数÷抽屉数=商……余数 至少数=商数+1 整除时 至少数=商数 6.你知道吗?

其实这一发现早在150多年前有一位数学家就提出来了。课件出示你知道吗。

“ 抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它

可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

三、情境巩固

1.解释课前所做的魔术游戏。2.教材69页做一做

四、情境拓展

一个班有61个同学,至少有几个同学在同一个月出生?

五、全课总结:

这节课你懂得了什么原理?你有什么收获?

六、板书设计:

鸽巢原理

总有…… 至少……

四种摆法: 4 0 0 3 1 0 2 2 0 2 1 1 7÷3=2(本)......1(本)8÷3=2(本)......2(本)10÷3=3(本)......1(本)教学反思:

本节课我是通过几个直观例子,借助实际操作,引导学生探究“鸽巢问题”,初步经历“数学证明“的过程,并有意识的培养学生的“模型思想。

1、借助直观学具演示,经历探究过程。教师注重让学生在操作中,经历探究过程,感知、理解鸽巢问题。

2、注重培养学生的“模型”思想。通过一系列的操作活动,学生对于枚举法和假设法有一定的认识,加以比较,分析两种方法在解决鸽巢问题的优超性和局限性,使学生逐步学会运用一般性的数学方法来思考问题。

3、在活动中引导学生感受数学的魅力。本节课的“鸽巢问题”的建立是学生在观察、操作、思考与推理的基础上理解和发现的,学生学的积极主动。特别以游戏引入,既调动了学生学习的积极性,又学到了鸽巢原理的知识,同时锻炼了学生的思维。在整节课的教学活动中使学生感受了数学的魅力。

第三篇:鸽巢问题(教案)

鸽巢问题

教学内容:P68-70例

1、例2,“做一做”第1题及P71第1-2题。教学目标:

1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生用此原理解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感态度与价值观:通过用“鸽巢问题” 解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重点:引导学生把具体问题转化成“鸽巢问题”。教学难点:找出“鸽巢问题”的解决窍门进行反复推理。教学准备:课件、铅笔、笔筒。教学过程:

一、问题引入

师:任意13人中,至少有几个人的出生月份相同?任意的367人中,至少有几人在同一天过生日?

学生先独立思考,再分组讨论。

师:解决这一类问题的理论依据就是“鸽巢问题”。今天我们就一起来研究这一类问题。(板书课题:鸽巢问题)

二、探索新知

1、教学例1 思考:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思?

(1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。

(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

(3)探究证明

方法一:用“枚举法”证明。

方法二:用“分解法”证明把4分解成3个数。方法三:用“假设法”证明。

小结:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒至少放进2只铅笔。

(4)认识“鸽巢问题”

像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的言语描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。

这里“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有的方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。

小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔数比笔筒的数量多3,那么总有1个笔筒至少放2支……只要放的铅笔数比笔筒数量多,就总有1个笔筒里至少放2支铅笔。

(5)归纳总结。

2、教学例2.思考:(1)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢?(2)如果有8本书会怎样呢?10本书呢?

解决问题A:(1)探究证明:

方法一:用数的分解法证明。把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况:由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多的那个数是3,即有1个抽屉至少放进3本书。

方法二:用假设法证明。把7本书平均分成3份,7÷3=2(本)…1本,若每个抽屉放2本,则还剩1本。如果把剩下的这1本放进任意1个抽屉中,那么这个抽屉里就有3本书。

(2)得出结论:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。

解决问题B:(1)用假设法分析。8÷3=2(本)…2本,剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。10÷3=3(本)…1本,把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。

(3)归纳总结:要把a本书放进3个抽屉里,如果a÷3=b(本)…1本或a÷3=b(本)…2本,那么一定有1个抽屉里至少放进(b+1)本书。

鸽巢原理

(二):古国把多于kn个的物体任意分放进n个空抽屉(k是正整数,n是非0自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。

三、巩固练习

P70“做一做”第1题、P71页第1-2题。

四、课堂总结

通过这节课的学习,你有什么收获?

五、作业

1、把8本书分给7位同学,至少有一位同学分得2本书,为什么?

2、某学校有30名学生是2月份出生的,那么其中至少有两名学生的生日是在同一天。为什么?

3、把17支铅笔放进4个文具盒里,至少有一个文具盒里放几支?

4、幼儿园里有80个小朋友,各种玩具共有330件。把这些玩具分给小朋友,是否有人会得到5件或5件以上的玩具?

第四篇:六年级鸽巢问题

东莞市东城博而思培训中心

教学辅导教案

学科

任课教师:

授课时间:

****年**月**日(星期)

鸽巢问题

基础知识点

1.鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子。2.鸽巢原理

(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。

如:将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔,“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

3.鸽巢原理

(二):如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。

如:把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。

我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式

物体个数÷鸽巣个数=商„„余数

至少个数=商+1 摸同色球计算方法:①要保证摸出同色的球,摸出的球的数量至少要比颜色数多1。

物体数=颜色数×(相同颜色数-1)+1

②极端思想(最坏打算): 用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。

鸽巢问题的计算总结:

东莞市东城博而思培训中心

二、例题讲解:

1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业

求证:这5名学生中,至少有两个人在做同一科作业。

2、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。

3、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?

4、把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可以保证取到3个颜色相同的球。

5、证明:某班有52名学生,至少有5个人在同一个月出生?

6、一幅扑克牌除大小王有52张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?

最少要抽取几张牌,方能保证其中至少有2张牌有相同的花色?

7、幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理。

8、学校图书馆里科普读物、故事书、连环画三种图书。每个学生从中任意借阅两本,那么至少要几个学生借阅才能保证其中一定有2人借阅的读书相同?

9、某班有学生49名,在这一次的英语期中考试中,除3人以外,分数都在85分以上,是否可以推断,至少有几人的分数会一样?

三、课堂练习1、6只鸡放进5个鸡笼,至少有几只鸡要放进同一个鸡笼里。

2、400人中至少有两个人的生日相同,请证明。

3、红、黄、蓝、白四色小球各10个,混合放在一个暗盒中,一次至少摸出多少个,才能保证有6个小球是同色的。

4、有一个晚上你的房间的电灯忽然间坏了,伸手不见五指,而你又要出去,于是你就摸床底下的袜子。你有三双分别为红、白、蓝颜色的袜子,可是你在黑暗中不能知道哪一双是颜色相同的。你想拿最少数目的袜子出去,在外面借街灯配成同颜色的一双。这最少数目应该是多少?

5、某班有42人开展读书活动,他们从学校图书馆借了212本图书,那么其中至少有一人借多少本书?

6、学校五(一)班40名学生中,年龄最大的是13岁,最小的是11岁,那么其中必有几名学生是同年同月出生的。

东莞市东城博而思培训中心

四、巩固练习

1、今天参加数学竞赛的210名同学中至少有几名同学是同一个月出生的?

2、有红、黄、蓝、白四色小球各10个,混合放在一个暗盒里,一次至少摸出个,才能保证有2个小球是同色的.3、五年级某班有学员13人,请说明在这13名同学中一定有两个同学是同一星座。

4、盒子里放有三种不同颜色的筷子各若干根,最少摸几根,才能保证至少有3根筷子同色的。

5、在一间能容纳1500个座位的戏院里,证明如果戏院坐满人时,一定最少有五个观众是同月同日生。

6、在38个小朋友中,至少有几个小朋友同一个月出生的?

模拟试卷:

一、填空

1.箱子中有5个红球,4个白球,至少要取出()个才能保证两种颜色的球都有,至少要取()个才 能保证有2个白球。

2.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种水果,那么至少要有()个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有()个小朋友才能保证两人拿的水果是相同的。

3.将红、黄、蓝三种颜色的帽子各5顶放入一个盒子里,要保证取出的帽子有两种颜色,至少应取出()顶帽子;要保证三种颜色都有,则至少应取出()顶;要保证取出的帽子中至少有两顶是同色的,则至少应取出()顶。

4.张阿姨给孩子买衣服,有红、黄、白三种颜色,但结果总是至少有两个孩子的颜色一样,她至少有()孩子。

5.二、选择

1.把25枚棋子放入下图的三角形内,那么一定有一个小三角形中至少放入()枚。

A.6

B.7

C.8

D.9 2.某班有男生25人,女生18人,下面说法正确的是()。

东莞市东城博而思培训中心

A.至少有2名男生是在同一个月出生的 B.至少有2名女生是在同一个月出生的C.全班至少有5个人是在同一个月出生的 D.以上选项都有误

3.某班48名同学投票选一名班长(每人只许投一票),候选人是小华、小红和小明三人,计票一段时间后的统计结果如下:

规定得票最多的人当选,那么后面的计票中小华至少还要得()票才能当选?

A.6

B.7

C.8

D.9 4.学校有若干个足球、篮球和排球,体育老师让二(2)班52名同学到体育器材室拿球,每人最多拿2个(可以一个都不拿),那么至少有()名同学拿球的情况完全相同。

A.8

B.6

C.4

D.2 5.如图,在小方格里最多放入一个“☆”,要想使得同一行、同一列或对角线上的三个小方格都不同时出现三个“☆”,那么在这九个小方格里最多能放入()个“☆”。

A.4

B.5

C.6

D.7

三、应用

1.4名运动员练习投篮,一共投进30个球,一定有一名运动员至少投进几个球?

2.某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到 4件以上的玩具?

3.有白、黑、灰三种颜色的袜子各50只混放在一个袋子里,如果闭上眼睛去摸。(同色两只为一双)(1)至少摸出多少只,可以配到一双袜子?(2)至少摸出多少只,才能保证有3只不同色的袜子?

(3)至少摸出多少只,可以保证摸出1双黑色的袜子?

(4)至少摸出多少只,可以配2双的袜子?

第五篇:《鸽巢问题》教学设计

《鸽巢问题》教学设计

【教学内容】(人教版)数学六年级下册第68页例1。

【教学目标】

知识与技能:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

过程与方法:经历抽屉原理的探究过程,通过摆一摆、分一分等实践

操作,发现、归纳、总结原理。

情感态度价值观:通过“抽屉原理”的灵活应用感受数学的魅力。

【教学重点】

经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

【教学难点】

通过操作发展学生的类推能力,形成比较抽象的数学思维。

【教学准备】:多媒体课件、铅笔、笔筒等。

【教学过程】

一、创设情境,导入新知

老师组织学生做“抢凳子的游戏”。请4位同学上来,摆开3张凳子。

老师宣布游戏规则:4位同学站在凳子前一定距离,等老师说完开始后,四位同学每个人都必须坐在凳子上。

教师背对着游戏的学生。

师:都坐下了吗?老师不用看,也知道肯定有一张凳子上至少坐着2位同学。老师说得对吗?

师:老师为什么说得这么肯定呢?其实这里面蕴含一个深奥的道理,今天我们就来探究这个问题——鸽巢问题(板书课题)。

二、自主操作,探究新知

1、观察猜测

多媒体出示例1:把4支笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少放进2支笔。这句话对吗?为什么?

2、“总有”是什么意思?“至少”又是什么意思?

3、自主思考

(1)独立思考:怎样解释这一现象?

(2)小组合作,拿铅笔和笔筒实际摆一摆、放一放,看一共有几种情况?

4、交流讨论

学生汇报是用什么办法来解释这一现象的。

学情预设:

第一种:用实物摆一摆,把所有的摆放结果都罗列出来。学生展示把4支铅笔放进3个笔筒里的几种不同摆放情况。课件再演示四种摆法。

请学生观察不同的放法,能发现什么?

引导学生发现:每一种摆放情况,都一定有一个笔筒里至少有2支铅笔。也就是说不管怎么放,总有一个笔筒里至少有2支铅笔。

第二种:假设法。

教师请只摆了一种或没有摆放就能解释的同学说说自己的想法。师:其他学生是否明白他的想法呢?

引导学生在交流中明确:可以假设先在每个笔筒里放1支铅笔,3个笔筒里就放了3支铅笔。还剩下1支,放入任意一个笔筒里,那么这个笔筒中就有2支铅笔了。也就是先平均分,每个笔筒里放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。

请学生继续思考:

如果把5支铅笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少放进2支笔。这句话对吗?为什么?

请学生继续思考:

把7支铅笔放进6个笔筒里呢? 把10支铅笔放进9个笔筒里呢? 把100支铅笔放进99个笔筒里呢? 你发现了什么?

引导学生发现:只要放的铅笔数比文具盒的数量多1,不论怎么放,总有一个笔筒里至少放进2支铅笔。

5、其实这一发现早在150多年前有一位数学家就提出来了。课件出示“你知道吗”。

“ 抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

三、灵活应用,解决问题

1.第70页“做一做”。

(1)课件出示:5只鸽子飞回3个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

(2)学生独立思考,自主探究。

(3)交流,说理。

2.课件出示:8只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

3.解释课前所做的抢凳子游戏。

4.师拿出扑克牌,问:对于扑克牌,你有哪些了解?

生汇报。

从扑克牌中取出两张王牌,找5名学生,在剩下的52张中任意抽出5张,让其他同学猜抽牌的结果,并说明理由。

抽牌后,交流。

四、全课总结

这节课你懂得了什么原理?

五、板书设计

抽屉原理(鸽巢问题)

只要待分物体比抽屉数多__

总有

一个抽屉里

至少

放进2个物体

枚举法

(4,0,0)

(3,1,0)

(2,2,0)

(2,1,1)

假设法

(1,1,1)

(2,1,1)

下载鸽巢问题集体备课word格式文档
下载鸽巢问题集体备课.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    鸽巢问题教学设计[合集]

    鸽巢问题教学设计在教学工作者开展教学活动前,很有必要精心设计一份教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。如何把教学设计做......

    《鸽巢问题》教学反思

    《鸽巢问题》教学反思 课堂上,我首先采用学生抢凳子游戏导入,使学生初步感受总是有一个凳子上要坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,也......

    《鸽巢问题》教学设计

    《鸽巢问题》教学设计 【教学内容】 人教版课标教材小学数学六年级下册第五单元数学广角第70-71页。 【教学目标】 1.通过操作、观察、比较、分析、推理、抽象概括,引导学生......

    《鸽巢问题》教学设计(精选)

    教学目标:1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。2、过程与方法:通过操作、观察、比较、说理等数......

    鸽巢问题教学设计

    《鸽巢问题》教学设计 中卫九小 张永霞 一、教学内容 教材第68、69页例1和例2 二、教学目标 1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单......

    《鸽巢问题》教学设计

    《鸽巢问题》教学设计 教学内容 人教版六年级数学下册数学广角《鸽巢问题》第一课时70、71页例1、例2. 教学目标 知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义......

    鸽巢问题教学设计

    鸽巢问题教学设计 教学内容:人教版小学数学六年级下册教材第68~69页。 教材分析: 鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可......

    鸽巢问题教学设计

    《鸽巢问题》教学设计 【教学内容】(人教版)数学六年级下册第68页例1,69页例2。 【教学目标】 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的......